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Abstract

Based on a wavelet-type expansion of the Rosenblatt process, we introduce and examine two different practical ways to

simulate the Rosenblatt process. The synthesis procedures proposed here are obtained by either truncating the series of the

approximation term or using the approximation coefficients in the wavelet-type expansion of the Rosenblatt process. Both

benefit from the low computational cost usually associated with the discrete wavelet transform. We show that the number

of zero moments of a related orthogonal multiresolution analysis plays an important role. We study in detail the wavelet-

based simulation in terms of uniform convergence. We also discuss at length the importance of the choices of the initial and

final resolutions, the specific case of the simulation on the integer grid as well as the usefulness of the wavelet-based

simulation. Matlab routines implementing these synthesis procedures as well as their analysis are available upon request.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Our goal is to provide practical ways to simulate
the Rosenblatt process by using wavelets, based on
a wavelet-type expansion of the process established
by Pipiras [1]. The Rosenblatt process ZkðtÞ, t 2 R,
where k 2 ð1

4
; 1
2
Þ is a parameter, can be expressed as

ZkðtÞ ¼ kk

Z 0
R2

Z t

0

ðs� x1Þ
k�1
þ ðs� x2Þ

k�1
þ ds

� �
�dBðx1ÞdBðx2Þ, ð1:1Þ
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where kk is a normalizing constant (e.g. such that
EZkð1Þ

2
¼ 1),

R 0
R2 denotes the double Wiener-Itô

integral (see, for example, [2]), xþ ¼ maxfx; 0g for
x 2 R and BðxÞ, x 2 R, is a standard Brownian
motion. We shall abbreviate throughout the Rosen-
blatt process as fRm (fractional Rosenblatt motion).
FRm is stationary increments and ð2kÞ-self-similar.
Self-similarity of Zk with the self-similarity para-
meter 2k 2 ð1

2
; 1Þ means that, for any c40,

fZkðctÞgt2R¼
d
fc2kZkðtÞgt2R, (1.2)

where the equality is in the sense of the finite-
dimensional distributions (see, for example, [3] or
Chapter 7 in [4]). The finite-dimensional distribu-
tions of fRm are non-Gaussian, have all their
moments finite and their tails are heavier than those
.
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of the Gaussian distributions. In particular, fRm
differs from the popular fractional Brownian motion

(fBm, in short) which is the only Gaussian self-
similar process with stationary increments. FRm
was introduced by Rosenblatt [5], and also appears,
for example, in Taqqu [6], Dobrushin and Major [7],
Fox and Taqqu [8], and Embrechts and Maejima
[3]. The asymptotic behavior of the right tail of
Zkð1Þ is derived in the proof of Theorem 2 [9, p. 88].

FRm is useful in applications as a self-similar
process whose finite-dimensional distributions are
non-Gaussian. For example, Monte Carlo simula-
tions of its paths can be used to evaluate the
performance of some estimator of a self-similarity
parameter. FRm is also important in theory. Let
X k, k 2 Z, be a stationary, zero mean Gaussian time
series with long-range dependence (see, for example,
[10,11]), in the sense that its covariance function
satisfies

EX kX 0 ¼ LðkÞka�1 with a 2 ð0; 1Þ, (1.3)

where L is a slowly varying function at infinity (e.g.
LðkÞ�const, as k!1; see Bingham et al. [12]). If

F ðxÞ ¼ x2 � EX 2
0 (1.4)

and ½x� denotes the integer part function of x 2 R,
then

n�a
X½nt�

k¼1

F ðX kÞ!
d

Za=2ðtÞ; t 2 R, (1.5)

where !
d

stands for the weak convergence in the
space of functions. The convergence (1.1) is a special
case of the so-called Non-Central Limit Theorem

(see [6,7,13,3]). Non-Central Limit Theorem con-
cerns the limits of the partial sum

P½nt�
k¼1F ðX kÞ for

more general functions F such that EF ðX 0Þ
2o1.

The limit of these suitably normalized partial sums
turns out to belong to the family of the Hermite

processes where fBm and fRm are the Hermite
processes of first and second order, respectively. The
limit of the partial sums is fBm when, for example,
F ðxÞ ¼ x.

Non-Central Limit Theorem shows that fRm can
be obtained as the limit of the sums of square-like
functions of long-range dependent sequences. An-
other standard connection to long-range depen-
dence [3, p. 21] is that the increment sequence
Y k ¼ Zkðk þ 1Þ � ZkðkÞ, k 2 Z, of ð2kÞ-self-similar
fRm Zk is long-range dependent itself with
a ¼ 4k� 1.
We are interested here in simulation of fRm by
using wavelets. We propose two approximations of
fRm based on the wavelet-type expansion of the
process established by Pipiras [1]. The first approx-
imation uses the truncated series of the approxima-
tion term in the wavelet-type expansion. The second
approximation does not involve truncation, and
consists in using only the approximation coefficients
in the expansion. Even though the wavelet-type
expansion of fRm is non-standard, both of the
proposed approximations are computed in practice
by exploiting the usual fast wavelet transform. We
describe below how the approximations are im-
plemented and provide a number of practical
guidelines to the simulation procedures. We argue,
in particular, that the number of zero moments of a
related orthogonal multiresolution analysis plays a
fundamental role. We also discuss usefulness of the
wavelet-based synthesis.

We will show that the second approximation, in
fact, takes the form

2�2Jk
X½2J t�

k¼1

ðY 2
k � EY 2

kÞ, (1.6)

where 2�J is a desired approximation scale, and Y k

is a long-range dependent, the so-called
FARIMAð0;k; 0Þ time series. The approximation
(1.6) is, therefore, equivalent to (1.5) with the
function F in (1.4). The difference here is that Y k

itself is obtained through a wavelet-based method.
The advantages and interest in generating Y k by
using wavelets, as opposed to other methods, are
detailed in Section 7. Mainly, we will show that
using wavelets leads to the convergence of (1.6)
which is almost sure, uniform on compact intervals
and exponentially fast, allows to study the rate of
convergence and makes the synthesis of (1.6)
computationally very fast.

The rest of the paper is organized as follows.
In Section 2, we describe the two wavelet-based
approximations of fRm. These approximations
involve approximation coefficients and basis
functions whose computation is explained in
Section 3. In Section 4, we show how the
wavelet-based approximations are implemented
in practice. In Section 5, we provide some
evidence for the uniform convergence of these
approximations and their asymptotic equivalence.
Discussion on use and usefulness of the wavelet-
based synthesis of fRm can be found in Sections 6
and 7.
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2. Two wavelet-based approximations

The proposed wavelet synthesis of fRm is based
on the wavelet-type expansion of the process
established by Pipiras [1]. We first recall the relevant
notation and results of Pipiras [1]. Let f and c be a
scaling function and a wavelet, respectively, corre-
sponding to an orthogonal multiresolution analysis

(MRA, in short). Let the functions fj;kðuÞ ¼

2j=2fð2ju� kÞ and cj;kðuÞ ¼ 2j=2cð2ju� kÞ, j; k 2 Z,
be their dilated and translated copies.

Define the function fk;D through its Fourier
transformation as

bfk;DðxÞ ¼
1� e�ix

ix

� �kbfðxÞ; x 2 R, (2.1)

where bf ðxÞ ¼ R
R
e�ixu f ðuÞdu (supposing that (2.1) is

well-defined). For n 2 Z, set

Fð2Þk;nðzÞ ¼
Z z

z�1

fk;DðvÞfk;Dðv� nÞdv; z 2 R. (2.2)

Let also xj;k ¼
R
R
fj;kðxÞdBðxÞ, �j;k ¼

R
R
cj;kðxÞ

dBðxÞ, j; k 2 Z, be the random variables defined by
using the standard Brownian motion BðxÞ, x 2 R,
appearing in (1.1). Since f and c correspond to an
orthogonal MRA, the random variables xJ;k and
�j;k, k 2 Z; jXJ, are independent Gaussian Nð0; 1Þ.
For a fixed j, define also the sequence

xðkÞj;k ¼ ðI � BÞ�kxj;k ¼
X1
l¼0

gð�kÞl xj;k�l ; k 2 Z,

(2.3)

where gð�kÞl are the coefficients in the Taylor
expansion of the function ð1� zÞ�k at z ¼ 0, B is
the standard backshift operator. The series defined
by (2.3) is a well-known long-range dependent
FARIMAð0; k; 0Þ sequence [14,10]. For n; k; j 2 Z,
set also

S
ðk;2Þ
k;n ðjÞ ¼

X
0oipk

ðxðkÞj;i x
ðkÞ
j;iþn � ExðkÞj;i x

ðkÞ
j;iþnÞ, (2.4)

where
P

0oipk ¼ 0 if k ¼ 0, and
P

0oipk ¼

�
P

koip0 if kp� 1.
As shown in Theorem 1 of Pipiras [1], under

suitable conditions on the scaling and wavelet
functions f and c:

Wavelet-based approximation I: We have

sup
t2K

jZkðtÞ � Zk;1ðj; tÞj ! 0; a.s. as j!1, (2.5)
where K is a compact subset of R, ‘‘a.s.’’ stands for
‘‘almost surely’’, and

Zk;1ðj; tÞ ¼ 2�2kj
X1

k¼�1

X1
n¼�1

Fð2Þk;nð2
j t� kÞ

�S
ðk;2Þ
k;n ðjÞ � z

ðjÞ
0 , ð2:6Þ

with z
ðjÞ
0 such that Zk;1ðj; 0Þ ¼ 0.

The process Zk;1ðj; �Þ defines an approximation of
fRm Zk at scale 2�j with the approximation

coefficients and the basis functions

S
ðk;2Þ
k;n ðjÞ and Fð2Þk;n, (2.7)

respectively. The conditions for the convergence
(2.5) are satisfied, for example, by the functions f
and c corresponding to the Daubechies, Meyer and
other commonly used MRAs.

Another wavelet-based approximation of fRm
uses only the approximation coefficients in the
wavelet-type expansion of the process. As shown in
Theorem 2 of Pipiras [1], under suitable conditions
on the function f, and with the notation ½x� for the
integer part of x 2 R:

Wavelet-based approximation II: We have

sup
t2K

jZkðtÞ � Zk;2ðj; tÞjpC2�j�! 0,

a.s. as j!1, ð2:8Þ

where K ¼ ft1; . . . ; tmg, C is a random variable, � is
any real such that 0o2�o4k� 1, and

Zk;2ðj; tÞ ¼ 2�2kjS
ðk;2Þ
½2j t�;0
ðjÞ (2.9)

with S
ðk;2Þ
k;0 ðjÞ defined by (2.4).

Approximation of a smooth function through its
approximation coefficients is a standard result in the
wavelet literature (see, for example, [15, p. 202], and
also Proposition 2.1 in [16] in the case of fBm).
Wavelet-based approximation II shows that this
property holds for the wavelet-type expansion of
fRm as well.

The convergence of the approximation coeffi-
cients found in the wavelet literature is, in fact,
uniform in t belonging to a compact. We believe
that the uniform convergence also holds in (2.8) but
we lack the necessary tools to prove it at this time.
For later reference and comparison, we nevertheless
state the uniform convergence result as a conjecture.
This conjecture is supported by our simulations in
Section 5 below.
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Wavelet-based approximation II (Conjecture): We
have

sup
t2K

jZkðtÞ � Zk;2ðj; tÞj ! 0; a.s. as j!1,

(2.10)

where Zk;2ðj; tÞ is defined by (2.9) and K is compact
subset of R.

Observe also from (2.9) and (2.4) that, as
mentioned in the Introduction, the second approx-
imation Zk;2 has the simple form (1.6) with

Y k ¼ xðkÞJ ;k.

See Section 7 for a discussion of interest in using
wavelet-based sequence xðkÞJ;k. In particular, as argued
in the next two sections, because of the underlying
MRA structure, this sequence and hence the second
approximation are extremely fast to generate.

Notation: In Sections 4–7, we shall also denote the
two approximations Zk;iðj; tÞ by

Zk;iðl; j; tÞ; i ¼ 1; 2,

where lpj. The extra parameter l will refer to the
scale at which the initial approximation to fRm is
taken in simulation. See, in particular, Definitions
(4.4) and (4.5).

3. Approximation coefficients and basis functions

Wavelet-based approximations I and II in Section
2 involve the approximation coefficients and the
basis functions (2.7). We examine here these
coefficients and functions, and show how they can
be computed. We shall use the following notation.
Let x � y denote the convolution of two sequences x

and y, and let the standard upsample operation ð"2xÞ

insert zeros between the elements of a sequence x.
For s40, let also

uðsÞ ¼ f ðsÞ � u; vðsÞ ¼ gðsÞ � v, (3.1)

where the filters f ðsÞ ¼ ff ðsÞn g and gðsÞ ¼ fgðsÞn g are
defined through the z-transformations as

f ðsÞðzÞ ¼ ð1þ z�1Þs ¼
X1

n¼�1

f ðsÞn z�n,

gðsÞðzÞ ¼ ð1� z�1Þ�s
¼
X1

n¼�1

gðsÞn z�n, ð3:2Þ

respectively, and u and v are the low and high-pass

filters associated with the initial MRA correspond-
ing to the scaling function f and the wavelet c. The
filters uðsÞ and vðsÞ are called fractional filters.
The next proposition shows that the sequence
xðkÞj;k , k 2 Z, which defines the approximation coeffi-
cients through (2.4), can be computed by using the
usual fast wavelet transform.

Proposition 3.1. For j 2 Z and k40, we have

xðkÞj;� ¼ uðkÞ � ð"2x
ðkÞ
j�1;�Þ þ vðkÞ � ð"2�j�1;�Þ. (3.3)

Proof. The result (3.3) is implicit in Abry and Sellan
[17], and follows from the results of Section 2 in
Pipiras [16]. To the reader’s convenience, we provide
here a direct proof of this result by using z-
transformations. By using (2.3), (3.1) and (3.2),
and basic properties of z-transformations, we get
that

ðuðkÞ � "2x
ðkÞ
j�1;� þ vðkÞ � "2�j�1;�ÞðzÞ

¼ uðkÞðzÞxðkÞj�1;�ðz
2Þ þ vðkÞðzÞ�j�1;�ðz

2Þ

¼ ð1þ z�1Þkð1� z�2Þ�kuðzÞxj�1;�ðz
2Þ

þ ð1� z�1Þ�kvðzÞ�j�1;�ðz
2Þ

¼ ð1� z�1Þ�kðuðzÞxj�1;�ðz
2Þ þ vðzÞ�j�1;�ðz

2ÞÞ

¼ ð1� z�1Þ�kðu � "2xj�1;� þ v � "2�j�1;�ÞðzÞ. ð3:4Þ

By using the properties of MRA, we have

u � "2xj�1;� þ v � "2�j�1;�

¼

Z
R

fu � "2fj�1;�ðxÞ þ v � "2cj�1;�ðxÞgdBðxÞ

¼

Z
R

fj;�ðxÞdBðxÞ ¼ xj;�.

Hence, expression (3.4) becomes ð1� z�1Þ�kxj;�ðzÞ ¼

xðkÞj;� ðzÞ. &

A computationally appealing feature of (3.3) is
independence of the Gaussian detail coefficients �j;k.
Another nice feature of (3.3) is related to the
number of zero moments N of the orthogonal MRA
associated with the low and high-pass filters u and v.
It is known (see, for example, [15,18]) that, under
mild conditions,

uðzÞ ¼ ð1þ z�1ÞNu0ðzÞ,

vðzÞ ¼ ð1� z�1ÞNv0ðzÞ,

for some filters u0 and v0. Substituting these
expressions into (3.1) and using (3.2), we get that

uðkÞðzÞ ¼ f ðNþkÞðzÞu0ðzÞ,

vðkÞðzÞ ¼ gðk�NÞðzÞv0ðzÞ. ð3:5Þ

Observe that, as N becomes larger, the filters f ðNþkÞ

and gðk�NÞ decay much faster than the filters uðkÞ and
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vðkÞ. This shows, in particular, that increasing N

makes the lengths of the filters uðkÞ and vðkÞ,
truncated at a fixed cutoff level, smaller as well. A
more comprehensive discussion on the relations
between the number of zero moments N and the
length of the truncated filters uðkÞ and vðkÞ, can be
found in Pipiras [16].

The following is an elementary consequence of
Proposition 3.1 and definition (2.4).

Computation of approximation coefficients: For
J 2 Z, the approximation coefficients S

ðk;2Þ
k;n ðJÞ in

(2.6) can be computed as follows. Compute the
sequence xðkÞJ ;k, k 2 Z, from xðkÞL;k, k 2 Z, and indepen-
dent Nð0; 1Þ random variables �j;k, k 2 Z,
j ¼ L; 1; . . . ; J � 1, by using (3.3) together with
(3.5), where LoJ is a fixed integer. Use the
obtained sequence to form the approximation
coefficients through (2.4).

Computation of basis functions: We compute the
basis functions Fð2Þk;n in (2.6) by discretizing the integral
in the definition (2.2). The function fk;D in the integral
is computed by using the fast Fourier transform as the
inverse of the Fourier transform (2.1).

In the left plot of Fig. 1 below, we provide the
plot of the scaling function f corresponding to the
Daubechies MRA with N ¼ 6 zero moments and
the function fk;D defined from the function f by
(2.1) with k ¼ 0:35. The scale function f has a
compact support ½0; 11� but the function fk;D is
supported on ½0;1Þ. Fig. 1 shows, however, that the
function fk;D decays relatively fast and its shape
resembles closely that of the function f. In the right
0 1 2 3 4 5 6 7 8 9 10 11
-0.5

0

0.5

1

1.5

t

φ(
t)

, φ
κ,

∆(
t)

Functions φ and φκ,∆ for κ=0.35 and N=6

φ(t)

φκ,∆(t)

(2
)

Fig. 1. Daubechies ðN ¼ 6Þ scaling function f; func
plot of Fig. 1 below, we plot the functions Fð2Þk;n
defined from the function fk;D by (2.2) with
n ¼ �2;�1; 0; 1; 2. As expected from the definition
(2.2), these functions are most prevalent when
n ¼ 0, and they become less significant as jnj
increases.

Choosing the multiresolution: Theoretically, most
common MRAs could be used in the construction
above. In this work, we consider only the Daube-
chies MRAs with N zero moments. These MRAs
are widely used and convenient to deal with because
of compact time supports. In particular, for
Daubechies MRAs, the related filters u0; v0 appear-
ing in (3.5) are readily available from Daubechies
[15, p. 196] and are finite. This is convenient in
practice when computing the fractional filters
uðkÞ; vðkÞ according to (3.5).

4. Practical implementation

The practical implementations of the wavelet
based fRm approximations I and II can be
performed through the following algorithms.

Input parameters: The parameters entering the
wavelet-based synthesis of fRm are the following
ones:
�

Φ
 (

t)
κ,

n

tio
Choose the parameter k 2 ð1
4
; 1
2
Þ defining fRm.
�
 Choose the multiresolution (MRA) orthogonal
wavelet basis. In the present implementation, we
work with the orthogonal [15] wavelets, para-
meterized by their number of zero moments N.
0 2 4 6 8 10 12
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t

Functions Φ(2)  for κ=0.35,N=6 and n=-2,-1,0,1,2

n=0

n=1

n=1

n=2

n=2

κ,n

ns fk;D and Fð2Þk;n defined by (2.1) and (2.2).
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�
 Choose the time duration ½0;T � of the synthesis of
fRm. For simplicity, this will be chosen as

T ¼ 2M . (4.1)
�
 Choose the scale

2�J (4.2)

at which one desires to obtain the wavelet-based
approximation of fRm. In other words, the
approximation of fRm is obtained at the time
points 0; 2�J ; 2 � 2�J ; . . . ; 2MþJ � 2�Jð¼ TÞ and
hence that its length is 2MþJ þ 1. We will refer
to 2�J in (4.2) as the final approximation scale.

�
 Choose a parameter L such that

�MpLpJ. (4.3)

This parameter is discussed below in this section,
and its role is studied in Section 6.

Implementing wavelet-based approximation II: We
implement the wavelet-based approximation II
through the following steps:
�
 First, compute the fractional filters uðkÞ and vðkÞ by
using (3.5). Since these filters are infinite, truncate
them at a specified cutoff level d. Let r denote the
maximum length of the truncated filters uðkÞ and vðkÞ.

�
 Second, generate an initial FARIMAð0; k; 0Þ
sequence xðkÞ of length rþ 2MþL. In the current
implementation, we chose to use the Circular
Matrix Embedding method (see [19] or a nice
review by Bardet et al. [20]).

�
 Third, apply the fast wavelet transform (3.3) to
the initial FARIMA sequence xðkÞ recursively J �

L times to obtain rþ 2MþJ observations of
another FARIMAð0;k; 0Þ sequence exðkÞ.

�
 Fourth, in view of (2.4), form the partial sums

eSðk;2Þk;0 ¼
X

0oipk

ððexðkÞi Þ
2
� EðexðkÞi Þ

2
Þ

¼
X

0oipk

ðexðkÞi Þ
2
�

Gð1� 2kÞ

ðGð1� kÞÞ2

� �
,

k ¼ 0; . . . ; 2MþJ ,

where we used the formula (13.2.8) in Brockwell
and Davis [14].

�
 Fifth, use the sequence

Zk;2ðL; J; t ¼ k2�JÞ ¼ Ck2
�2kJ eSðk;2Þk;0 with

Ck ¼
GðkÞGð1� kÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4k� 1Þk

p
Gð1� 2kÞ

ð4:4Þ
for the wavelet-based approximation II of
fRm ZkðtÞ at the time points t ¼ 0; 2�J ;
2 � 2�J ; . . . ; 2M .

Comments: A number of comments are in order:
The maximum length r of the filters uðkÞ and vðkÞ

turns out to be surprisingly small for large enough
number of zero moments of the chosen underlying
orthogonal MRA [16].

The length rþ 1 is the smallest length which
makes the use of the (3.3) possible when taking
into account the boarder effect. Let us note that
this corresponds to the choice L ¼ �M. The
impact of the choice of the initial FARIMA
sequence and hence of the parameter L is detailed in
Section 6.

Observe that rþ 2MþJ is the length of the
FARIMA sequence which appears after applying
the scheme (3.3) recursively J � L times to the initial
FARIMA sequence of length rþ 2MþL while taking
into account the boarder effect (see also Section 4
in [16]).

The constant Ck in (4.4) ensures that EZkð1Þ
2
¼ 1

in the limit J !1. This can be deduced from
Theorem 2 and relations (1.2), (1.3) of Pipiras [1]. It
can also be obtained directly by assuming that

Eð2�2kJ eSðk;2Þ2J ;0 Þ
2
�C�2k , as J !1, and computing the

variance using the well-known formula

EH2ðX ÞH2ðY Þ ¼ 2ðEXY Þ2 for a Gaussian zero

mean vector ðX ;Y Þ and the function H2ðxÞ ¼ x2 �

1 (see, for example, (1.11) in [7], p. 29). The

normalization 22kJ is consistent with the ð2kÞ-self-
similarity of fRm.

The choice of J and M is subjective but it
affects the error of the approximation of fRm (see
Section 6).

Implementing wavelet-based approximation I:
Using (2.6) with j ¼ J at the time points t ¼ k2�J

with k ¼ 0; 1; . . . ; 2MþJ , leads to the approximation

2�2kJ
X1

n¼�1

X1
p¼�1

Fð2Þk;nðk � pÞSðk;2Þp;n ðJÞ � z
ðJÞ
0 .

Observe that Fð2Þk;n involves only its values at the
integer points. Since Fð2Þk;nðzÞ ¼ 0 for zp0 (see (2.2)
and note that fk;DðvÞ ¼ 0 for vp0), we truncate the
series above as

Zk;1ðL; J; t ¼ k2�J Þ ¼ 2�2kJ
XN0

n¼�N0

Xk

p¼k�K0

Fð2Þk;nðk � pÞSðk;2Þp;n ðJÞ � zðJÞ
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¼ 2�2kJ
XN0

n¼�N0

XK0

q¼0

Fð2Þk;nðqÞS
ðk;2Þ
k�q;nðJÞ � zðJÞ. ð4:5Þ

The practical implementation of this approximation
consists of the following steps:
0.2
�

0

Z
κ(

t)
First, the sequence S
ðk;2Þ
k;n ðJÞ in (4.5) is computed as

for the wavelet-based approximation II using
steps 1–4.
-0.2
�
 Second, the function values Fð2Þk;nðqÞ are obtained
as explained at the end of Section 3.
-0.4
�
0 0.2 0.4 0.6 0.8 1
-0.8

-0.6

t

Fig. 2. Consecutive wavelet-based approximations II to fRm Zk

with k ¼ 0:35.
Third, since we expect the function fk;D in (2.2) to
resemble the function f with its support on
½0; 2N � 1� (see Fig. 1), we choose N0 ¼ N and
K0 ¼ 2N in the approximation (4.5).

Sequence of approximations: Wavelet-based ap-
proximations I and II can be formed not only after
the J � L applications of the fast wavelet-transform
(3.3) but also with the initial FARIMA sequence
and after each of the J � L applications of (3.3).
We can thus obtain approximations I and II
as sequences of approximations at consecutive,
finer and finer, scales 2�j, LpjpJ, that is, fZk;iðL;
j; t ¼ k2�jÞ; k ¼ 0; 1; . . . ; 2MþJgLpjpJ , i ¼ 1; 2. Note
that the length of the approximations at scale 2�j is
2Mþj þ 1.

The approximations Zk;iðL;L; t ¼ k2�LÞ, k ¼ 0;
1; . . . ; 2MþL, of length 2MþL þ 1 will be referred to
as the initial approximations. The scale

2�L, (4.6)

where �MpLpJ, will be referred to as the initial
approximation scale.

For example, Fig. 2 depicts consecutive wavelet-
based approximations II to fRm Zk, with k ¼ 0:35,
N ¼ 10, M ¼ 0 (or ½0;T � ¼ ½0; 1�), J ¼ 17 and
L ¼ �M ¼ 0. We selected d ¼ 10�6 for the trunca-
tion level of the fractional filters and the length r of
the truncated filters was 23.

5. Uniform convergence and equivalence of the two

approximations

In this section, without loss of generality, we
restrict the exposition to the case M ¼ 0, i.e., T ¼

1;K ¼ ½0; 1� and L ¼ �M ¼ 0. Fig. 2 nicely illus-
trates the convergence of the approximations to
fRm. We can use the underlying algorithm to
provide empirical evidence that both wavelet-based
approximations I and II converge almost surely and
uniformly on compact intervals, and that they are
asymptotically equivalent. For this, define the
random variables

Ck
i ðjÞ ¼ sup

t2½0;1�
jZk;ið0; j; tÞ � ZkðtÞj, ð5:1Þ

Dk
i ðjÞ ¼ sup

t2½0;1�
jZk;ið0; j þ 1; tÞ � Zk;ið0; j; tÞj, ð5:2Þ

FkðjÞ ¼ sup
t2½0;1�

jZk;1ð0; j; tÞ � Zk;2ð0; j; tÞj, ð5:3Þ

where i ¼ 1; 2, 0pjpJ.
Note that, unlike Ck

i ðjÞ, the variables Dk
i ðjÞ and

FkðjÞ are observable. In practice, for simplicity, we
replace the suprema over t 2 ½0; 1� by the suprema
over t ¼ 0; 2�ðjþ1Þ; 2 � 2�ðjþ1Þ; . . . ; 1, for Dk

i ðjÞ and the
suprema over t ¼ 0; 2�j ; 2 � 2�j ; . . . ; 1, for FkðjÞ.
Note also that, ignoring truncation of the series
in (4.5),

Ck
1ðjÞ ¼ lim

j0!1
sup

t2½0;1�
jZk;1ð0; j; tÞ � Zk;1ð0; j

0; tÞj

p lim
j0!1

Xj0�1
p¼j

sup
t2½0;1�

jZk;1ð0; pþ 1; tÞ

� Zk;1ð0; p; tÞj

¼
X1
p¼j

Dk
1ðpÞ. ð5:4Þ
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Hence, we may get a bound on the variable Ck
1ðjÞ

from Dk
1ðpÞ, pXj. We know from (2.5) that, ignoring

truncation of the series, Ck
1ðjÞ and Dk

1ðjÞ converge to
0 almost surely, as j!1. We conjectured in (2.10)
that the same result holds for Ck

2ðjÞ and Dk
2ðjÞ. We

therefore, expect that (5.4) holds for Ck
2ðjÞ and Dk

2ðjÞ

as well.
In Fig. 3, we provide ten realizations and

boxplots of the distributions of lnðDk
i ðjÞÞ, i ¼ 1; 2,

and lnðFkðjÞÞ, k ¼ 0:35, as functions of j ¼ 0; . . . ; 18.
The boxplots are based on 1000 independent
realizations. The other simulation parameters are
the same as those for Fig. 2. These plots suggest that
Dk

i ðjÞ, i ¼ 1; 2, and FkðjÞ converge almost surely,
uniformly on ½0; 1� and exponentially fast to 0 as
j!1. By using (5.4), we expect that the same
holds for Ck

i ðjÞ, i ¼ 1; 2. This observation is
consistent with (2.5) in the case of Ck

1ðjÞ. It also
supports the conjecture made at the end of Section 2
in the case of Ck

2ðjÞ and the fact that the two
approximations are asymptotically equivalent. Ob-
serve from Fig. 3 that the approximation Zk;2ð0; j; tÞ
exhibits more stability (less variance) than
Zk;1ð0; j; tÞ as j becomes large.

The convergence of both approximations
Zk;ið0; j; tÞ, i ¼ 1; 2, appears slower and less stable
(more variant) when k 2 ð1

4
; 1
2
Þ is closer to 1

4
. We

illustrate this in Fig. 4 where ten realizations and
boxplots of lnðDk

i ðjÞÞ, i ¼ 1; 2, and lnðFkðjÞÞ are
provided for k ¼ 0:28. The convergence appears
particularly slow and unstable for wavelet-based
approximation I. Observe also that the decay of
lnðFkðjÞÞ appears surprisingly little affected.
6. On the practical use of wavelet-based simulation

We discuss here several practical issues related to
the wavelet-based synthesis of fRm: the choice of
initial scale 2�L in (4.6), the joint selection of M and
J, and the synthesis of fRm on the integer grid.

Choice of initial scale 2�L: Suppose that M and J

are fixed in (4.1) and (4.2). As mentioned in Section
4, the shortest possible initial FARIMA sequence in
the wavelet-based simulation of fRm has length
rþ 1. This corresponds to the choice L ¼ �M or
the initial scale 2�L ¼ 2M or the initial approxima-
tion of length 20 þ 1. However, starting with a
longer initial FARIMA sequence, we can use
instead an arbitrary initial scale 2�L in (4.6) with
�MpLpJ in (4.3). We now want to address
questions such as: Does it matter what initial scale
(4.6) with (4.3) is used? Alternatively, does it matter
how long the initial approximation is taken?

In terms of approximation errors, these questions
can be inquired through the variables

Ck
K ;iðL; jÞ ¼ sup

t2K

jZk;iðL; j; tÞ � ZkðL; tÞj, ð6:1Þ

Dk
K ;iðL; jÞ ¼ sup

t2K

jZk;iðL; j þ 1; tÞ � Zk;iðL; j; tÞj, ð6:2Þ

where K � R, i ¼ 1; 2, LpjpJ, Zk;iðL; j; tÞ is a
wavelet-based approximation at scale 2�j obtained
in practice starting with approximation at the initial
scale 2�L, and ZkðL; tÞ ¼ limJ!1Zk;1ðL; J; tÞ is the
corresponding limiting Rosenblatt process. When
K ¼ ½0; 1� and L ¼ 0, the variables (6.1) and (6.2)
are those in (5.1) and (5.2).

The following result shows that approximation
errors (6.1) and (6.2) are not affected by the initial
scale. The result is analogous to Proposition 3.1 in
Pipiras [21].

Proposition 6.1. For i ¼ 1; 2, L0 ¼ maxðL1;L2Þ, we

have

fCk
K ;iðL1; jÞgjXL0

¼
d
fCk

K ;iðL2; jÞgjXL0
,

fDk
K ;iðL1; jÞgjXL0

¼
d
fDk

K ;iðL2; jÞgjXL0
. ð6:3Þ

(When i ¼ 2, the first relation of (6.3) holds in fact

under Conjecture (2.10).)

Proof. The results (6.3) follow from the identity

fZk;iðL1; j; tÞ; jXL0; t 2 Rg

¼
d
fZk;iðL2; j; tÞ; jXL0; t 2 Rg. ð6:4Þ

To understand (6.4), suppose that L1oL2. Observe
that the processes Zk;iðL2; j; tÞ, jXL0, are defined
starting with an initial FARIMAð0;k; 0Þ sequence
fxðkÞL2;n

g. The processes Zk;iðL1; j; tÞ, jXL0, can be
defined in the same way but starting with a
sequence

fxðkÞL2;n
ðL1Þg (6.5)

obtained from an initial FARIMAð0;k; 0Þ sequence
fxðkÞL1;n

g after recursively applying the fast wavelet
transform (3.3). The identity (6.4) follows since (6.5)
is also a FARIMAð0; k; 0Þ sequence. &

The second result of (6.3) can be confirmed by
simulation. In Fig. 5 below, we provide boxplots of
the distributions of Dk

½0;1�;2ðL; JÞ with J ¼ 11 and
J ¼ 19 as functions of L ¼ 0; 1; . . . ; J � 1. For
J ¼ 19, for example, each value of the error
Dk
½0;1�;2ðL; 19Þ is computed from the wavelet-based
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approximations Zk;2ðL; 20; tÞ of length 220 þ 1 and
Zk;2ðL; 19; tÞ of length 219 þ 1. We chose J ¼ 11 and
J ¼ 19 to indicate that the conclusions are not
affected by the length of the final approximation
and by the number of times that the fast wavelet
transform (3.3) is performed. The parameters in
simulation are those as for Figs. 2 and 3, in
particular, k ¼ 0:35. Analogous observations can
be made in the case i ¼ 1.

Joint selection of M and J: In practice, the
choice of final scale 2�J and simulation interval
½0; 2M � is subjective. The same final wavelet-based
approximation of length 2JþM þ 1 at times 0; 2�J ;
2 � 2�J ; . . . ; 2M can be used as approximation
at times 0; 2�ðJ�J 0Þ; 2 � 2�ðJ�J 0Þ; . . . ; 2MþJ 0 for any
J 0 2 Z, that is, at scale 2�ðJ�J 0Þ and on simula-
tion interval ½0; 2MþJ 0 �. What difference does
this make?

The difference is in the error of approximation.
The next result is analogous to Proposition 6.1 in
Pipiras [21].

Proposition 6.2. We have for J; J 0 2 Z, i ¼ 1; 2,

Ck
K ;ið0; JÞ ¼

d
2�2kJ 0Ck

2J0K ;i
ð0; J � J 0Þ,

Dk
K ;ið0; JÞ ¼

d
2�2kJ 0Dk

2J0K ;i
ð0; J � J 0Þ. ð6:6Þ

In particular,

Ck
½0;2M �;i

ð0; JÞ ¼
d
22kMCk

½0;1�;ið0; J þMÞ,

Dk
½0;2M �;i

ð0; JÞ ¼
d
22kMDk

½0;1�;ið0; J þMÞ. ð6:7Þ
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Proof. Consider, for example, the case of Ck
K ;1. By

using (2.6) and the ð2kÞ-self-similarity of fRm, we
obtain that

Ck
K ;1ð0; JÞ ¼ sup

2�J0 t2K

jZk;1ðJ; 2
�J 0 tÞ � Zkð2

�J 0tÞj

¼
d
2�2kJ 0 sup

2�J0 t2K

jZk;1ðJ � J 0; tÞ � ZkðtÞj

¼ 2�2kJ 0 sup
t22J0K

jZk;1ðJ � J 0; tÞ � ZkðtÞj

¼ 2�2kJ 0Ck
2J0K ;1
ð0; J � J 0Þ: &

Suppose as above that the final approximation is
at scale 2�J and on simulation interval ½0; 2M �. If
J 040, relation (6.6) shows that using the same
approximation at larger scale 2�ðJ�J 0Þ and on larger
simulation interval ½0; 2MþJ �, will increase the
approximation error 22kJ 0 times. If J 0o0, the
approximation error will decrease 22kJ 0 times.
Relation (6.7) shows that approximation errors for
arbitrary simulation intervals ½0; 2M � can be deduced
from those for the simulation interval ½0; 1�. In this
sense, Figs. 3 and 4 carry information about
approximation errors on arbitrary intervals. These
figures can therefore guide a user in choosing a final
scale for a targeted approximation error.

Approximation of fRm on the integer grid: From
the arguments developed in the paragraph above, it
is clear that choosing J ¼ 0 so as to obtain an
approximation on the integer grid 0; 1; . . . ; 2M leads
to large approximation errors. This can be seen
from the relation

Dk
½0;2M �;i

ð0; 0Þ ¼
d
22kMDk

½0;1�;ið0;MÞ, (6.8)

which is a consequence of (6.7). Even though the
errors Dk

½0;1�;ið0;MÞ decrease with M (Figs. 3 and 4),
they become large when multiplied by 22kM .

To obtain a more accurate approximation on the
integer grid, it is necessary to generate wavelet-
based approximation on ½0; 2M � at a finer final scale
2�J , J40, and then retain only those values
corresponding to integer times. In this case, the
approximation error of full approximation is
Dk
½0;2M �;i

ð0; JÞXDk
f0;1;...;2M g;i

ð0; JÞ. Observe that

Dk
½0;2M �;i

ð0; JÞ is smaller than (6.8) in view of (6.7).

The discussion above can guide a user in choosing J

for a targeted approximation error. Retaining
approximation values at integer times amounts to
performing a downsampling of the wavelet-based
approximation. Downsampling thus reduces ap-
proximation errors.
7. Usefulness of wavelet-based synthesis

We argued in Section 6 that the approximation
error does not depend on initial scale 2�L in the
wavelet-based synthesis of fRm. When final scale
2�J is fixed, this means, in particular, that we may
as well take the initial scale 2�L to be the final scale
2�J itself. In this case, there is no need to use the fast
wavelet transform algorithm (3.3). In other words,
using the simple-minded approximation in (1.5)
given by

2�2kJ
X½2J t�

k¼1

ðX 2
k � 1Þ, (7.1)

where fX kg is a Gaussian FARIMAð0;k; 0Þ se-
quence generated, for example, by the Circulant
Matrix Embedding method, is equally good as using
the wavelet-based approximation Zk;2ðL; J; tÞ with
some LoJ. This is perhaps not that surprising
because Zk;2ðL; J; tÞ are also defined by (7.1) where
fX kg is a special FARIMA sequence generated by
using wavelets.

If one can use a simple-minded approximation
(7.1), why is the wavelet-based synthesis of fRm
useful? This question was addressed by Pipiras [21]
in the case of fractional Brownian motion. The
reasons for interest provided in that work are
relevant here as well. Some other reasons are
specific to the case of fRm. The wavelet-based
synthesis of fRm is useful for at least the following
reasons:
�
 First, it provides approximations which converge
to fRm almost surely and uniformly on compact
intervals. The approximation (7.1) is identical to
Zk;2ðL; J; tÞ but only on average (in distribution).
By increasing J, we can in principle make
Zk;2ðL; J; tÞ arbitrarily close to fRm almost surely.
This is not the case for the approximation (7.1).
The almost sure convergence is particularly
important in the case of fRm because exact
simulation of the process is not available. It can
also be used to visualize the convergence to fRm
as illustrated in Fig. 2.

�
 Second, the wavelet-based synthesis provides
information on the approximation error when
using other simulation methods. For example,
when using (7.1) at some fixed scale 2�J ,
the approximation error is the same (in distribu-
tion) as that when using the approximations
Zk;2ðL; J; tÞ. The approximation error of the
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latter can be explored through Figs. 3 and 4 type
plots.

�
 Third, the wavelet-based synthesis is computa-
tionally fast. Modulo truncation of the fractional
filters, the wavelet-based synthesis is of the order
OðTÞ, where T is the length of a wavelet-based
approximation of fRm. Truncation of the frac-
tional filters refers here to the discussion around
(3.5). When the number of zero moments N is
larger, the lengths of the fractional filters uðkÞ and
vðkÞ, truncated at a negligible cutoff level, are
surprisingly small. Using these finite, truncated
filters within (3.3), one can generate the sequence
xðkÞj;k at the speed of fast wavelet transform. Since T

random variables xðkÞj;k are needed to obtain the
approximation Zk;2 of fRm of length T, its
computational cost is of the order of that of a
fast wavelet transform, that is, OðTÞ.

8. Conclusions and perspectives

In the present work, we studied two wavelet-
based approximations for the Rosenblatt processes.
As detailed in Section 4, approximation I in (2.5)
has a stronger mathematical foundation than
approximation II in (2.8). However, we saw in
Section 5 from numerical simulations that both
approximations turn out to be equivalent in terms
of uniform convergence. Also, we note from
Sections 6 and 7 that the issues regarding their use
and usefulness are identical. Since approximation II
is significantly simpler and has a lower computa-
tional cost, we would recommend to use it in
practice.

The use of a well-controlled and well-understood
algorithm to synthesize the Rosenblatt processes is
of key importance to the analysis of scaling
phenomena. Indeed, these finite variance, non-
Gaussian, self-similar processes with stationary
increments provide a relevant alternative to both
fractional Brownian motions and multifractal pro-
cesses for the modeling of empirical data with
scaling properties. They could also prove very useful
for the analysis of scaling parameter estimation
performance and for the study of self-similarity
versus multifractal hypothesis testing.

Matlab routines implementing both approxi-
mations as well as the uniform convergence discus-
sion and the synthesis (with detailed explanations)
of the basis functions in (2.7) are available upon
request.
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