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On Non-Scale-Invariant Infinitely Divisible Cascades
Pierre Chainais, Rudolf Riedi, and Patrice Abry

Abstract—Multiplicative processes, multifractals, and more
recently also infinitely divisible cascades have seen increased
popularity in a host of applications requiring versatile multiscale
models, ranging from hydrodynamic turbulence to computer
network traffic, from image processing to economics. The method-
ologies prevalent as of today rely to a large extent on iterative
schemes used to produce infinite detail and repetitive structure
across scales. While appealing, due to their simplicity, these
constructions have limited applicability as they lead by default
to power-law progression of moments through scales, to non-
stationary increments and often to inherent log-periodic scaling
which favors an exponential set of scales. This paper studies and
develops a wide class of infinitely divisible cascades (IDC), thereby
establishing the first reported cases of controllable scaling of
moments in non-power-law form. Embedded in the framework
of IDC, these processes exhibit stationary increments and scaling
over a continuous range of scales. Criteria for convergence, further
statistical properties, as well as MATLAB routines are provided.

Index Terms—Fractional Brownian motion, infinitely divisible
cascades (IDC), multifractal, multiplicative cascades, multiscaling,
random walk, turbulence.

I. INTRODUCTION

SCALING behavior has become a welcome parsimonious
description of complexity in a host of fields including nat-

ural phenomena such as turbulence in hydrodynamics, human
heart rhythm in biology, spatial repartition of faults in geology,
as well as mankind activities such as traffic in computer net-
works and financial markets. The multifractal formalism (see
[1] for an extensive set of original references) has received much
attention as one of the most popular framework to describe and
analyze signals and processes that exhibit scaling properties,
covering and connecting both local scaling and global scaling
in terms of sample moments.

The term scale invariance, e.g., refers in various fields to a
relation between the absolute moments of increments

of a process and the lag in form of a power
law. More precisely, scale invariance is then described by a set
of multifractal exponents defined through

as (1)
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where is assumed either to be constant, to be bounded
between positive constants, or to be a more general function1

depending on the context. For instance, statistically self-sim-
ilar processes such as fractional Brownian motion [2]
with Hurst exponent fit into this framework with
and constant equal to . The binomial multiplica-
tive cascades, among others, fit with a strictly convex function

and bounded . The multifractal formalism connects
the scaling exponents via the Legendre transform to the
local degree of regularity of the path of the process.

In real world applications, the notion of in (1) is of lim-
ited use, since one is able to observe only a limited range of
scales from actual data. For clarity, when scaling laws are meant
to hold for scales or lags we use the term
multiscaling. Note that for the multifractal formalism to apply
rigorously one needs scaling as in (1) down to infinitely small
scales.

In addition, the functional form of a power law in (1) can
be limiting in applications, such as in networking [3], [4]. The
framework of the infinitely divisible cascades (IDC), introduced
first as a concept of analysis in fluid turbulence (see [3], [5]–[9]),
answers to both shortcomings. By integrating the contribution
of all scales in a range of interest, IDC analysis allows for more
flexible scaling and thus better fitting of data by setting

for
(2)

where the function is assumed monotonous and can
be interpreted as the depth of the cascade. Such a behavior
is analyzed in terms of a cascading mechanism through the
scales from to . Moreover, the IDC framework
(2) encompasses the scale invariance (1) as the special case

.
Besides the broader context of the IDC framework in terms

of scaling laws and ranges, a further difference to multifractal
analysis may be noted in its spirit. Multifractal theory uses no-
tions such as the scaling exponents which tend to be de-
fined as to exist a priori and not to put any condition on the
analyzed process (compare footnote 1) and it is concerned with
inferring fine-grained, local properties of processes and signals
from global scaling in various settings (see [1] for an extensive
set of original references).

The framework of IDC, on the other hand, formulates a con-
dition on the process or time series at hand, namely, separability
of as a function of scale and order according to (2).
This functional form may or may not hold for a process and
therefore provides a true property of a process beyond a statis-
tical description of the kind of scale invariance (1).

1Multifractal analysis usually works with a definition which applies to any
process and which reads as: lim inf log C (�) = 0.
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Note that both multifractal analysis and IDC scaling can be
formulated in terms of wavelet coefficients by replacing incre-
ments (1) by wavelet coefficients2 (see [1], [3], [8], [10]–[13]
and references therein for original developments, applications,
and surveys).

While analysis tools for multiscaling processes and infin-
itely divisible cascades have been widely developed (see [3],
[5]–[9]), only few recent works proposed actual models and
tools for synthesis of processes with prescribed and control-
lable IDC scaling. Since the binomial cascades popularized
by Mandelbrot [14]–[16], multiplicative cascades have always
played a central role as a paradigm of multifractals, leading
to advances on random self-similar measures of considerable
generality.

Shortly after the turn of the millennium, the time seemed
ripe for IDC processes. In a very original approach, Schmitt
and Marsan [17] describe scale-invariant infinitely divisible cas-
cades by a stochastic equation resulting from the densification
of a discrete multiplicative cascade. Their work gives decisive
indications toward the unification between Mandelbrot’s ap-
proach and the infinitely divisible cascades approach; however,
it does not cover scaling properties in details. Barral and Man-
delbrot [18] introduced the multifractal products of cylindrical
pulses (MPCP) also called compound Poisson cascades (CPC)
and provided their rigorous multifractal description. While cast
as multiplicative cascades in [18], the CPC show infinitely di-
visible power-law scaling and are but a special case of IDC pro-
cesses mentioned later. By prescribing the correlation function
of the increments of a random walk, Bacry, Delour, and
Muzy [19], [20] introduced the pioneering multifractal random
walk (MRW) that later turned out to be a particular case of a
more general framework [21], [22] (see below). Finally, Bacry
and Muzy [21], [23] introduced log-infinitely divisible multi-
fractal processes and provided strong results on convergence
and scaling behavior, extending some of the results for CPCs
[18].

Inspired by earlier ideas of Mandelbrot [24] but indepen-
dently from the above, infinitely divisible cascading processes
were introduced in [22], [25], with the main goal of providing
processes with controllable non-power-law scaling, especially
in the framework of CPC with their associated random walks.
This paper follows up with rigorous results and practical al-
gorithms on compound Poisson and log-normal cascades as
special cases of IDC processes. Doing so, we introduce the
non-scale-invariant infinitely divisible cascading (IDC) noise,
motion, and random walk. These continuous-time contin-
uous-scale processes possess stationary increments and exhibit
prescribed departures from power-law behaviors in the sense
that in (2).

In Section II, we recall the basic definition and properties of
the IDC noise and point out its interesting degrees of freedom.
Doing so, we provide straightforward extensions of recent
convergence results [26]. In Sections III and IV, we introduce
the IDC motion and their associated random walk (IDC random
walk) and study their statistical properties. For both the IDC

2However, as far as non-scale-invariant objects are concerned, one has to take
care. Indeed, the fact that scale-invariance exponents (1) do not depend on the
wavelet base is deeply related to the scale invariance of the process.

motion and random walk, we put the emphasis on pinpointing
their departures from power-law behaviors as accurately as
possible. In Section V, we provide numerical simulations of
non-scale-invariant processes; in Section VI, we give details on
practical algorithms for IDC processes simulation. Conclusions
and perspectives are reported in Section VII. For the sake of
flow, we postpone mathematical complements and proofs to
the Appendices I–V. Practical properties of these processes
relevant for applications are detailed in a companion paper
[27].

II. INFINITELY DIVISIBLE CASCADING NOISE

A. Background

The distinguishing and defining common feature of cascades
consists in an underlying multiplicative construction which is
iterated across scales. The well-known canonical binomial cas-
cade as introduced by Mandelbrot [14], [15] may be viewed as
the archetype of multifractal random measures. Among the sev-
eral ways of defining the binomial cascade, the most useful in
our context is via the iterative products

(3)

Here, stands for the nested dyadic intervals
and denotes independent and identically dis-

tributed (i.i.d.) positive random variables of mean one
. By construction, is constant over each

interval .
An equivalent construction of the binomial cascade em-

phasizes the measure-theoretic aspect by considering the
as densities and studying their distribution functions

. As positive martingales, these converge
weakly to a limiting distribution [16], [28], which exhibits
scaling of the form of (1) with bounded . Attractive from
a signal processing point of view is the iterative aspect of (3)
which allows for fast, tree-based synthesis algorithms as the
one used for the so-called multifractal wavelet model (MWM
model) [29]. This underlying tree structure is inherited from
the nested arrangement of the which may be represented
by the points in the (time, scale)-plane
(see Fig. 1, left).

However, such cascades have two major drawbacks. They are
not strictly stationary since the construction is not time-shift in-
variant; this may result in “blocking effects.” Further, by con-
struction, the scaling of moments is log-periodic and favors, in
particular, the scale ratio equal to .

Following a more recent idea of Mandelbrot [24], one may
overcome both drawbacks by replacing the rigid, nested ar-
rangement of multipliers of the binomial cascade by a
planar marked Poisson point process ; this lead to
the MPCP, also called CPC (see Fig. 1, center). More precisely,
introducing the cone
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Fig. 1. Comparison between the “time-scale” construction of multiplicative cascades. Left: Nested geometry behind the binomial cascade, Center: Stationary
discrete geometry behind the CPC, Right: Stationary continuous geometry behind the IDC. The shaded cones indicate the regions that determine the value of the
cascade at time t.

the MPCP (or CPC) cascade reads as

(4)

Note that the binomial cascade uses similarly all multipliers
such that belong to some cone above

time .
To obtain simple iterative scaling laws for the MPCP (or

CPC) one ensures that each “exponential frequency band”
of scales between and contributes on the average
the same number of multipliers to . This results in an
expected number of Poisson points in proportional to

, just as for binomial cascade. Power laws in the form
of (1) with bounded are then recovered, together with the
powerful multifractal formalism [18].

Noting that compound Poisson distributions are infinitely di-
visible, it seems only too natural to generalize the CPC to the
IDC by generalizing (4) to the form

(5)

with a continuous infinitely divisible random measure
(see Section II-B and Appendix I). This was done in previous
works [21]–[23] which dealt with the scale-invariant case
yielding power-law scaling.

In this paper, we are mainly interested in scalings that involve
departures from exact power laws. As we observed in the CPC
case, power laws go hand in hand with an average number of
multipliers in the cone proportional to . This suggests
to abandon the idea of statistically identical contributions from
exponential frequency bands in order to find non-power-law
scaling; as we will see, this comes at the cost of simple itera-
tive arguments.

B. IDC: Basic Notions

We recall now the definition of the IDC noise [21]–[23], [25]
which generalizes the CPC (4) of Barral and Mandelbrot [18]
as well as ideas of Schmitt and Marsan [17]. Note that IDC are
closely related to the Lévy stable chaos of Fan [30]. Note also
that IDC enter the framework of the T-martingales of Kahane
[31].

To this end, let be an infinitely divisible distribution (see
Appendix I) with moment generating function

(6)

Let be a positive measure on the time-
scale half-plane . Let denote an infinitely
divisible, independently scattered random measure distributed
by , endowing the time-scale half-plane and associated to
its so-called control measure (see (66) in Appendix II).
In particular, we have for any Borel set

(7)

The specific choice of a time-invariant control measure
is not essential to a valid definition but is

added to ensure stationarity of .
Finally, a cone of influence is defined for every

as (see Fig. 1)

(8)

Choosing the large scale in the cone equal to is arbitrary
and amounts to a simple choice of time and scale units. Further-
more, the symmetry of the cone’s shape inflicts a causal as well
as an anticipating component. Scaling results presented below
extend without restriction to a purely causal version such as

Definition 1: An IDC noise is a family of processes
parameterized by of the form (see Fig. 3)

(9)

In the light of the CPC of the previous section, the IDC noise
can be interpreted as a “continuously iterative” multiplication
(compare Fig. 1 (left) and (right)). An immediate consequence
of the definition is that is a positive stationary random
process with

(10)

The key property (7) reminds of (2) in how it separates
the dependence of the moment order ; it lies at the origin
of all scaling properties obtained in the sequel. Indeed, the
distribution controls the structure function through , while
the control measure and the shape of the cone set
the speed of the cascade. Choosing proportional to

will lead to power laws. Aiming at non-power-law
behaviors, one may explore these degrees of freedom offered
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by the cone and the control measure. However, one should
keep in mind that a change in the choice of can be
expressed equivalently by an appropriate change in the shape
of the cone .

C. IDC Noise: First Properties

A direct consequence of the infinite divisibility of the random
measure and (9) is that has a log-infinitely divisible
distribution, that is, has an infinitely divisible distri-
bution. Also, the IDC noise adheres to a form of exact scaling,
however, not in the sense of (1) but with respect to the index .
It is convenient to set

(11)

whenever defined, where and where is dis-
tributed according to the infinitely divisible law . Note that

by definition and that for all for
which it is defined. To see this, recall the well-known fact that
characteristic functions are log-convex. Consequently, is con-
cave and so must be due to (11). Since the
claim follows.

Lemma 1: Let be an IDC noise. Then

(12)

The fact that the distribution underlying the IDC noise in
Definition 1 is infinitely divisible is key to ensure the separation
of the dependence of the moments on order and res-
olution (12). Power-law behaviors will be recovered for the
scale-invariant case defined by [18], [21]–[23]

for
for

(13)

or equivalently

for ,

for
(14)

Equation (12) becomes

(15)

Interestingly, the correlations of IDC noises—and in fact all
finite-dimensional distributions [23]—are entirely determined
by the geometry of the cascade in terms of the intersection of
cones in the time scale plane (see Fig. 2):

Lemma 2:

(16)

In the scale-invariant case of (13), (16) becomes

for
for .

(17)

Equation (17) approximately behaves as a power law for small
values of , while the finite scale effects are

Fig. 2. The dependence between Q (t) and Q (s), in particular their
correlation, stems entirely from the measure of the intersection of two cones
C (t) and C (s).

rendered by the exponential term for . Note that
an exact power-law behavior for all may be
recovered in (17) by adding a Dirac distribution to

in the definition of . Indeed, we have then

(18)

This corresponds to the choice made by Bacry and Muzy [21]
to build exactly scale-invariant measures.

D. IDC Noise: Examples

Infinitely divisible distributions that may be used in this
construction are often among well-known common distributions
[32]. Most of these models have already been proposed for the
modeling of intermittency in the context of turbulence in fluid
mechanics [9]. Note that all expressions of
are constrained by the normalization of that imposes

. Prominent examples include the following.

Example 1 (Normal): The underlying distribution of
the random measure is normal, i.e., [33]. Then,

, so that depends
only on one parameter:

(19)

Example 2 (Stable): The underlying distribution of the
random measure is stable, i.e., [34]. Such a
choice would correspond to the model of turbulence proposed
in [35]. Due to the heavy tails of , normalizing the associate
IDC noise (9) is only possible within a special range of param-
eter values. Indeed, choosing the tail exponent and the
skewness parameter then the random variable with
law is almost surely smaller than the position parameter ,
and the Laplace transform is meaningful for
[34, Proposition 1.2.12]. One finds

with , , and , so that

for (20)

Example 3 (Gamma): The underlying distribution of the
random measure is Gamma [32], [36]. Setting its parameters
as and , we find which
yields

(21)
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Example 4 (Compound Poisson): CPC originally proposed
in [18], [24] (see also [37]) were set as a special class of IDC
noise in Section II-A. Since the multipliers are i.i.d. pos-
itive random variables independent of the point process
(see (4)), the underlying distribution of the random measure

is here the compound Poisson distribution associated with the
common distribution of the . The Laplace transform
of simplifies to ; the compound distribution
of is given by where stands
for the expected number of Poisson points. Since we can absorb

into the control measure , we may assume and set
and

(22)

Alternatively, an explicit computation of (12) confirms this form
of up to a constant which can be absorbed into the control
measure .

Example 5 (Pure Poisson): The well-known She-Levêque
model [38], [39] in the field of turbulence proposes a scaling
with pure Poisson distributions. This can be realized with
the simplest compound Poisson cascade where reduces
to constant with Dirac distribution and an underlying
pure Poisson distribution of the random measure . Noting

, (22) becomes

(23)

E. Additional Comments

1) Self-Similar Processes: From the point of view of the
analysis of scaling, self-similar processes can be seen as a
particular case of multiscaling processes (cf. (1)). However, we
emphasize that self-similar processes cannot be directly built
as IDC noises. Self-similarity would correspond to a linear
dependence of on of the form . It corresponds
to and which describes a trivial cascade
that yields a constant IDC noise . There is indeed
no cascade of multipliers in this case.

2) On the Notions of Resolution and Scale : We draw
the attention of the reader to potential confusions regarding the
true nature of the parameter entering the definition of an IDC
noise . Considering formal analogies between (2) and (12),
for instance, seems to play a role equivalent to and therefore
can be considered as a scale. However, it should better be ana-
lyzed as a parameter of resolution: is the intermediate stage
of a construction that evolves with parameter whereas is the
scale over which variations of may be analyzed.

III. INFINITELY DIVISIBLE CASCADING MOTION

While Section II-A lays out the basis for continuous-scale
or infinitely divisible multiplication, this section concerns the

limiting behavior of the cascading noise as which
makes it necessary to introduce its distribution function or
primitive as well as the scaling behavior
of the limiting process of as . Despite their ap-
pearing rather formal and mathematical, the questions of the
behavior of and as become crucial in practice.
Indeed, numerical simulations become efficient and interesting
in case of convergence only. Sections III-A and -B deal with
these problems of convergence and define the infinitely divis-
ible cascading motion. Then Section III-C states our principal
results on the scaling behavior of . These results are discussed
in Section III-D and two non-scale-invariant examples are given
in Section III-E.

A. Definition (Almost Sure Convergence)

The IDC noise inherits a powerful martingale property di-
rectly through the underlying infinitely divisible construction.
Martingale techniques have traditionally been used to establish
weak convergence of cascades ever since the celebrated work
on T-martingales by Kahane and Peyrière [16], [28]. For conve-
nience, set for

(24)
and note

(25)

where and are independent, and both of mean .
Indeed, this is a simple consequence of (7), (9), and of being
independently scattered. Denoting by the filtration induced
by the process it follows, still for , that

(26)

Thus, forms a continuously indexed martingale
for each . Furthermore, it is left-continuous, meaning that

as since due to
(8). Thus, is a right-continuous martingale, where
we are interested in the limit ; this corresponds to
the traditional setting of the martingale convergence theorem
which we recast here according to our setting.

Lemma 3: An IDC noise forms a positive, left-
continuous martingale. Thus, it converges almost surely as .

Invoking the Law of Large Numbers it is then easy to show
that converges almost surely and for almost all to zero in
many cases of interest such as the scale-invariant cascades. In-
deed, is strictly negative due to Jensen’s inequality,
except in trivial cases. In rare places , the noise will diverge to
infinity (see Fig. 3) keeping on average a reasonable total mass
when interpreted as a density. Motivated by this degeneracy of
the limit of (see Lemma 3) and by analogy with the binomial
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Fig. 3. Sample of a realization of Q (t) (left), A(t) (middle), and V (t) (right).

cascades [14] and the theory of T-Martingales [28], we intro-
duce the infinitely divisible cascading motion from the distribu-
tion function of the noise

(27)

Note that

(28)

The following lemma permits to properly define the limiting
process obtained in the limit .

Lemma 4: Let denote an IDC noise. There exists a
cadlag (continuous from the right, limits from the left) process

with stationary increments such that almost surely

(29)

for all rational simultaneously. This process is called IDC
motion.

Proof: Since conditional expectations commute with in-
tegrals, forms for every a positive, left-continuous
martingale with respect to the filtration induced by . It
converges, thus, almost surely for all rational simultaneously.
Since , all and are nondecreasing and have limits
from the left and right; thus, can be extended to all real by
making it continuous from the left.

The increment process of

(30)

inherits full stationarity from . Recall that stationarity of
essentially roots in the time invariance of both the control mea-
sure and the shape of the cone .

B. Convergence in

While almost sure convergence is convenient to ensure a gen-
eral definition, one requires the existence of moments to study
scaling behavior. In addition, nothing assures a priori that in
(29) does not degenerate to zero itself. However, convergence
in for some allows to conclude from (28)
and implies the nondegeneracy of . To our knowledge, there
is no general result available for and only will
be considered here. In the scale-invariant case, finer results for

finiteness of moments of positive oreders can be found in [18],
[21], [23].

The simplest such convergence criterion is in terms of a
second-order analysis and follows from standard facts on

-bounded martingales.

Proposition 1: An IDC motion converges in if and
only if there exists some finite constant such that for all

(31)

When this condition is verified, is nondegenerate and
.

In the scale-invariant case (13), explicit computation renders
the criterion (31) equivalent to (see [18], [23]).
Recall that is always negative—see (11). It is an easy
exercise to verify this claim by explicit computation for the CPC
with multipliers of mean one where is simply the vari-
ance of the multipliers.

Going into more mathematical details, a more general crite-
rion is obtained by extending a theorem by Barral [26, Theorem
6] as follows.

Proposition 2: Let . Fix . Assume that there
exists an integer such that

(32)

Then, converges almost surely and in .
Proof: First, one needs to extend, in fact, Lemma 3 of [26]

from CPC to arbitrary IDC. This is done by using the auxiliary
IDC cascade induced by which is ob-
tained by rescaling the underlying measure of the original
IDC by the constant . For a CPC, this amounts to replacing
the positive multipliers by as done in [26]. Second, one
verifies that the assumptions of [26, Theorem 6(ii)] hold by ex-
ploiting the time-invariance of the cones used here.

Corollary 1: Let . A sufficient condition for con-
vergence of in is

(33)
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for some integer (recall that ). In the scale-
invariant case of this becomes

(34)

Such criteria have been obtained in [23] for scale-invariant
IDC, and in [26] for CPC. As will follow from the scaling prop-
erties of , they are quasi-tight for certain IDC (see Corollary 3).

C. Scaling Properties of an IDC Motion

This subsection outlines our main theoretical results which
characterize the scaling properties of non-scale-invariant IDC
motions. Note that currently existing results cover the scale-in-
variant case only [21]–[23]. For the sake of uninterrupted
reading, the proofs have been postponed to Appendix III. Only
some key points are given in this subsection.

Our approach exploits the rescaling property of IDCs, in-
spired by the scale-invariant case for which is equal in
distribution3 to , where and . We
start by making this precise. The recursion (25) between the
translates into a recursion between distribution functions: set

. Simple plug and play yields
the following.

Lemma 5: Let . Then is independent of
and

(35)

(36)

Iterating this idea we set for

(37)

Clearly, is again a cascading motion. Let denote the
control measure associated to . Then, by (37)

where in analogy to (25) we set

As a consequence, with

(38)

Indeed, simple substitution yields

3Notably, this property in distribution is lost in the exact power-law scaling
case of (18) studied in [21], [23] where a different approach is used.

which confirms (38). We may understand as a zoom into
the small scale details of the construction of . Indeed, in the
scale-invariant case , we have , thus,

and

If the integrand in (35) were constant over the interval
we could pull it out of the integral and a scaling law of

moments would immediately follow. A measure for the varia-
tion of the integrand which will prove useful is the following
(see Appendix III):

(39)

Thus, our main result which is established in Appendix III
reads as follows (see also Appendix IV for a direct derivation
for in a specific case).

Theorem 1:
Fix , , and .

(Moment condition) Assume that converges in .
(Variational condition) Assume there exists such that

for all and
all .

(Speed condition) Assume that converges. Then
there exist constants and
such that for any

(40)

We emphasize that such a scaling behavior permits for the
first time to observe controlled departures from the standard
power-law behavior over a continuous range of scales. Playing
with the form of , one may obtain a variety of situations.
This is illustrated in Sections III-E and V. Moreover, the sta-
tionarity of increments has been maintained. Note that such
a non-scale-invariant approach implies some specific technical
difficulties. Clearly, the assumptions simplify drastically in the
scale-invariant case since for all , since does not
depend on , and since (34) holds.

The speed condition could be relaxed to require that the
are bounded; however, this would entail technical subtleties in
the proofs.

The variational condition displays a rather technical aspect
but is actually satisfied for any normal and certain compound
poisson cascades according to the following corollary.

Corollary 2: Assume that is either a normal IDC motion
or a CPC with . Assume that converges. Then,
the variational condition of Theorem 1 holds.

As a consequence, Theorem 1 can be applied to a wide va-
riety of IDCs, including normal cascades as well as CPCs with

.
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The moment condition was dealt with in Proposition 2 and
Corollary 1 (for ). As a particular consequence of the
scaling law, we find that the sufficient condition for convergence
in of Corollary 1 is quasi-tight.

Corollary 3: Let . Assume that (40) holds. A
necessary condition for convergence of in is

(41)

for all integers (recall that ).

In the scale-invariant case of , this neces-
sary condition becomes

(42)

and was observed in [23]. The proof of [23, Lemma 3] general-
izes easily to establish Corollary 3.

D. Discussion of Scaling Laws

We add a few remarks useful to applications (see also [27]
for more details). Let us start by pointing out that in the case
where actually converges, then its limit is necessarily the
fixed point of the transformation which is
nothing but the scale-invariant case. Thus, for such cases, the
cascade will show only some subdominant yet visible correc-
tions to power laws (see examples in Section III-E). Since only
boundedness of the tail of is required, some further flexi-
bility is present.

Scaling of Increments: The fact that has stationary in-
crements and yields the useful scaling laws on the
increments of

(43)

where “ ” is used as a short notation for inequalities like in (40);
in practice, it turns out that both sides of the “ ” are close to
proportional for . Moreover, one expects that

for large . This is in essence a consequence of the
Law of Large Numbers: while for small , the noise is quite
correlated, it decorrelates quickly as .

Now remember that, inspired by previous works [3], [5], we
were a priori searching for non-power-law scaling of the form

as in (2). Rather, through our approach we are
naturally led to a mixture of a power-law and a non-power-law
behavior of the form . This result is in-
herent to the use of an integral to define . On one hand, the

term is related to the underlying IDC noise.
On the other hand, the term is due to the fact that an IDC
motion is obtained by integration of an IDC noise.

Locally Averaged IDC Noise: In many applications,
would be the quantity of interest for modeling: dissipation
in turbulence, packet flows in Internet traffic, numbers of
transactions in finance, etc.Then a classical analysis consists
in studying box averages over varying time lags. Thus, such
an analysis focuses on . In view of (40) obtained in
Theorem 1 or, equivalently, in view of (43), we are led to
consider the following process:

(44)

that can be read either as a locally averaged IDC noise or as nor-
malized increments of the IDC motion. From earlier sections,
one has that scales like

(45)

Thus, infinitely divisible cascades provide us with a versatile
family of models that allow for a variety of scale dependence.
Such behavior is to be compared to (2) which shows that the
process meets the requirement of separation of
the form between variables and . Com-
paring to (12) as well, we emphasize again a fundamental
difference between and . In (12), the dependence is on
while in (45), the dependence is on the scale variable . This
latter case betrays a scaling phenomenon while the former does
not. This difference is sometimes evoked in turbulence [35] by
making the distinction between the bare cascade ( here) and
the dressed cascade ( here).

Back to the original ideas of Mandelbrot [14], when he intro-
duced conservative cascades for the modeling of dissipation in
turbulence, one can read as the dissipation function as mea-
sured at Kolmogorov length ( then corresponds to ), while

stands for the aggregated dissipation in boxes of
scale . The scaling behavior of this latter quantity has been
widely studied in experimental hydrodynamics turbulence (see,
e.g., [40] for a review).

Continuous Multiscaling: A key property of these scaling
behaviors (40) or (43) is that they hold continuously through
the scales, not only for a particular set of discrete scales. Again,
we put the emphasis as well on the fact that the construction of

and enables full control of the way the cascading process
develops along scales and not only of the multifractal behavior
obtained in the limit . As far as applications and real-
world data modeling are concerned, we believe that control of
the entire cascade process is probably more relevant than that of
the asymptotic behavior as only.

Numerical Simulations: In numerical simulations (see Sec-
tion V), one has to deal with rather than with the limiting
process since the limit remains out of reach. However,
for sufficiently small one has

(46)
Equation (46) clearly underlines the different status of time-lag

and resolution : acts as a limiting resolution below which
scaling properties are not controlled while stands for the scale
at which the process is analyzed.

Scale-Invariant Case: Consistently, the power-law behav-
iors of the known scale-invariant case [21]–[23] are recovered
as a corollary of Theorem 1.

Corollary 4: Let be an IDC motion with scale-invariant
control measure (13). Assume that converges in and that

as for some . Then

for (47)
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A further remarkable consequence follows from Kol-
mogorov’s criterion.4

Corollary 5: Let be an IDC motion with scale-invariant
control measure. Then there exists a continuous version of
such that almost all paths have global Hölder regularity for all

for all values of for which (47) holds.

E. Non-Scale-Invariant Examples

Since departures from power laws are one of the major goal
of the present work, we give here two precise examples of non-
scale-invariant measure for which we may verify the
assumption of Theorem 1 and Corollary 2.

Example 6: Let us consider the following slight deviation
from the scale-invariant case:

(48)

Note first that the densities converge to the scale-invariant
density . Second, note that applying (33) leads to the same

-convergence criterium as in the scale-invariant case, as it
should

(49)

Moreover, it is a sufficient condition for -convergence for all
cascades . Despite the close approximation by the scale-in-
variant cascade, this example spots non-power-law progression
of moments since

(50)

Example 7: This example is inspired from consideration in
the analysis of hydrodynamic turbulence [5] where a dependence
in in place of was proposed to take into account
the departures from power-law behaviors observed on empirical
data. This choice results naturally as it provides a family of
functions indexed by only one parameter which tends to the
function as . Moreover, a direct computation of the
behavior of is possible and is reported in Appendix IV.

Modifying the scale-invariant case, we consider the measures
to achieve the proposed scaling. The

case gives rise to a divergence as so that does
not converge to a meaningful process . Indeed, (33) yields
nothing since the left-hand side is infinite.

When , vanishes identically in the limit. This is
related to the fact that is finite. As a consequence,
the limit of poses no problem and its multifractal
behavior (in the limit ) is trivial. Let us add that
converges to zero when which simplifies the assumptions

4Kolmogorov’s criterion (see, for example, [41]) : If fX(t) : t 2 Rg is a
stochastic process with values in a complete separable metric space (S; d), and
if there exists positive constants �, C , � such that for all s; t 2 R we have

d(X ;X ) � Cjs� tj

then there exists a continuous version of X . This version is Hölder continuous
of order � for each � < �=�.

of Theorem 1 and Corollary 2. However, the non-power-law
behavior at scale is controlled by

(51)

and remains interesting in a wide range of scales . This
example is of particular interest and will be extensively used in
Section V devoted to illustrations (see also Appendix IV).

The correction terms to the power law found in these exam-
ples may be subtle, yet they reflect true scaling and cannot be
subsumed by a constant error bound (see Section V). To our
knowledge, these are the first cascades which deviate from pure
power-law scaling.

IV. INFINITELY DIVISIBLE CASCADING RANDOM WALK

By construction, is a nondecreasing process and this can be
seen as a severe limitation for the modeling of real-world data.
As was already proposed in the scale-invariant case [21]–[23],
following an idea which goes back to Mandelbrot [42] and
to the Brownian motion in multifractal time, one can define
a process with stationary increments, continuous scale invari-
ance, prescribed departures from power laws, and prescribed
scaling exponents as well as positive and negative fluctuations:
the infinitely divisible cascading random walk, .

A. Definition

Definition 3: Let be an IDC motion, and the fractional
Brownian motion with Hurst parameter , being indepen-
dent of . The process (see Fig. 3)

(52)

is called an IDC random walk.
For practical use in simulations, we define

(53)

B. Scaling Properties

Using the self-similarity of and the independence be-
tween and , one finds that

(54)

(55)

As an immediate consequence we get the following.

Theorem 2: Under the assumptions of Theorem 1, there exist
constants and such that for any

(56)

Theorem 2 calls for comments related to those concerning
Theorem 1 (Section III-C). In particular, since both and
have stationary increments, so does . As a consequence, for

, increments of obey5

(57)

For , it reduces to .
Thus, IDC random walks are processes with stationary in-

crements that display non-power-law multiscaling prescribed

5Again, “�” is used as a short notation for inequalities like in (40) and (56).
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a priori over a continuous range of scales as well as positive
and negative fluctuations, see Fig. 3.

In the scale-invariant case for which results were already ob-
tained in [21]–[23], (56) consistently reduces to

(58)

C. The Case of the Brownian Motion

This subsection focuses on the simplest case, namely,
Brownian motion with , and introduces a process
meant to mimic . The process is defined by the limiting
stochastic integral

(59)

where

(60)

whenever it exists, with the corresponding IDC
Gaussian noise; and are independent. In contrast,
with obtained from a deterministic integral, the process

appears as a stochastic integral of . The process
is indeed a random walk. In the scale-invariant case, it

corresponds to the MRW introduced in [19].
Clearly, and do not have equal paths. Con-

sider all paths for which takes a constant value over a
small interval, say over ; note that this happens with pos-
itive probability in our framework. Setting for
short, we find for that while

. While these parts of the paths are obviously
different, they are in fact still equal in finite-dimensional distri-
butions (conditioned on the constant ).6

We establish the following proposition in Appendix V.

Proposition 3: For any , processes
and are identical in the sense of finite-dimen-

sional distribution. Furthermore

Note that a definition of a process generalizing (60) to
the case brings up the problem of a relevant defini-
tion of the stochastic integration with respect to the fractional
Brownian motion which, to our knowledge, has not yet been
properly solved in the general case.

V. ILLUSTRATION

This section presents results obtained from numerical simula-
tions of infinitely divisible cascading processes, respectively, in
the exact scale-invariant case and in a non-scale-invariant case.
We know from Theorems 1 and 2 that the exact scale-invariant

6Since Ito integrals are defined via L approximation of the integrand by
step functions, this argument bears validity beyond our piecewise-constant cas-
cades Q.

case yields power-law behaviors of the moments of the incre-
ments of and while departures from power laws
are expected in the non-scale-invariant case. This is illustrated
below for CPCs as well as for log-normal cascades. Algorithms
used to produce the samples shown here are described in detail
in Section VI.

A. Parameters of Numerical Simulations

The following two sets of infinitely divisible cascading pro-
cesses possess the same general characteristics apart from their
control measure : in the scale-in-
variant case, ; with in the
non-scale-invariant case, (Example 2 of Section III-E).
These choices7 lead, respectively, to and

for . Only scales
are influenced by . Note that the scale-invariant situation
is recovered from the non-scale-invariant one by taking the limit

.
Infinitely divisible cascading processes presented below are

CPCs (see (4) and Section II-D). Distribution of is
a log-normal distribution with moment generating function

so that

(61)

where . The Hurst exponent of the
fractional Brownian motion used to build has been set to

.
Many realizations are necessary to ensure statistical con-

vergence of the (rudimentary) analysis procedure carried out
here: we used about 1000 realizations of points corre-
sponding to a total amount of about points. In both
cases, a (resp., ) term always dominates the behav-
iors of , see (40) (resp., , see (56)). As a
consequence, the performed analysis focuses on the scaling
behaviors of , respectively,

.

Remark: Fig. 4 shows the results obtained for CPCs. Fig. 5
shows similar results for log-normal cascades with
and the same choice for as above.

B. Scale-Invariant Cascade

The well-known scale-invariant case serves as a reference to
emphasize what is obtained in the non-scale-invariant case. As
expected, the moments of the increments of and
obey power laws in a large range of scales . Indeed,
Fig. 4(a) shows that behaves like

Exponents (resp., ) estimated by linear regressions
in log-log diagrams are consistent with expected theoret-
ical values, see Fig. 6 (left). Similarly, Fig. 4(b) shows that

behaves like . Estimated exponents are
consistent with expected theoretical values, see Fig. 6 (right).

7The constant c has been set to c = 3 in the scale-invariant case and c = 20

in the non-scale-invariant case in order to respect the L -convergence criterion
of Proposition 1.
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Fig. 4. CPCs: Scale-invariant cascades show power laws. (a) log [(� A=�) ] compared to c'(2) log � + Cte. (b) log [(� V=� ) ] compared to
c'(2H) log � + Cte. Non-scale-invariant cascade deviates from power laws. (c) log [(� A=�) ] compared to �'(2)m(C ) + Cte. (d) log [(� V=� ) ]
compared to �'(2H)m(C ) + Cte.

Fig. 5. Log-normal cascades. (a) ln [(� A=�) ] compared to c'(2) ln �+Cte. (b) ln [(� V=� ) ] compared to c'(2H) ln �+Cte. The non-scale-invariant
log-normal cascade deviates from power laws. (c) ln [(� A=�) ] compared to �'(2)m(C ). (d) ln [(� V=� ) ] compared to �'(2H)m(C ).
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Fig. 6. CPCs. (Left)'(q) estimated from linear regressions in log-log diagrams of [(� A=�) ] versusm(C ). (Right)'(qH) estimated from linear regressions
in diagrams of [(� V=� ) ] versus m(C ).

Fig. 7. (Left) Scale-invariant case obeys a very linear behavior that denotes an exact power-law scaling. (Right) Non-scale-invariant case slightly but significantly
deviates from a power-law behavior: it is even directly visible in a log [(� A=�) ] versus log � diagram. log [(� A=�) ] versus log � does not exhibit a linear
behavior even though it looks close to a linear behavior (compare (left) & (right)).

C. Non-Scale-Invariant Cascade

We now concentrate on the choice

for . Therefore, departures from power-law behav-
iors corresponding to the term in (40) are
expected. Fig. 4(c) and (d) shows that such departures are ob-
served on both and . Compare to Fig. 4(a) and (b)
corresponding to the scale-invariant case. It is remarkable that
these departures are accurately controlled for by the pre-
cise form of . These numerical observations
are perfectly consistent with the results of Theorems 1 and 2
(see also a direct derivation of the scaling behavior for
in Appendix IV). Again, exponents (resp., ) can
be estimated from linear regressions in versus

(resp., versus ) diagrams: see
Fig. 6.

In this precise case, departures from power-law behaviors are
even directly (slightly) visible without correcting the term in

. For instance, Fig. 7 shows that is close
to but does not exactly fit a linear function of for .
Note that the importance of this departure from a power-law be-
havior depends on the precise order of the considered moment

. Indeed, this effect is proportional to in a
log-log diagram. For instance, when , no departure will
ever be observed since by definition.

At this point, let us emphasize that, to our knowledge, this
is the first example of a multiplicative cascade displaying con-
trolled non-power-law behaviors up to a large range of scales
(four decades on Fig. 4).

VI. ALGORITHMS FOR PRACTICAL SYNTHESIS

This section is devoted to the key points entering the practical
algorithms aiming at the simulation of the IDC noise, motion,
and random walk. The corresponding MATLAB routines have
been developed and used to produce the illustrations of Sec-
tion V. They are freely available and documented upon request
from the authors. Despite theoretical similarities, there are im-
portant practical differences between the specific case of CPCs
and the general case of IDCs.8 They are presented separately in
Sections VI-A and -B for the synthesis of the IDC noise and
IDC motion. Then Section VI-C explains how to obtain an IDC
random walk from an IDC motion .

Though the defined process are continuous-time processes,
algorithms output samples with a uniform sampling rate

. Let , with denote the interval over which
processes are to be produced. With our definitions, the scaling
properties are prescribed in the range of scales .
Using the sampling period as a time reference, the characteristic
scales of the constructions are , , and .

8Recall that not all infinitely divisible distributions are compound Poisson
distributions.
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Fig. 8. (Left) CPCs are built on a Poisson point process f(t ; r )g and random i.i.d. multipliers W . (Right) IDCs necessitate an adapted discretization of the
time–scale plane: schema of the different triangular ( , ), and lozenge ( ) subsets that contribute to Q (t ). This schematic vision is translated in the form of
the matrix 	(t ).

A. Simulation of CPCs

As explained in Section II-D, CPCs are built from two in-
gredients: a planar Poisson point process with density

in and i.i.d. random multipliers with
distributed by . The planar point process provides us with
a natural sampling of the time–scale plane (see Fig. 8 (left)),
which makes things simple. Let the trapezoid

The synthesis algorithm consists of the following steps for
given resolution and duration .

1) Determine the number of points (and multipliers) that
will be used to compute in the interval : it is
a Poisson random variable with parameter .

2) Select random points located in the trapezoid
, according to density .9

3) Select i.i.d. random multipliers such that
are distributed by .

4) For each time position ,
set

5) The approximate version of an IDC motion is
obtained as the discrete time integral of

(62)

A key feature of this algorithm is that it is easy to implement and
has a low computational cost. Little modification is necessary
to get a causal version, in the spirit of the recursive algorithm
proposed for non-CPC infinitely divisible cascades below.

B. Simulation of Infinitely Divisible Cascades

Let us now turn to the simulation of (noncompound Poisson)
infinitely divisible cascades such as, e.g., the normal cascade.
The construction is no longer based on a discrete random point

9The nonuniform distribution rg(r) of the r is achieved by a change of vari-
able from a uniformly distributed random variable.

process but rather on a continuous and independently scattered
random measure on the time–scale plane : no natural
sampling appears. A relevant sampling of the must there-
fore be chosen, immediately rising the issues of computational
cost and available memory. To tackle this problem, a causal re-
cursive algorithm is proposed in order to simulate for each

.
Fig. 8 (right) gives an intuitive picture of our algorithm. With

little restriction, the sampling period is chosen as the inverse
of an integer while the resolution is chosen as

, with . Therefore, a natural discretiza-
tion of the plane appears as a combination of downwards
triangles (with random measure denoted by ), lozenges
(with measure denoted by ), and upwards triangles (with
measure denoted by )—see Fig. 8 (right). At each time , the
terms that contribute to can be gathered in the following
triangular matrix :

. . .
...

(63)
where and ;
denotes a zero square matrix of size . is a
square matrix. We denote by its diagonal and its
last column

For the given infinitely divisible distribution (with moment
generating function ) and control measure

, the simulation consists of the following steps.

1) Compute and as well as the various
depending on the position of the lozenge;

2) Simulate the , random variables distributed
according to (with moment generating function

, see Appendix I); do the same with
and distributed by and

, respectively.
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3) Initialize , and set

4) Recursively obtain from through the fol-
lowing procedure:

a) eliminate diagonal ,
b) translate all coefficients of one column to the

left,
c) simulate a new last column , and insert it

to form ,
d) then get using

5) Repeat until (that is as long as needed, with no
limitation on the value of ).

6) IDC motion is obtained by simple integration (as in
(62))

(64)

The matrix plays the role of a “memory” of the process.
In a way, it propagates the correlation structure of process .
This method of simulation results in a causal construction. The
adaptation of this algorithm to CPCs is left to the reader.

C. Simulation of an IDC Random Walk

Once an IDC motion has been simulated, one obtains
in two steps.

1) Simulate a fractional Brownian motion with Hurst pa-
rameter thanks to the fast circulating matrix method
[43], [44]. This fractional Brownian motion is oversam-
pled by a factor compared to , i.e., it is synthetized
on a grid with a sampling rate (for in-
stance, ).

2) Set where is such that

The processes , , and shown in previous sections
have been produced with the algorithms described here.

VII. CONCLUSION AND PERSPECTIVES

In the present work, we proposed the definitions of contin-
uous-time processes that exhibit controlled continuous multi-
scaling behavior. Mostly, scaling laws are continuous through
the scales and possible departures from a pure power-law
behavior are taken into account. To our knowledge and de-
spite some limitations, IDC processes are the first continuous
multiplicative cascades displaying controlled non-power-law
scaling behaviors. Moreover, algorithms for practical syn-
thesis are given. MATLAB functions as well as a companion

paper [27] that puts the emphasis on more applied aspects are
available from our web pages (see www.isima.fr/~chainais;
http://perso.ens-lyon.fr/patrice.abry).

The theoretical study of the scaling properties of these
processes brought better understanding and new intuitions
about the subtle interplay between cascading mechanisms and
scaling phenomena. Aiming at a better localized control in the
time–scale plane, we are currently elaborating a variation on
this construction of the form

(65)

where is some bounded support function. Note that Def-
inition 1 is recovered for the choice . Potential
improvements of such a generalized formulation are under
study.

In practice, IDC processes could relevantly and efficiently
replace the usual binomial cascades which remain the most
commonly used tools in applications. We put the emphasis on
the fact that the ability to account for departures from exact
power laws is a major practical improvement for the modeling
of real empirical data.

The use of such processes to calibrate analysis and estimation
tools should be of major benefit. We are currently investigating
the performances of the most commonly used analysis tools
thanks to those reference processes [45]. We are also designing
new estimators for non-power-law scaling.

Applications to hydrodynamic turbulence and to computer
network traffic are under development.

APPENDIX I
INFINITELY DIVISIBLE DISTRIBUTIONS

Let us recall some basics on infinitely divisible probability
distributions or laws. We denote the set of strictly positive inte-
gers by .

Definition: A distribution is called infinitely divisible if
for all there exists a distribution such that equals
the -fold convolution of with itself, denoted as .

In other words, the distribution of a random variable is in-
finitely divisible if and only if for all the variable can
be written in law as the sum of i.i.d. variables

Clearly, the distribution of is from the above definition.
Again in different words, a distribution with characteristic
function is infinitely divisible if and only if for all

is again a characteristic function. Moreover, one has
the following.

Theorem (see Feller [32, p. 432]): Every characteristic func-
tion of an infinitely divisible law is necessarily of the
form . If is the characteristic function of an in-
finitely divisible distribution , then for all , is the
characteristic function of an infinitely divisible distribution .
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Note that the same theorem can be written for the moment
generating function for values of
such that it exists.

APPENDIX II
INDEPENDENTLY SCATTERED RANDOM MEASURES

To introduce random measures on the upper half plane
the following notion is useful.

Definition: An independently scattered (Borel) random mea-
sure on is a measure-valued process defined on the Borel
sets of such that for all disjoint sets and

• and are independent random variables,
• .

The additivity property makes it natural to construct such
random measures in an infinitely divisible framework. Lever-
aging Feller’s theorem from the previous section and following
Rajput and Rosinski [46] and Samorodnitsky and Taqqu [34]
one defines the following.

Definition: Let be an infinitely divisible distribution with
moment generating function . Let be a posi-
tive deterministic measure on . Then, a measure with the
two properties listed below is called random measure with con-
trol measure and generator

• is an independently scattered Borel measure on ;
• for any Borel set of the random variable

distributed as , i.e.,

(66)

If the choice of the infinitely divisible law is obvious from
the context, we may call simply infinitely divisible measure
with control measure . Prominent examples are given in the
text, such as normal or compound Poisson distributions for in-
stance (see Section II-D).

APPENDIX III
REMAINING PROOFS OF SECTION III-C

Lemma 6: Let . Then is independent
of , thus also of and

(67)

Proof: Simply plug the recursion (25) into the definition
(37) of .

Lemma 7: Fix . Let and . Then

(68)

The error term is bounded as

Proof: We will be using the fact10 (see [47]) that for any
positive measure and any positive

(69)

Applying Lemma 6, then (69) with to the measure
induced by , and finally using (12) and (35), we

may write the following:

(70)

Using and the definition of the
claim follows.

Proof of Theorem 1

In order to establish Theorem 1, we would like to iterate the
recursion (68) times keeping fixed. Thus, we will apply
the recursion successively with to the cascades in-
troduced in (37), for . According to Lemma 7 we
find (provided )

(71)

Here, we used mutual independence of the (25) to collect
the moments.

Let us first consider the case . Fixing , letting ,
and using -convergence yields

(72)

10Indeed, since x(s)d�(s) � sup (x(s)�(I)) we have
( x(s)d�(s)) � sup (x(s) �(I) ). Now subtract C from both
sides. Similarly, C � ( x(s)d�(s)) � C � inf (x(s) �(I) ) =
sup(C � x(s) �(I) ).
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Here, the error terms are obtained by taking limits in (68).
Listing them in reverse order for convenience, they read as

(73)

Note that for fixed , each term converges as
. Indeed, the finite-dimensional distributions of depend

only and continuously on [23]; but
converges by assumption. In particular, if converges to
the trivial zero measure, then and converge in
distribution to the constant .

In addition, Lemma 7 . Since
the sum converges absolutely, the product [5]

will converge by bounded conver-
gence to a finite, nonzero limit which can be consumed in the
constants.

Similarly, the terms converge and can be con-
sumed in the constants.

Finally, the bounds have to be extended for all . Since
is a nondecreasing process, it is an easy exercise to show

that a correction factor for the constant bound large enough is
. However, similarly as before

converges in , this factor is bounded.

Proof of Corollary 2

We establish Corollary 2 via three lemmas. The first result
is general and simplifies by separating independent from

dependent parts of and . To this
end we introduce the following parallelepiped as subsets of the
time–scale strip (see Fig. 9 for ):

(74)

Lemma 8: For

(75)

Proof: First, we cancel the normalization terms of
which appear in : see (76) at the bottom of the page.

Fig. 9. Definition of L, B, and R.

Next, checking the constraints on the variable in (74) one
verifies quickly the following decomposition of a cone
into disjoint sets which is valid for and for
(see Fig. 9 for ):

(77)

As a particular case, we have .
Thus,

(78)

Here, we used that the term is statistically indepen-
dent of the other terms in the enumerator. We note that

(79)

Finally, since with disjoint union
whenever , we find (75).

It remains to bound the second term in (75) which we achieve
in the special cases of CPC and log-normal cascades. Now the
idea is to show that with very small and thus small, the
control measures and are very small,
thus, the corresponding random variables are small with high
probability and thus and are both close
to . Thus, their quotient is close to one and the contribution to
the last term in (75) is small with large probability.

Compound Poisson Cascades. As a matter of fact, that quo-
tient is exactly equal to with large probability in the CPC case
which is the main ingredient to the next result. The log-normal
case is somewhat more intricate.

(76)
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Lemma 9: Fix and . Let . If the
weights of a CPC have finite th moments, then there exist
finite constants (see (75) and (85)) such that

(80)

Assume in addition that

is bounded. Then for some constant .
Proof: Since with high proba-

bility, the following crude bound will suffice to bound the error
term. To this end, denote by the number of Poisson points
falling in some set and define

(81)

By standard computation ( is in essence a CPC but with new
weights, compare Example 4) we find, using that

(82)

which is finite since has a finite th moment. Consider the
set

(83)

Since contains all Poisson points which may possibly appear
in the supremum in (75) (see also (78)) and since

, we find immediately using , (84)
at the bottom of the page; in particular, . To ad-
vance to a more accurate estimate, let us note that the supremum
in (84) actually vanishes whenever no Poisson points fall in ,
i.e., whenever . But the probability of this happening
is . Since

(85)

Since

(86)

the claims follow with lemma 8.

Normal Cascades. Finally, Theorem 1 applies to any normal
cascade as we show now. This will complete the proof of
Corollary 2.

Lemma 10: Fix . Let . For any log-normal
IDC there exist finite constants such that

(87)

Assume in addition that (38) are bounded for all
, then remains bounded as .

Proof: Let us recall that , i.e.,
is .

Step 1: Consider the following processes:

(88)

Both are Gaussian processes with independent stationary
increments of zero mean; thus, they form Brownian motions
which are unique up to a multiplicative scalar which can be
set through the variance at time . In particular, they are
thus statistically self-similar, i.e., and are equal in
the sense of finite-dimensional distributions. Note in addition
that and are independent since is
randomly scattered.

Set and similarly. Consid-
ering continuous versions of the motion only we are lead to

(89)

with equality in the sense of finite-dimensional distributions.
From Leadbetter [48, Lemma 12.2.1, p. 219] we borrow the
following fact: Since and are normal processes with

for all , and
we have

(90)
where is a real constant which does not depend on any statistics
of and where

(91)

The same bound (90) with the same holds for since
.

Step 2: For simplicity of notation, we assume here ;
more generally, every has to be replaced by . Setting

or

or (92)

(84)
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(93)

we have, since

(94)

To estimate and it useful to observe that for all we
have , and thus

for all
if .

Indeed, for we have since
. The constant could be slightly improved.

First, to estimate we define the events

and

or

Conditioned on the following bound holds for all :

Taking the supremum over and using self-similarity (89) and
(90), together with the independence of and for
we find that is bounded from above by the quantity

(95)

Elementary estimates using show that is not
only finite (note that is trivially finite) but as with
a prefactor that can be made arbitrarily close to . As a
matter of fact, is for any .

Second, using that for any
positive random variable and (89) we find

Here, denotes normalized Brownian motion with
; is a known constant number.

Step 3: In summary: using and
Lemma 8, there are constants and independent of any
parameters such that

(96)

The only dependence on parameters enters through
and through . Notably

APPENDIX IV
EXAMPLE OF A DIRECT COMPUTATION IN A

NON-SCALE-INVARIANT CASE

We give below a direct derivation of the scaling of for
Example 7 of Section III-E, the special non-scale-invariant case
when for . A convergence
criterion is given as well.

Using definition (27) of , we have

(97)

As a first step toward the autocorrelation , we
note that for and such that

(98)
is simply zero for . This yields

whenever : see (99) at the bottom of the page. As a
consequence, we get (100), at the bottom of the following page.
Then, in (97) decomposes in the sum of two integrals
on disjoint domains and

(101)

(102)

First, using the changes of variables

for (a)

for . (b)
(99)
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the integral over yields

(103)

which vanishes as tends to zero whenever and diverges
to infinity as tends to zero whenever . Thus, the limit

makes sense for only.
Second, the integral over yields

(104)

For , we can use the following approximation:

(105)

where can be bounded by for some constant . Thus,

(106)

where . For

(107)

where for some constant . Only the first term will
remain in the limit . Let and
and11

(108)

11It is of interest to note that g(t) can be easily obtained by numerical inte-
gration from the second derivative of t g(t) given by

d

dt
[t g(t)] = 2 exp �

�

1 + �
t :

To show that the scaling described by (40) of The-
orem 1 is valid for is now equivalent to show that

for . This is done by studying the
sum

(109)

where

(110)

The study of for shows that for any there
exists some such that , so that

. Then using usual criteria of convergence for
partial sums of alternate series for , one shows that

(111)

Note that remains small in general since it is less
than for . This result can be made even
more precise for a chosen example. For instance, when

, and as in Example 7 of Sections III-E
and -V, one obtains that for any

(112)

so that

(113)

Moreover, the approximation (105) is true for
that is, for . Thus, we can consider with well-controlled
accuracy that (see Fig. 10). Thus, we can consider
with well-controlled accuracy that . Finally, using
(97), (103), (107), and (111) for

(114)

for . This exactly corresponds to the scaling
behavior described in (40) of Theorem 1. Thus, we have ob-
tained by direct computation the non-scale-invariant behavior
observed on in Example 7 of Section III-E.

APPENDIX V
PROOF OF PROPOSITION 3

Let us consider and .
Conditioning on knowing , note that ,

where denotes the natural filtration, is a zero-mean

for

for
(100)
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Fig. 10. f(t) compared to g(t) for the choice � = �0:4, c = 1, '(2) =
�0:2. This figure may be compared to Fig. 4 (c).

Gaussian process. Using with
we find

(115)

Together with we get

Let us now turn to by considering . The inte-
grand of the Ito integral in (60) being now deterministic this is
a zero-mean Gaussian process. For simplicity, assume for
the moment. We use a well-known rule of the Ito integral

(116)

In the second step we used that the integrals over disjoint inter-
vals are independent and zero mean. From this we obtain

(117)

that coincides with (115).
Conditioned on knowing , both processes

and are Gaussian with identical autocorrelation
. They are, thus, identical in the sense

of finite-dimensional distribution, and so must be the uncondi-
tional processes and . Furthermore,

.

In the standard Brownian case, , we point out that
the increments and
are (second-order) uncorrelated whenever ; this
follows easily by conditioning on using the independence of
the increments of the ordinary Brownian motion . However,
they are not independent and inherit higher order correlations
from . Mandelbrot calls this the “blind spot of spectral
analysis” (see also [1]).
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