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On the Initialization of the Discrete 
Wavelet Transform Algorithm 

Patrice Abry and Patrick nand& 

Abstruct- This letter shows that making use of the discrete 
wavelet transform to analyse data implies performing a prelim- 
inary initialization of the fast pyramidal algorithm. An approx- 
imation enabling easy performance of such an initialization is 
proposed. 

I. MOTIVATION 

IME-SCALE methods have already proved relevant tools T in signal processing. In most cases, for data analysis, 
one uses continuous wavelet transforms rather than a discrete 
wavelet transform (DWT), which is usually used in coding. 
However, we believe that, thanks to the fast pyramidal al- 
gorithm and the minimum redundancy dyadic sampling, the 
DWT is also an efficient tool when analysing experimental 
data. 

In this letter, our aim is to stress, via two simple examples, 
the importance of performing a correct initialization of the 
DWT algorithm when examining the wavelet coefficients to 
analyze data. Theoretically speaking, initializing the algorithm 
means projecting data onto the space VO: the first space of a 
sequence of successive approximation spaces V, generating the 
chosen multiresolution analysis [ 11. We propose an approxi- 
mation that enables us to easily perform this initialization. We 
will then clarify the relations between the two possible inter- 
pretations of the detail dz ( j ,  n) and approximation a&, n) 
coefficients: constant-Q band-pass filtered versions of the data 
versus outputs of the filter-bank pyramidal structure. These 
dual approaches are summarized through 

a z h  .) = (z, ;j,J = a& - 1, k)& - 2n) (1) 
k 

0 0 

where $(t) (resp., $(t))  is the dual function of the scaling 
function 4 (resp., of the wavelet $), and i (resp., i) is its 
associated filter in the pyramidal algorithm (see [ l ]  or [2] 
for complete definitions of dual functions. In the orthonormal 

case, one has 4 4 and $ f $). 4j,n (resp., $ j , n )  are dilated, 

time-shifted versions of 4 (resp., $). 

0 0 0 0 
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Last, we will illustrate (on a couple of examples) the 
importance of initializing the pyramidal algorithm. In spite 
of our using an orthonormal Daubechies 6 wavelet [l] in 
these examples, we do not restrict ourselves to the orthonormal 
case. In some applications, this initialization can be of greater 
importance when using nonorthogonal wavelets. 

11. INITIALIZING THE PYRAMIDAL ALGORITHM 
Experimental data very often consist of a collection of 

samples {zn = z(nT,), n E Z}, which are related to the 
physical signal z ( t )  through the sampling theorem: 

z(t)  = CZkSirU: (t - kT,) 
X 

where T, is the sampling period. Let us immediately remark 
that this sampling period gives a physical meaning to the 
approximation space VO . Indeed, the discrete-time filtering 
of the fast algorithm sets T, = 1 and thus selects the real- 
time spread of the father wavelet (the scaling function), which 
generates VO and of the mother wavelet. For instance, when 
the scaling function time support lies in [ - N ,  MI, it actually 
means that the data will be projected onto a space VO generated 
by function 4(t)  whose time support is [-NT,, MT,]. From 
now on, we will assume T, = 1. Thus, the variable t will 
stand for a normalized time with respect to T,. 

Most of the time, the initialization of the DWT simply 
consists of applying the oversimplification: 

az ( j  = 0, k) E xk 

whereas, in fact, the ak(0, k )  should result from the projection 
of z(t)  onto VO: 

~ ~ ( 0 ,  k )  = z(t)+(t - k) dt .  J o  (3) 

This result was already stated by Shensa, as reported in 
[3]. Recalling that z ( t )  is only known through its samples 
{zn}n6z,  this inner product can hardly be computed but 
rewritten as 

k 

0 0 

with ap = (sinc, 
The general calculation of these inner products ap is not 

easy, yet we propose a rough approximation that enables US 

= J sinc (t)+(t - p )  dt .  
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to estimate them. The examples of the next sections tend to 
prove that this approximation is valid. One can rewrite ap as 

ap = J i ( v )  exp (-2irvp)11I(v) dv 

where @(v) and {IIl(v) = 1, if 0 5 lvl 5 1/2, and 0 
elsewhere} are the Fourier transforms of 4(t) and sinc (t), 
respectively. One then sees that neglecting the behavior of 
@(v) for ] V I  2 1/2 enables us to assimilate sinc(t) to a 
Dirac function within the integral. Thus, ap simplifies to 

cyp  N $ ( - p ) .  It follows that a,(O,k) reads 

0 

0 

0 

0 

a,@, k) N- - I C ) .  (4) 
n 

The quality of this approximation can be examined in Fig. 
1. A very good approximation of the time-shape of $(t) can 
be obtained as the impulse response of the filter h convolved 
with itself a large number of times. One then simply needs 

to collect the samples { $ ( p )  = $(t = p ) } , , ~  to perform the 
approximate initialization of (4). 

We will show, using examples, that initializing the algo- 
rithnm with (4) rather than with the samples {z,} makes 
an important difference. 'Let us note that these modifications 
would be useless in the case of scaling functions whose time 
support is -1 5 t 5 1, (e.g., the Haar wavelet or splines of 
order 0 or 1). Let us also remark that initializing the a,(O, k) 
is of minor importance when dealing with largely oversampled 
data z(t) .  This is straightforward from the definition (see (3)) 
and reasoning among the same line. 

0 

0 

0 0 

111. EWLE 1: ANALYZING A DIRAC FUNCTION 

Let us imagine that the data to be analyzed reads z(t)  = 
S(t - to). Then, one has: d s ( j , k )  =  to). The output 
coefficients of the pyramidal algorithm are plotted in Fig. 2. 
When no initialization was made (top), one can see that the 
derail signals do not correspond to samples of any dilated 
version of 4, which can be checked by direct numerical 
comparison. On the contrary, when the initialization has been 
performed (bottom), one perfectly recognizes the samples of 
dilated versions of 4, which is the theoretical result expected 
from the inner product in (2). Therefore, this example shows 
that the two approaches of (1) and (2) are well meeting only 
when the proposed initialization of the a,(O, I C )  is performed. 
Furthermore, if one is interested in locating, in the data, 
transient events, (modeled by a Dirac impulse) to be detected 
from the d,(j, IC), it is clear from Fig. 2 that an incorrect 
initialization is responsible for an incorrect location estimation. 
Indeed, the maximum of l dz ( j ,  IC)) at scale j neither coincide 
in time with that of another scale or with the location of the 
Dirac impulse. This lack of coincidence will therefore be a 
serious drawback when detecting transients from time-aligned 
maxima, whereas initializing the DWT will ensure a time 
coincidence of the impulse and the maxima of the ldz(j ,  I C ) [  
through scales. 

0 

0 

0 

Dubechies6 

Fig. 1. Fourier transforms of the scaling functions associated with 
Daubechies3 wavelet (top) and Daubechies6 wavelet (bottom). The shape 
of the ideal low-pass filter has been superimposed. The higher the degree of 
regularity, the better the quality of the approximation (most of the energy 
lies within IvI 5 1/2). 

In Fig. 2, one also sees that the values taken by the d z ( j ,  k) 
remain the same from scale to scale, but one should note 
that this is so only because the Dirac function was located 
at Q good position on the dyadic grid. If it had not been so 
well located, one would still have had samples of a dilated 
wavelet, but the reference position of the sampling would have 
changed with scale. Yet, initializing the pyramid still ensures 
the correspondence of (1) and (2), and this is the crucial point. 

Iv. EXAMPLE 2: ANALYZING A WAVELET 

Let us now use another striking example: z( t )  = $jo,leo(t). 
Let us assume orthonormality of the { @ j , k ( t ) } ;  then, one has 

elsewhere. The wavelet coefficients computed by the pyrami- 
dal algorithm are displayed in Fig. 3. When no initialization is 
made, one gets d+30,h0 ( j ,  IC), which are significantly different 
from 0 for scales j # j o  and locations IC # ICo. On the contrary, 
initializing the a,(O, IC) results in one large coefficient at the 

d!b30,ko(i k) = 1 when ( j ,  = ( j o ,  ko), and d ! b 3 0 , L O ( ~ ,  k) = 0 
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Fig. 2. DWT of a D i m  function (least asymmetric D i m  Daubechies6 
wavelet) without initialization (top) and with a correct initialization of the 
pyramidal algorithm (bottom). In this latter case, one recognizes exactly 
sampled shaped of dilated versions of the mother wavelet. 

correct time- scale location, corresponding to the theoretical 
result. This is, of course, of importance since it is clearly telling 
us that the analyzed data consists of one of the atoms involved 
in the decomposition. Of course, the remark of the previous 
section concerning a good location on the dyadic grid still 
holds. 

V. CONCLUSION 
In this letter, we have shown that a relevant interpretation 

of the information conveyed by data can be performed through 
the DWT on condition that a correct initialization of the 
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Fig. 3. DWT of a & , 1 2 8 ( t )  signal (least asymmetric (Daubechies6 wavelet) 
without initialization (top) and with a correct initialization of the pyramidal 
algorithm (bottom). In this latter case only, one finds a single very strong 
coefficient (on scale 3), betraying that r ( t )  is a dilated version of the mother 
wavelet. 

pyramidal algorithm is performed. We have also proposed a 
simple yet efficient, way of calculating the a, (0, I C ) ,  which, 
in some sense, should always be the preliminary step when 
running a DWT. 
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