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Abstract
In a recent past, Deep Learning emerged as a standard tool in Image Processing, commonly involved in numerous and various 
tasks. Notably, Deep Learning has become increasingly popular for the synthesis of images in several applications different 
in nature. However, research efforts have been massively focused on designing new and increasingly complex architectures 
to achieve yet better performance, often at the price of overlooking the uneasy question of the assessment of the quality of 
the synthesized images. Focusing on the specific context of pure textures, i.e., of images with no geometrical contents, the 
present work aims to propose a methodology that permits to quantify the quality of Deep Learning synthesized images. It 
makes use of Deep Convolutional Generative Adversarial Networks, a specific class of trained neural networks, commonly 
used for image synthesis. Because they provide versatile and well-documented texture models, multivariate multifractal fields, 
with rich multiscale cross-statistics (scale-free and multifractal textures), are used. A posteriori synthesis quality indices are 
defined from the statistics of multiscale (wavelet) representations computed on deep learning generated multivariate textures 
and compared to those associated with the models. These comparisons permit to objectively quantify the quality of deep 
learning texture synthesis as well as the reproducibility of the training and learning procedures, an approach that departs from 
reporting only the training yielding best performance. This methodology further permits to quantify objectively the variation 
in the quality of deep learning generated multivariate textures with respect to the complexity of deep learning architectures. 
Moreover, a priori indices, constructed directly on loss functions, hence much easier to compute, are also proposed and shown 
to correlate significantly with the a posteriori and costly multiscale representation synthesis quality indices.

Keywords Generative Adversarial Network · Multivariate Texture Synthesis · Quality Assessment · Multifractals · 
Multiscale Statistics · Loss Functions

1 Introduction

1.1  Context

In the last decade, Deep Learning architectures have been 
massively used to produce synthetic images supposed to 

match target images from numerous real world applications, 
very different in nature (cf. e.g., [12, 56]). Potential benefits 
in applications triggered a tremendous amount of research 
works and publications across the world, often reporting out-
standing results based on the empirical observation of real-
istic images. Despite indisputable promising results, the use 
of Deep Learning for image synthesis remains a scientific 
field with far more open questions than certainties and final 
answers. Beyond the obvious questions related to deep learn-
ing architecture design or choice in relation to a specified 
task, there are less obvious questions related to performance 
assessment: How does one quantify how well deep learning 
is performing in image synthesis ? Or even more simply, is 
it actually successful ?

Often in applications, targeted image are characterized 
by a strong geometrical or cartoon contents (edges, shapes, 
angles, objects, ...), such as e.g., faces, natural or urban land-
scapes,[21, 29, 31, 46, 47], so that synthesis performance are 
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often only estimated qualitatively as satisfactory by visual 
inspection, i.e., a synthetic face looks like a real-person 
face... (see, a contrario, [24, 45]). However, in applications, 
images of interest actually consists of both cartoon contents 
and texture information (patterns, periodicity,...). It is thus 
not always easy to disentangle whether performance stem 
from geometry or texture. Furthermore, images consisting of 
texture information only are of major importance in numer-
ous applications, some with potential high societal stakes, 
such as e.g., biomedical applications [14], remote sensing 
[40] or art investigations [3]. While it is sometimes consid-
ered that intrinsic dimensions are larger for textured images 
than for geometric ones, hence potentially inducing larger 
difficulties for Deep Learning procedures [10], the assess-
ment of the quality of Deep Learning texture synthesis has 
been much less considered.

Often overlooked, because of a possibly more reward-
ing strategies in contributing to a race towards always more 
complicated architectures for better performance, the funda-
mental question of investigating quantitative assessment of 
Deep-Learning-synthetized texture only images constitutes 
the focus of the present work.

1.2  Related Works

Several different types of neural network architectures were 
used for image synthesis. Convolutional neural networks can 
be used for image synthesis (cf. e.g., [17, 48]), by applying 
an inversion procedure, which has, however, been shown to 
be poorly stable and significantly lacks theoretical founda-
tions. Autoencoders were also used for image synthesis [6, 
19], based on latent variable representations. Autoencoder-
based procedures were however reported to suffer from 
significant drawbacks, such as large artifacts, lack in high-
frequency information and weak ability to generate new 
instances of images [19]. Generative Adversarial Networks 
(GAN) attempt to overcome these limitations. GAN were 
successfully used across an ever increasing variety of archi-
tectures (BigGAN, StyleGAN, SGAN, PSGAN,...) [12, 13, 
29, 30, 56] and in numerous application fields with state-of-
the-art results [7, 13, 20, 42], which motivates their use in 
the present work.

While the assessment of the quality of generated images 
is often simply conducted by visual inspection (cf. e.g. [45]), 
quantitative performance metrics were also proposed, based 
on information theoretic measures computed on neural net-
work predictions [24, 45]. Such scores are often based on 
descriptive statistics (mean and covariance) that mix up 
geometry and texture contributions, making it hard to dis-
entangle the respective contributions. Even if applied to 
texture-only, these first and second order statistics are well 
suited for Gaussian texture, but by construction overlook 
departures from Gaussianity that may be critical, e.g., in 

some medical applications. To finish with, image synthesis 
is often considered for univariate images only: each instance 
of synthesized image only consist of a single image, whereas 
in numerous applications (colored images, remote sensing 
images, multimodal images,...), there is a significant interest 
to produce multivariate synthetic images, i.e., each sample 
consists of a vector of images.

The Deep Learning based synthesis of multivariate non 
Gaussian textures, and the assessment of the synthesis that 
also accounts for cross-statistics, thus remains an open ques-
tion, of critical importance in applications to quantify effi-
ciency, robustness and reproducibility, issues at the heart of 
the present contribution.

1.3  Goals, Contributions and outlines

The present contribution aims to address the generic ques-
tion of quantifying if and how well GAN architectures per-
form for multivariate texture synthesis. To that end, two 
important methodological choices are made. First, works in 
Deep Learning often seek to contributing to (and winning) 
the competition for an always best architecture. Instead, 
we will make use here of classical and well-documented 
Deep-Convolutional (DC) GAN architectures, so as to put 
the focus on quantifying if and and how well they do, and 
how reproducible performance are from one training to the 
other. Second, Deep Learning contributions often make use 
of one of the numerous real-world databases of images, 
with usually impressively large size, yet with unknown pre-
cise and prior knowledge of their statistics and characteris-
tics. Instead, the originality of the present work consists in 
using synthetic multivariate texture models with rich and 
complex but known and controlled properties and statistics. 
This will provide us with a mean to quantify the quality and 
variability of the DCGAN synthesis procedures by compar-
ing the statistics of multivariate textures produced by the 
trained DCGAN architectures to those of the theoretical 
models.

This work expands in several ways described below on 
a preliminary work presented in [39], in which, we used a 
single DCGAN architecture, and showed that synthesis qual-
ity performance was suffering from a wide variability across 
independent trainings, despite identical and well-controlled 
training conditions. We further showed that this significant 
variability was not reduced by modifying the training set 
size or the number of iterations in the training stage. Capital-
izing on these results, training set size and number of itera-
tions are kept fixed in the present work. Instead, we explore 
here the impact of varying DCGAN architecture complexi-
ties, in terms of depth (number of layers) or size (number 
of parameters), on the quality of the multivariate texture 
synthesis and on the variability across independent training 
of achieved performance.
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We make use of multivariate multifractal textures, widely 
used in applications very different in nature ranging from 
medicine to art [3, 4, 15, 32, 36, 51, 52], and of interest per 
se, but chosen here only as archetypal models of non Gauss-
ian multivariate textures with theoretically known and tun-
ably intricate (cross)-statistics, beyond (cross-)covariance. 
The properties and statistics of such multivariate multifractal 
textures can be well quantified using multiscale wavelet and 
wavelet leader analyses [27, 28, 34, 54]. These multiscale 
analyses are used to design a posteriori assessment indices 
permitting to quantify the quality of DCGAN synthesized 
multivariate textures, by comparisons to groundtruth and 
thus to assess the reproducibility of the training proce-
dure. The definitions, properties and synthesis procedures, 
together with the wavelet-based analysis procedure are 
detailed in Sections 2.1 and 2.2.

The DCGAN principle, the different architectures of 
increasing complexity are described in Section 3, together 
with the GPU facilities and optimization and training 
procedures.

The synthesis quality and its variability is assessed by 
comparing performance across repeated independent train-
ing trials, restarted from scratch, rather than reporting only 
the best trial performance, another originality of the present 
work (cf. Sections 4.1 and 4.2).

Further, we propose and assess the relevance of a priori 
quality indices, constructed directly from the loss functions 
computed while the training of DCGAN architectures is per-
formed, by quantifying their correlations with the wavelet-
based indices that can be computed a posteriori only, that 
is after the training phase is completed and the DCGAN 
multivariate textures are generated. (cf. Section 4.3).

These results, reported in Section 4, are further discussed 
and commented in Section 5.

2  Multivariate multifractal textures

2.1  Multivariate multifractal Models

After Mandelbrot’s seminal work [38] in the field of hydro-
dynamic turbulence, Multifractal random walks (MRW) [8] 
are nowadays used as versatile models for numerous real-
world applications, where the time series or textures actually 
measured by sensors display multiscale scale-free temporal 
or spatial dynamics. Interested readers are referred to e.g., 
[5, 26] for a review of the scale-free paradigm and of its use 
in applications.

In the present work, we extend the definition of bivariate 
MRW 1D signals, proposed in [52], to multivariate MRW 
textures (referred to as MMRW) as:

with x the spatial cartesian coordinates, and where 
G(x) = {G1(x),… , GM(x)} and �(x) = {�1(x),… ,�M(x)} 
consist of two independent zero-mean M-variate Gaussian 
2D-fields with prescribed covariance functions.

The process G(x) is defined as the multivariate extension 
of the univariate 2D fractional Gaussian noise (2D-fGn), 
the reference Gaussian model for scale-free textures [43]. 
Being Gaussian, G(x) is fully defined by its M × M covari-
ance functions. Their detailed analytical closed-form expres-
sions can be found in [1]. For the purpose of the present 
work, it is sufficient to know that these covariance functions 
are fully controlled by M Hurst exponents H = (H1,… , HM) 
and a M × M pointwise covariance matrix Σ.

The process �(x) is defined via M × M cross-covariance 
functions, designed to induce multifractality in the spatial 
statistics. The component (m1, m2) of these cross-covariance 
functions reads:

for ||x|| ≤ L and 0 otherwise, with L an arbitrary integral 
scale. In this definition, Λ = (�1,… , �M) denotes a vector of 
parameters controlling the multifractality of each component 
independently �mf  ., while �mf  corresponds to a M × M cor-
relation matrix that controls cross-multifractalities amongst 
components.

Extending to 2D fields, the calculations made for 1D 
signals in univariate [8] and bivariate [5, 33, 53] settings, 
enables us (calculations not detailed here) to understand 
and control the complexity of the cross-statistics of the such 
M-component textures. Together, the selfsimilarity vector 
H controls the second-order covariances (or selfsimilar-
ity) of the M-components of Xm(x) , while the pointwise 
matrix Σ modulates the intensity of the cross-covariances 
(or cross-selfimilarity) amongst components. Additionnaly 
and independently, the multifractality vector Λ controls the 
departures from Gaussianity of each component of Xm(x) 
thus higher order statistics, and the pointwise matrix �mf  
modulates the cross-multifractality amongst components, 
and hence the cross-higher order statistics. This is why �mf  
is abusively but conveniently referred to as multifractal 
correlation.

MMRW thus provide practitioners with versatile models, 
permitting the independent tuning of the spatial dynamics 
of each component, via the choices of H and Λ , from very 
simple (no-similarity and no-multifractality) to very intricate 
(self-similarity and multifractality). In addition and indepen-
dently from the components themselves, the cross-statistics 
between components can be tuned, via the choices of Σ and 

(1)∀m = 1,… , M, Xm(x) = Gm(x)e
�m(x),

(2){Σmf }(m1, m2) = �mf (m1, m2)�m1
�m2

log

(
L

||x|| + 1

)
,
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�mf  , from independence ( Σ and �mf  are identity matrices), 
to second-order correlation only ( Σ departs from identity 
but �mf  remains the identity matrix) and higher-order intri-
cate statistical dependencies (both Σ and �mf  depart from 
identity).

MMRW textures are synthesized using dedicated 
codes, designed by ourselves and available upon request, 
implementing directly definitions via the circulent 
embedded matrix technique classically used to synthe-
size Gaussian processes [22, 23]. One sample of 4-variate 
MMRW is shown in Fig. 1. These MMRW synthesized 
from the theoretical model are hereafter referred to as 
true MMRW.

2.2  Multivariate multifractal Analysis

It is well-documented that wavelet representations constitute 
reference tools to analyze textures with scale-free (selfsimi-
larity and multifractality) spatial dynamics [43, 54].

The discrete wavelet transform coefficients of the 
M-variate texture X, {dXm

(j, k)} , m = 1,… , M , are classi-
cally defined via inner products between each component 
Xm and dilated (at scale 2j ) and translated (at location 2jk ) 
templates of a tensor-product based 2D wavelet (see e.g., 
[37] for details).

It can be easily shown that, for any pair of components 
Xm1

(x) and Xm2
(x) , the wavelet covariance matrix at scale 2j , 

Sm1,m2
(2j) , behave as a power-law with respect to scales 2j:

with C� a constant that depends on the chosen wavelet and 
on Hm1

, Hm2
, �m1

, �m2
 , and �

m1,m2
= H

m1
+ H

m2
− (�2

m1
+ �2

m2
)∕2.

The wavelet coherence (or crosscorrelation) functions,

(3)Sm1,m2
(2j) ≡

∑

k

dXm1

(j, k)dXm2

(j, k) ≃ Σm1,m2
C�2j�m1,m2 ,

(4)C(ss)
m1,m2

(2j) ≡Sm1,m2
(j)∕

√
Sm1,m1

(j)Sm2,m2
(j)

are thus constant across scales, with levels that depend only 
on the point-covariance matrix Σ . Therefore, the functions 
Sm1,m2

(j) and Css
m1,m2

(j) only probe the second order statistics 
of MMRW and thus do not quantify multifractality. Notably 
they are blind to cross-multifractalities (off-diagonal terms 
in Σmf ).

To measure higher-order statistics and multifractal-
ity, wavelet leaders L(j, k) have been further constructed, 
as local suprema of wavelet coefficients, taken over finer 
scales and within a short spatial neighborhood 3�j,k , with 
�j,k = [k2j, (k + 1)2j) the dyadic interval of size 2j and 3�j,k 
the union of �j,k with its 2 neighbors [50, 54]:

Extending calculations in [52], it can then be shown that the 
first order and second order cumulants of ln L , C(m)

1
(2j) and 

C
(m1,m2)

2
(2j) , behave linearly in ln 2j:

with c(m)

1
= Hm + �2

m
∕2 and c(m1,m2)

2
= �mf (m1, m2)�m1

�m2
.

This permits to define a wavelet multifractal coherence 
function as:

While C(mf )
m1,m2

(2j) has no explicit closed-form analytical 
expression, Eq. (8) shows that its dependence across scales 

(5)

=
Σm1,m2

C� (Hm1
, Hm2

, �m1
, �m2

)
√

Σm1,m1
C� (Hm1

, Hm1
, �m1

, �m1
)Σm2,m2

C� (Hm2
, Hm2

, �m2
, �m2

)

,

(6)=
Σm1,m2√

Σm1,m1
Σm2,m2

,

(7)L(j, k) = sup𝜆�⊂3𝜆j,k
|dX(𝜆

�)|.

(8)C
(m)

1
(2j) =c

(0,m)

1
+ c

(m)

1
ln 2j,

(9)C
(m1,m2)

2
(2j) =c

(0,m1,m2)

2
+ c

(m1,m2)

2
ln 2j,

(10)C(mf )
m1,m2

(2j) ≡C
(m1,m2)

2
(2j)∕

√
C
(m1,m1)

2
(2j)C

(m2,m2)

2
(2j).

Figure. 1  Sample of a 4-variate textures with (identical) selfsimi-
larity and multifractality in the spatial dynamics of each component 
as well as intricate (and different) cross-selfsimilarities and cross-

multifractalities amongst pairs of omponents. The parameters defining 
the MMRW model from which this 4-variate sample is generated are 
detailed in Section 4.1 (see also the caption of Fig. 2 ).
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is essentially controlled by the multifractal correlation 
�mf (m1, m2).

These wavelet and wavelet-leader based multiscale 
functions Sm1,m2

(2j) , C(m)

1
(2j) , C(m1,m2)

2
(2j) , C(ss)

m1,m2
(2j) and 

C
(mf )
m1,m2

(2j) characterize the dependencies as functions of 
scales 2j of the statistics of X: Sm,m(2

j) and C(m,m)

2
(2j) 

account respectively for the selfsimilarity and multifractal-
ity of each component independently ; C(ss)

m1,m2
(2j) character-

ize cross-selfsimilarity, hence cross-covariances amongst 
components, while C(mf )

m1,m2
(2j) describes cross-multifractal-

ity, hence, spatial dependencies amongst components 
beyond second order and cross-covariance.

Fig.  2 displays the multiscale representations 
log2 Sm,m(2

j) , C(m)

1
(2j) , C(m,m)

2
(2j) (left plots) and C(ss)

m1,m2
(2j) 

and C(mf )
m1,m2

(2j) (right plots), obtained as averages over 100 
independent 4-variate realizations of the MMRW (one 
4-variate sample being illustrated in Fig. 1). As theoreti-
cally predicted, the wavelet coherence C(ss)

m1,m2
(2j) functions 

are constant across scales 2j , at levels prescribed only by 
the off-diagonal entries of matrix Σ . Interestingly, Fig. 2 
shows that the functions C(mf )

m1,m2
(2j) , for which no explicit 

closed-form analytical expressions are available, are close 
to constants across scales, with values closely related to 
�mf (m1, m2) , an outcome of interest per se, nicely matching 
the intuition associated with scale-free statistics.

Wavelet and wavelet leader analyses are implemented 
using the toolbox, available and documented on the author 
websites.

These multiscale representations will be used to construct 
a posteriori indices to assess the quality of DCGAN synthe-
sized textures by comparing those computed on true MMRW 
to those computed from DCGAN synthesized textures.

3  Neural network architectures, training set 
and training procedures

3.1  Neural network architectures

3.1.1  Deep‑Convolutional generative Adversarial Network

Generative adversarial networks (GAN) constitute an increas-
ingly popular class of deep learning architectures, originally 
proposed in [20]. GAN are constructed as a competition 
between two neural networks, obtained by piling up elemen-
tary layers gathering linear filtering and pointwise non linear 
transformations (cf. Fig 3 for illustration). The Generator G 
defines a nonlinear filter that generates fake images resem-
bling in some sense target images, from white Gaussian noise 
as input. The Discriminator, D, outputs the probability that 
image X, used as input, belongs to the target distribution.

Figure. 2  Multiscale analysis of MMRW. The 3 × 4 left plots show, 
for each of the four components ( m = 1, 2, 3, 4 , in columns) the func-
tions log2 Sm,m(2

j) , C(m)

1
(2j) and C(m,m)

2
(2j) as functions of j = log2 2j . 

The right plots show, for each of the 6 pairs the wavelet coherence 
functions C(ss)

m1,m2
(2j) (bottom triangle) and the multifractal coherence 

function C(mf )
m1,m2

(2j) (upper triangle) as functions of j = log2 2j . These 
functions are estimated empirically as averages over the multiscale 
analysis of 100 independent realizations of the 4-variate MMRW, 

with selfsimilarity and multifractality exponents chosen equal, 
∀m = 1, 2, 3, 4 , Hm = 0.8 and �m =

√
0.03 , and off-diagonal entries 

of the correlation and multifractal correlation matrices Σ and Σmf  as 
indicated on plots. (see also Section 4.1). These functions are used as 
ground truth to assess the quality of the DCGAN synthesis by com-
parisons of the same functions computed as averaged over the same 
analysis performed on DCGAN generated textures.
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GAN implementations were traditionally based on fully-
connected layers, followed by (nonlinear) activation func-
tions and max-pooling to downsize images. However, the 
original GAN has been documented to be unstable and diffi-
cult to train. Numerous attempts to stabilize its optimization 
have been reported, e.g., [7, 42, 45].

Deep Convolutional GAN (DCGAN) were further pro-
posed in [42] as a solution to unstable training. They consist 
in using convolutional (instead of fully-connected) layers. 
They rely on strategic architectural choices (e.g. batch nor-
malization, strided convolutions, (leaky) ReLU activations) 
to achieve training convergence [42] detailed below.

3.1.2  Training and Loss Functions

The joint optimization of the Discriminator and Generator 
relies on the use of a training set, consisting of samples of 
the target distribution, and results from solving a MinMax 
problem based on Cross Binary Entropy as loss function 
[20]: The optimal discriminator and generator are obtained 
by respectively maximizing

over the weights �D and �G respectively of D and G, and 
where x, z are samples of respectively the training set and 
white Gaussian noise.

3.1.3  Architectures

One aim of the work consists in testing if and how architec-
ture complexity, within the DCGAN framework, impacts 
texture synthesis performance. To that end, the architecture 
of the Discriminator is kept fixed, while that of the Genera-
tor is varied from less to more complex.

LD(�D) =
1

m

m∑

i=1

[
log(D(x)) + log(1 − D(G(z)))

]
,

and LG(�G) =
1

m

m∑

i=1

log(D(G(z))),

The Discriminator consists of five convolutional layers, 
with strides (2, 2) and 3 × 3 × d convolutional filters fol-
lowed by batch normalization (except for the first layer), 
Leaky ReLU activation functions and dropout. The depths d 
of the layers are indicated on the sketched representation of 
the Discriminator in Fig. 4 (bottom right). All together, the 
discriminator implies a total number of trainable parameters 
summing up to 169089.

The overall structure across Generators is preserved, with 
a white noise input of fixed and same size (100 samples) 
enhanced and reshaped by a fixed fully-connected layer and 
a ReLU activation, gathering 3309568 trainable parameters. 
This first layer is then followed by N Convolutional layers, 
each consisting of 3 × 3 × d convolutional filters, batch nor-
malization, ReLU activations and possible upsampling by 
pixel duplication, except for the last layer consisting of 3 × 3 
convolutional filters followed by tanh activation function. 
The depths d of the layers are indicated on the sketched 
representations of the Generators in Fig. 4.

Three Generator architectures are tested with N = 3, 5 or 
7 convolutional layers, associated with respectively 24848, 
39972 and 46404 additional trainable parameters, thus sum-
ming up to 3334052, 3349540 and 3455972 trainable param-
eters. These Generator architectures are sketched in Fig. 4.

3.2  Experimental set‑up

3.2.1  GPU facilities

Optimization and learning are conducted on IT facilities, 
made available by The Blaise Pascal Center for research and 
educations. The largest technical bench is based on work-
stations equipped with large number of GPU (Graphical 
Processing Units) or GPGPU (General Purpose Graphical 
Processing Unit). All these hardware equipment run a unique 
Operating System: SIDUS (Single Instance Distributing 
Universal System) [41]. Provided by the network, SIDUS 
ensures the unicity of the distributed Operating System on 
all workstations: 2 machines that boot SIDUS at the same 
time cannot have a different operating system, bit to bit. 
On the 4 workstations used to perform Machine Learning 

Figure. 3  Generative Adver-
sarial Network Principle.
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operations, a specific Anaconda environment with all tools 
is used. It is launched on a Linux Debian Buster distribution 
with Nvidia backported packages. Each of these worksta-
tions have the same processor i7-4770K, the same amount of 
memory (32GB), the same mainboards with the same BIOS 
version, the same hard drive for local storage and, most 
important thing, the same GPU : Nvidia RTX 2080 Super.

3.2.2  Optimization and learning

DCGAN are implemented using Keras, following architec-
tures proposed in [42]. From results obtained in our pre-
liminary work [39], it was decided to set training param-
eters as follows. For optimization, Adam amsgrad variant 
is used, with learning rate of 2 × 10−4 and momentum of 
0.5. Weights are initialized using uniform initialization [18]. 
The discriminator is trained using dropout at rate 1/4. Batch 

normalization is applied, which consists in normalizing 
independently the inputs of each network layer [25], with 
batch size of 32. The size of the input white Gaussian noise 
is set to 100 and the number of iterations in the training 
phases to 10000.

3.2.3  Performance reproducibility

To test the reproducibility and stability of the training, 
DCGAN training is repeated 17 times from scratch inde-
pendently, for each architecture, under the exact same condi-
tions (same training set, same architectures, same softwares, 
same operating system, same hardware). The performance 
and their variability are assessed from comparisons across 
these 17 independent training, an originality of the present 
work.

Figure. 4  DCGAN Architectures. Generators of increased complexities, with 3, 5 and 7 layers respectively and fixed Discriminator (bottom 
right). Architecture illustrations produced with the tools made available at https:// github. com/ Haris Iqbal 88/ PlotN eural Net.

https://github.com/HarisIqbal88/PlotNeuralNet
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4  Synthesis quality quantitative assessment

4.1  Training dataset

From conclusions drawn obtained in our preliminary work 
[39], it was decided to construct the training dataset as 10000 
independent samples of 4-variate (i.e, M = 4 ) MMRW tex-
tures, each of size 512 × 512 . They are synthesized using 
Matlab routines devised by ourselves, implementing directly 
definitions via circulant matrix embedding [22].

Self-similarity and multifractality exponents are chosen 
equal ( ∀m = 1, 2, 3, 4 , Hm = 0.8 and �m =

√
0.03 ), so that 

all components have exactly the same statistics: Notably, 
they have the same marginal distributions, the same covari-
ance functions and the same higher-order statistics ; they can 
hence not be distinguished one from the other.

The off-diagonal entries of the cross-selfsimilarity Σ 
and of the cross-multifractality Σmf  matrices are however 
chosen different for each pair of components. Furthermore, 
some pairs of components have cross-selfsimilarity and 
cross-multifractality of same signs, some positive, some 
negative, while other pairs will have cross-selfsimilarity 
and cross-multifractality of opposite signs. This latter case 
corresponds to intricate cross-statistics, where the cross-
selfsimilarity hence the cross-correlation is for example 
negative, yet with positive positive cross-multifractality and 
hence positive statistical dependencies beyond correlation, 
or conversely. We believe that these settings yield compli-
cated multivariate textures, with undistinguishable com-
ponents but rich and intricate cross-dependencies, both at 
second statistical order, and/or at higher-orders. The precise 
values of the off-diagonal entries of the pairwise correlation 
matrices Σ and Σmf  are listed in the plots of Fig. 2.

A 4-variate sample of such MMRW textures is shown in 
Fig.  1. For that precise MMRW model, the functions 
C(ss)

m1,m2
(2j) and C(mf )

m1,m2
(2j) , estimated from 100 independent 

copies of true MMRW, are shown in Fig. 2. They are used 
as ground truth for quality synthesis quality assessment, and 
are thus referred to as: C(ss,true)

m1,m2
 and C(mf ,true)

m1,m2
.

4.2  A posteriori DCGAN synthesis quality 
assessment

4.2.1  A posteriori wavelet based synthesis quality indices

To asses the quality of the DCGAN synthesis, the follow-
ing procedure is applied for each independent trial and each 
architecture.

First, 10 independent samples of 4-variate textures are 
synthetised from each trained DCGAN using independent 
white Gaussian noise samples as inputs for the Generators.

Second, the wavelet and wavelet leader analyses described 
in Section 2 are applied to each 4-variate texture. The func-
tions C(ss,DCGAN)

m1,m2
(2j) and C(mf ,DCGAN)

m1,m2
(2j) are computed and 

averaged across the 10 DCGAN-generated samples.
Third, because the richness of the targeted MMRW tex-

tures lies in their cross-statistics, two quantitative quality 
indices, Q(ss) and Q(mf ) , are constructed as sums of differ-
ences of respectively C(ss)

m1,m2
(2j) and C(mf )

m1,m2
(2j) computed 

from ground truth and DCGAN generated textures, across 
all available scales 2j and across all (6) pairs of 
components:

These synthesis quality indices are referred to as a posteriori 
as they can be computed only after training is completed, 
and DCGAN textures generated.

Figure 5 compares the a posteriori synthesis quality indi-
ces Q(ss) and Q(mf ) , one against the other, for the 17 independ-
ent trials, and for each of the three different architectures 
of increasing complexities, respectively with 3, 5 or 7 con-
volution layers. Perfect texture synthesis would correspond 
to Q(ss) = Q(mf ) = 0 . Therefore, the closer the trial from the 
bottom left corner, the better the quality of the synthesis. 
Table 1 complements Fig. 5, reporting mean, median, mini-
mum, maximum, standard deviation and maximum, abso-
lute deviation across the independent trials, for each of the 
three architectures. Further, Table 2 reports the correlation 
between Q(ss) and Q(mf ) , for each of the three architectures.

Together, Fig. 5 and Tables 1 and 2 report the key find-
ings of the work, as described below.

4.2.2  Correlation across synthesis quality indices

First, Fig. 5 shows that Q(mf ) is systematically (all trials and 
all architectures) larger than Q(ss) . This does not come as 
a major surprise as it appears as natural that higher-order 
cross-statistics are less easy to reproduce than second-order 
cross statistics.

Second, Table 2 shows that Q(ss) and Q(mf ) are signifi-
cantly correlated, for the three architectures. This is an 
informative outcome indicating that DCGAN synthesized 
textures reproduce cross-coherences (2nd order statistics) 
and cross-multifractalities (higher-order statistics) between 
pairs of components in correlated manner. There is thus 
no trial where the 2nd order cross-statistics would be well 
synthesized while the higher-order cross-statistics would be 
poorly reproduced, nor conversely.

(11)Q(ss) =
∑

j,m1,m2≠m1

(C(ss,true)
m1,m2

(j) − C(ss,DGGAN)
m1,m2

(j))2,

(12)Q(mf ) =
∑

j,m1,m2≠m1

(C(mf ,true)
m1,m2

(j) − C(mf ,DGGAN)
m1,m2

(j))2.
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4.2.3  Variability across independent trials

Third, Fig. 5 and Table 1 both show that there is a signifi-
cantly large variability across trials in the quality of the 
DCGAN synthesized textures. In other words, the quality 
of the DCGAN multivariate texture synthesis may vary 
greatly from one trial to another for the same architec-
ture, the same training set, the same training procedure. 
It has been carefully controlled that this large observed 
variability can not be caused by software and hardware 
issues and variations: The same softwares, same operating 
systems and even same machines were used for all trials 
and all architectures. No other user was allowed on the 
machines for the entire duration of the study. The observed 
variability across trials thus constitutes an intrinsic and 
characteristic feature of DCGAN texture synthesis.

To illustrate the extent to which the variability across 
trials can be large and can impact the synthesis quality, we 
have complemented Fig. 2, reporting, for each of the four 
components, the functions log2 Sm,m(2

j) , C
(m)

1
(2j) and 

C
(m,m)

2
(2j) as functions of j = log2 2j , and, for each of the 6 

pairs of components, the wavelet coherence functions 
C(ss)

m1,m2
(2j) and the multifractal coherence function C(mf )

m1,m2
(2j) 

as functions of j = log2 2j obtained as averages on true 
MMRW (blue), by systematically superimposing the same 
functions obtained from averages across DCGAN synthe-
sized textures (red). These superimpositions are reported 
in Figs. 6, 7 and 8 for architectures with 7, 5 and 3 convo-
lutional layers respectively. For each architecture, the three 
different trials achieving best, median and worst synthesis 
performance (computed as Q(ss) + Q(mf ) ) are reported. In 
addition, Figs. 9, 10 and 11 for architectures with 7, 5 and 
3 convolutional layers respectively, show three different 

samples of 4-variate textures generated from these three 
different trials corresponding to best, median and worst 
performance.

Let us first further discuss in detail the results obtained 
for the most complex (7-layer) architecture. Fig. 9 (top 
row) shows that the best case (that is the trial with best 
a posteriori synthesis quality indices) yields samples of 
4-variate texture that visually very much ressemble true 
MMRW textures. Further, Figs. 6 (top row) shows that 
the component-wise multiscale statistics of true (blue) 
and DCGAN (red) MMRW very well superimpose (left 
plots). For each component of the textures, the selfsimi-
larity (univariate second-order statistics) and the multi-
fractality (univariate higher-order statistics) are extremely 
well reproduced by DCGAN synthesis. Moreover, Fig. 6 
(top row) also indicates that cross-selfsimilarity (multi-
variate second-order statistics, middle plots) and cross-
multifractality (multivariate higher-order statistics, right 
plots) for all pairs of components are well reproduced by 
DCGAN synthesis for that trial. However, Fig. 9 (bottom 

Table 1  A posteriori synthesis 
quality indices Q(ss) and Q(mf ) : 
mean, median, minimum, 
maximum, standard deviation 
and maximum, absolute 
deviation across the 17 
independent trials, as functions 
of architecture complexity.

Q
(ss)

mean median min max std mad

3-layer 0.09 0.09 0.03 0.18 0.04 0.03
5-layer 0.41 0.16 0.04 1.23 0.41 0.36
7-layer 0.36 0.15 0.10 1.38 0.39 0.29

Q
(mf )

mean median min max std mad
3-layer 0.29 0.26 0.20 0.73 0.12 0.07
5-layer 1.39 0.61 0.29 3.75 1.28 1.09
7-layer 1.16 0.63 0.30 4.39 1.43 1.05

Table 2  Correlation between the a posteriori synthesis quality indices 
Q

(ss) and Q(mf ) (across the 17 independent trials) as functions of archi-
tecture complexity.

.  3-layer 5-layer 7-layer

corr(Q(ss), Q
(mf )) 0.64 0.93 0.94

Figure. 5  A posteriori synthesis quality indices: scatter of the 
17 independent trials, for each of the three different architectures of 
increasing complexities, respectively with 3, 5 or 7 convolution layers.
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row) also shows that the worst case (that is the trial with 
poorest a posteriori synthesis quality indices) yields sam-
ples of 4-variate texture that visually do not ressemble 
at all true MMRW textures. Further, Fig. 6 (bottom row) 
shows that while component-wise multiscale statistics 
of true (blue) and DCGAN (red) MMRW superimpose 
approximatively for selfsimilarity (univariate second-
order statistics), they do not, at all, superimpose for mul-
tifractality (univariate higher-order statistics, left plots): 

Univariate (component-wise) multifractality is thus not all 
reproduced by DCGAN synthesis. Moreover, Fig. 6 (bot-
tom row) also indicates that cross-selfsimilarity (multi-
variate second-order statistics, middle plots) and cross-
multifractality (multivariate higher-order statistics, right 
plots) for all pairs of components are not at all reproduced 
for that trial.

The very same conclusions hold for the intermediate 
complexity (5-layer) architecture (cf. Figs. 10 and 7). While 

Figure. 6  DG-GAN (7-layer) synthesized multivariate texture 
multiscale analysis. Wavelet and wavelet leader analysis averaged 
over 10 DCGAN generated 4-variate samples of MMRW taken from 

the run with best (red-down-triangle), median (green-square) and 
worst (black-up-triangle) synthesis performance, compared to those 
obtained from true MMRW (blue-star). Legend as that in Fig. 2.

Figure. 7  DG-GAN (5-layer) synthesized multivariate texture 
multiscale analysis. Wavelet and wavelet leader analysis averaged 
over 10 DCGAN generated 4-variate samples of MMRW taken from 

the run with best (red-down-triangle), median (green-square) and 
worst (black-up-triangle) synthesis performance, compared to those 
obtained from true MMRW (blue-star). Legend as that in Fig. 2.
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for the trial with best a posteriori synthesis quality indices 
(top row) the DCGAN texture satisfactorily well ressemble 
true MMRW and (cross-)selfsimilarity and (cross-) multi-
fractality are well reproduced by DCGAN textures, the trial 
with worst synthesis performance (bottom row) does not 
yield texture that visually ressemble true MMRW, and mul-
tifractality, cross-selfimilarity and cross-multifractality are 
totally missed by DCGAN textures. The 5-layer architecture 

thus essentially shows the same variability in terms of per-
formance across trials as the 7-layer architecture. In [39], 
we have ruled out the possibility that such variability may 
stem from not enough iterations and convergence issues or 
too small training dataset size. This is thus not further dis-
cussed here.

The less complex (3-layer) architecture also shows 
some variability across trials though significantly reduced 

Figure. 8  DG-GAN (3-layer) synthesized multivariate texture 
multiscale analysis. Wavelet and wavelet leader analysis averaged 
over 10 DCGAN generated 4-variate samples of MMRW taken from 

the run with best (red-down-triangle), median (green-square) and 
worst (black-up-triangle) synthesis performance, compared to those 
obtained from true MMRW (blue-star). Legend as that in Fig. 2.

Figure. 9  DG-GAN (7-layer) 
synthesized multivariate 
multifractal textures. DCGAN 
generated 4-variate sample of 
MMRW taken from the run 
with best (top-red), median 
(middle-green) and worst 
(bottom-black) synthesis per-
formance.



 Journal of Signal Processing Systems

1 3

compared to those induced by the 5-layer and 7-layer 
architectures (cf. Table 1). Fig. 11 shows that samples of 
DCGAN 4-variate textures from best and worst trials very 
look alike and ressemble true MMRW samples. Fig. 8 show 
that (cross-)selfsimilarity and (cross-)multifractality are very 
well reproduced for the best trial and still very satisfacto-
rily for the worst trial. In other words, all trials are equally 

satisfactory in terms of synthesis quality for the 3-layer 
architecture.

4.2.4  Performance vs. architecture complexity

Fourth and finally, Fig. 5 and Table 1 clearly indicate that 
the average synthesis quality performance for the two largest 

Figure. 10  DG-GAN (5-layer) 
synthesized multivariate 
multifractal textures. DCGAN 
generated 4-variate sample of 
MMRW taken from the run 
with best (top-red), median 
(middle-green) and worst 
(bottom-black) synthesis per-
formance.

Figure. 11  DG-GAN (3-layer) 
synthesized multivariate 
multifractal textures. DCGAN 
generated 4-variate sample of 
MMRW taken from the run with 
best (top-red), median (middle-
green) and worst (bottom-black) 
synthesis performance
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complexity (5-layer and 7-layer) architectures are equally 
poor and with a large variability around the mean, while 
the synthesis quality performance achieved with the less 
complex (3-layer) architecture are far better with much less 
variability across trials.

This constitutes the most significant outcome of the pre-
sent work. Synthesizing 4-variate Multifractal textures with 
intricate cross-statistics at second and higher order statis-
tics can intuitively and a priori be thought as a complex 
task which lead to use a 5-convolution layer architecture for 
the generator in DCGAN-based synthesis [39]. The large 
variability across trials observed in [39] lead us to further 
increase architecture complexity in the present work to 7 
convolution layers: Instead of yielding the expected reduc-
tion in variability, this lead to an even larger variability 
across trials.

To the converse, when the architecture complexity is 
reduced, the variability across trials disappears and all tri-
als are of equivalent quality. This homogeneity in the trials 
for the 3-layer simplest architecture yields on average much 
better synthesis performance compared against the 5-layer 
and 7-layer more complex architectures. It is further inter-
esting to note that the best trials obtained with the most 
complex architectures still have slightly poorer performance 
than typical performance obtained with the 3-layer simplest 
architecture.

4.2.5  DCGAN multivariate texture synthesis quality

In sum, DCGAN performance for multivariate texture syn-
thesis can range from excellent to extremely poor across 
independent trials, despite identical settings (same archi-
tectures, training dataset, initialization procedures,...), when 
neural networks, with architectures too complex (here too 
many layers) for the task, are used. For architectures whose 
complexity matches the complexity of the task, DCGAN 
perform impressively well in multivariate multifractal tex-
ture synthesis. Fig. 11 displays 3 samples DGGAN gener-
ated 4-variate multifractal textures, that satisfactorily res-
semble true MMRW shown in Fig. 1. Further, Fig. 8 shows 
that component-wise selfsimilarity and multifractality 
are perfectly reproduced and across pairs of components, 
cross-selfsimilarity and cross-multifractality are also well 

reproduced, though with residual variability across trials. 
Notably, positive and/or negative cross-selfsimilarities and 
cross-multifractalities are well reproduced, including for 
pairs of components where cross-selfsimilarity and cross-
multifractality have opposite signs. This is per se an impres-
sive performance of DCGAN as it implies capturing/learn-
ing a intricate feature of the textures: Pairs of components 
may be negatively correlated yet with positively correlated 
bustiness or intermittency.

4.3  A priori synthesis quality assessment

4.3.1  A priori loss function based synthesis quality index

Indices Q(ss) and Q(mf ) proved relevant to serve as objective 
and automated texture synthesis quality and reproducibil-
ity indices. However, their computation requires that train-
ing is completed, that DCGAN textures are generated and 
analyzed: They are thus a posteriori indices. Further, and 
foremost, their computation requires that a ground truth is 
available for comparisons: Significant information regard-
ing (the multiscale statistics of) targeted textures is hence 
needed, which somehow contradicts the use of deep learning 
to synthesize textures, as it is expected to discover relevant 
statistics by itself.

To overcome this issue, we propose the use of an a priori 
index, computed from the only quantities available during 
training and not requiring any ground truth: the loss func-
tions of the generator and of the discriminator. This a priori 
index, hereafter referred to as DiffLoss, is defined as the 
absolute value of the difference between the Generator and 
Discriminator loss functions, averaged across the last 500 
iterations in training.

4.3.2  Variability vs. architecture complexity

Table 3 reports the statistics of the DiffLoss synthesis 
quality index across trials for the three architectures. It 
shows that DiffLoss reproduces the same pattern as the a 
posteriori indices Q(ss) and Q(mf ) : For the two architectures 
with largest complexities (5-layer and 7-layer), DiffLoss 
show a very large variability across trials. To the converse, 

Table 3  A priori synthesis quality index DiffLoss: mean, median, minimum, maximum, standard deviation and maximum, absolute deviation 
across the 17 independent trials, as functions of architecture complexity.

DiffLoss

mean median min max std mad

3-layer 3.14 2.92 2.03 4.39 0.76 0.62
5-layer 4.70 3.58 2.56 7.60 1.88 1.73
7-layer 3.52 3.32 1.36 6.70 1.60 1.20
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for the architecture with the lowest complexity (3-layer), 
the variability is significantly reduced, suggesting that all 
trials are equivalent. Additionally, the average and typical 
values of DiffLoss are much smaller for the 3-layer archi-
tecture, compared to the 5-layer and 7-layer architectures.

4.3.3  A priori vs. a posteriori synthesis quality indices

Furthermore, and more importantly, Fig. 12 and Table 4 
illustrate and quantify that the a priori index DiffLoss cor-
relates significantly with each of the a posteriori indices 
Q(ss) and Q(mf ) . This constitutes the second significative 
outcome of the present work: The a priori loss functions-
based index can thus actually be used to predict the quality 
of the DCGAN textures, while the training is being com-
pleted, without having to synthesize and analyze DCGAN 
textures nor to use any a priori known ground truth. This 
permits for instance to monitor while the training is being 
processed the index DiffLoss as a function of the number 
of iterations and to know whether the current trial is con-
verging and thus will lead to meaningful synthesis, or not.

5  Discussion, conclusions and future work

The overarching goal of the paper was to devise a methodol-
ogy permitting to quantify how well DCGAN performs in 
multivariate texture synthesis. The proposed solution relies 
on several key steps.

First, multiscale (wavelet and wavelet leader-based) 
statistics component-wise and cross-statistics are used to 

characterize the properties of the textures. Though they are 
naturally matched to the description of multifractal tex-
tures, it is worth mentioning that such multiscale represen-
tations provide relevant (cross-)statistics to characterize a 
very large variety of textures, irrespective of their having 
scale-free dynamics or not [2, 44, 55]. Synthesis quality 
indices can then be easily designed by comparing these 
multiscale statistics obtained as average across DCGAN 
generated textures against those computed as averages from 
the textures within the training set. Though multiscale sta-
tistics are naturally-suited to the assessment of fractal/mul-
tifractal textures, they also can be used as generic statistics 
representative of the properties of many textures, even non 
fractal ones, and this can be used as generic assessment 
tools.

Second, synthesis quality assessment is repeated across 
several independent trials, where the training is restarted 
from scratch, while keeping all other conditions identical 
(same training set, same training procedure, same archi-
tecture, same software, same hardware). Instead of report-
ing the performance of the best trial, we have assessed the 
variability across trials and hence the reproducibility of the 
procedure.

These methodological investigations permitted to draw 
several significant conclusions related to deep learning 
practice.

First, classically in deep learning, practitioners face the 
issue of choosing an appropriate architecture. The present 
investigations showed that when the chosen architecture 
is too complex, DCGAN suffer from a very large variabil-
ity across independent training in synthesis performance, 
with trials yielding generated textures that extremely sat-
isfactorily reproduce the statistics of the targeted textures, 
trials which totally fail to do so, and with a continuum 
of performance across trials from excellent to extremely 
poor. This variability reduces significantly when the com-
plexity of the chosen architecture is decreased, yielding 
trials which are essentially statistically equivalent one to 
the other. This shows that exploring deep learning with 
very complex architectures is not always the best path to 
follow. This obviously raises the question of tuning the 

Table 4  Correlation between the a priori index DiffLoss and each of 
the a posteriori synthesis quality indices Q(ss) and Q(mf ) (across the 17 
independent trials) as functions of architecture complexity.

3-layer 5-layer 7-layer

corr(Q(ss),DiffLoss) 0.67 0.72 0.81
corr(Q(mf ),DiffLoss) 0.33 0.79 0.70

Figure. 12  A priori versus a 
posteriori synthesis quality 
indices. Left, Q(ss) vs. DiffLoss. 
Middle: Q(mf ) vs. DiffLoss. 
Right, 3D plot of the three 
indices.
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complexity of the architecture to the complexity of the 
task to achieve, an obviously difficult question. In texture 
synthesis, a potential direction to explore is to assess the 
complexity of the task by computing information theoretic 
quantities (entropies) on the statistics of the textures in the 
training set. The complexity of the neural network archi-
tectures is also complicated to assess. While obviously the 
number of trainable parameters, or the number of layers, 
are relevant descriptors of neural network complexities, 
other strategies aiming to quantify the approximation abil-
ity of non linear function using the Vapnik-Chervonenkis 
Dimension [9, 49] were used for classification task [11, 
16, 35] and could be worth exploring here.

Second, for DCGAN architectures well-tuned to the 
complexity of the multivariate multifractal textures, 
synthesis performance are outstanding. DCGAN gener-
ate textures that reproduce extremely well not only the 
second-order and higher-order statistics of each compo-
nent independently, but also the cross-statistics at second 
and higher orders between pairs of components. This is 
all the more impressive as all components were chosen 
to have identical statistics (so as to be undistinguishable) 
while all pairs of components had different cross-statistics, 
with possibly opposite signs at second-order and higher 
orders (e.g., negative cross-selfsimilarity but positive cross 
multifractality), corresponding thus to very fine details in 
cross-spatial dynamics that were discovered by the neu-
ral network. It is however worth mentioning that despite 
excellent reproduction of the statistics of the targeted 
textures, the eye is still able to see subtle differences in 
the visual aspects of DGCAN generated textures, mostly 
corresponding to anistropic-like perceptual features, while 
targeted textures are perfectly isotropic. This will be fur-
ther explored.

Third, the synthesis quality assessment methodology pro-
posed is costly and a posteriori as it requires that the neural 
network is trained, that textures are generated and analyzed 
using multiscale representations, and that these analyses are 
compared to the same analyses performed on the training set. 
We have shown here though that a metric based on combin-
ing the loss functions of the Generator and Discriminator 
along the training process, permit to devise a low-cost and 
a priori synthesis quality index, which correlates strongly 
withe a posteriori indices. This opens the road for rapidly 
testing if a current training will yield satisfactory synthesis 
performance or to tune empirically but efficiently architec-
ture complexity to task complexity.
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