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Real-Time Estimation of the Parameters of
Long-Range Dependence
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Abstract—An on-line version of the Abry-Veitch wavelet-based
estimator of the Hurst parameter is presented. It has very low
memory and computational requirements and scales naturally to
arbitrarily high data rates, enabling its use in real-time applica-
tions such as admission control, and avoiding the need to store
huge data sets for off-line analysis. The performance of the esti-
mator as a function of the length of data processed is demonstrated
using simulated data. An implementation for 10-Mb/s Ethernet
based on standard hardware supporting sampling rates of 1 data
point per millisecond is described, and results of its operation
presented, as is an implementation for 155-Mb/s asynchronous
transfer mode networks. Finally we illustrate the power of on-line
measurements by collecting measurements over a period of five
months, and using them to look for diurnal trends in scaling
properties of the data.

Index Terms—Estimation, fractal, Hurst parameter, long-range
dependence, on-line, real-time, self-similar, traffic modeling,
wavelets.

I. INTRODUCTION

REAL-TIME traffic measurement is necessary to support
network management tasks such as call admission

control, rate adaptation, and network monitoring. As such
activities must take place on the small time scales implied by
the high bandwidth of modern telecommunications systems,
the extent of such measurements and the complexity of the
algorithms which use them are limited by hard processing
constraints, a situation which is unlikely to change. Even in the
less demanding case of off-line processing, the ever increasing
volume of data that can be collected over a given time interval
poses huge storage and processing problems. Such limitations
are particularly serious if parameters crucial to meaningful
traffic characterization have high computational complexity,
say of where is the length of the data.

In the last few years the discovery of theself-similarnature
of many kinds of packet traffic [1], [2] has inspired a small rev-
olution in the way that high-speed traffic is viewed. Although
no single model is accepted as definitive, theHurst parameter

, which describes the degree of self-similarity, holds a cen-
tral place in the description of such traffic. Its accurate mea-
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surement is therefore of considerable importance for the provi-
sion of quality of service as well as for the dimensioning of net-
works. Unfortunately, methods for the estimation of this param-
eter from data have suffered from poor statistical performance
and/or high computational complexity inappropriate for large
data sets or real-time use.

Recent work based on wavelets, however, has provided
a semi-parametric estimator for which gives unbiased
estimates together with significant computational advantages,
notably a run time complexity of only . Details of this
estimator are summarized in Section II, and can be found
in [3], [4] (see also [5]–[7]). In [8] it was shown how these
computational advantages can be exploited to allowto be
estimated in real-time simply, inexpensively, and with very
low memory requirements. Section III describes the real-time
implementation of the estimator, which is the subject of an
Australian provisional patent (application number PP1692).

The aim of the present paper is to extend [8] to give a more
complete account of the capabilities of the on-line estimator, by
validating the claims made in [8] regarding its practicality and
utility. In [8] the method was illustrated on a 10-Mb/s Ethernet
(see Section V), and it was explained how the method scales
to arbitrary size with respect to both memory and processing
requirements, so that it will remain applicable as data rates in-
crease. This claim is supported by the successful application to
asynchronous transfer mode (ATM) traffic at 155 Mb/s (see [9]).

Another advantage highlighted in [10] is that a real-time esti-
mator is not only useful in traditional real-time settings but also,
by performing estimation at the point of measurement, radically
reduces the volume of data that needs to be stored for off-line
analysis. We illustrated some of the potential of this idea in Sec-
tion VI by examining more than five months of Ethernet data
to address the issue of diurnal or daily variation in. New
links between the variations in load and are presented here
for the first time. Finally, it is shown how not only the Hurst
parameter but much more generally the variations in scaling be-
havior as observed in theLogscale Diagramcan be studied in
the real-time framework, and important time-varying features
extracted. This paper therefore constitutes a synthesis of [8], [9],
and [10], together with more detailed descriptions of the use of
the method and the structure of Ethernet traffic.

II. A BRY-VEITCH (AV) ESTIMATOR

In any data measurement situation a basic theoretical frame-
work is required through which to view the data, to select im-
portant parameters which describe it, and to propose and eval-
uate estimators of them. In our case the time-varyingrate
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of incoming traffic is the data of interest, and we model it as a
stationary stochastic process. Basic features of this process are
its mean , variance , and correla-
tion function . In this
context the self-similar properties of traffic manifest themselves
in a particular form of , namely a decrease with lagso
slow that the sum of all correlations downstream from any given
time instant is always appreciable, even if individually the corre-
lations are small. The past therefore exerts a long-term influence
on the future, exaggerating the impact of traffic variability and
rendering statistical estimation problematic. This phenomenon
is known aslong range dependence(LRD), and is commonly
defined by , or equivalently as
the power-law divergence at the origin of its power spectrum:

.
The Hurst parameter describes the (in practice asymptotic)

self-similarity of the cumulative traffic process while
describes the LRD rate process . It is nonetheless common

practice to speak of in relation to LRD via the relation
, and we follow this convention here.

In [4], [11] a semi-parametric joint estimator of is de-
scribed based on thediscrete wavelet transform(DWT). Wavelet
transforms in general can be understood as a more flexible form
of a Fourier transform, where is transformed, not into a fre-
quency domain, but into a time-scale wavelet domain. The sinu-
soidal functions of Fourier theory are replaced by wavelet basis
functions gen-
erated by simple translations and dilations of themother wavelet

, a band pass function with limited spread in both time and fre-
quency.Thewavelet transformcan thusbe thoughtofasamethod
of simultaneously observing a time series at a full range of dif-
ferent scales, whilst retaining the time dimension of the original
data.

Multiresolution analysis theory shows that no information is
lost if we sample the continuous wavelet coefficients at a sparse
set of points in the time-scale plane known as thedyadic grid,
defined by , leading to the DWT
with discrete coefficients known asdetails. Intuitively,
the dyadic grid samples the wavelet domain at a resolution appro-
priate to the scale. Henceforth we will deal exclusively with the
details of the DWT. Theoctave is simply the base 2 logarithm of
scale , and plays the role of time (although a time whose
rate varies with ). For finite data of length will vary from

, the finest scale in the data, up to some .
The number of coefficients available at octaveis denoted by ,
and approximately halves with each increase of.

The estimator has excellent computational properties due to
the fast “pyramidal” filter bank algorithm [12] for calculation of
the discrete wavelet transform, which has a complexity of only

. The number of wavelet coefficients thus gener-
ated is also of order , and subsequent computations required
to form the estimate of from them have only this complexity.
The overall complexity therefore remains , which clearly
scales satisfactorily.

The main feature of the wavelet approach which makes it so
effective for the statistical analysis of scaling phenomena such
as LRD is the fact that the wavelet basis functions themselves
possess a scaling property, and therefore constitute an optimal

“coordinate system” from which to view such phenomena. The
main practical outcome is that the LRD in the time domain
representation is reduced to residualshort range correlation in
the wavelet coefficient plane , thus removing entirely the
special estimation difficulties. Thus for each fixed, the se-
ries can be regarded as a stationary process with weak
short-range dependence, and these series can be regarded as in-
dependent of each other.

We can now outline the estimator as consisting of the fol-
lowing four stages:

1) Wavelet decomposition:A discrete wavelet transform of
the data is performed, generating the details over
the dyadic grid.

2) Detail variance estimation: At each fixed octave the
details are squared and averaged across “time”to pro-
duce , an excellent estimate of the variance of the de-
tails1 . For LRD processes the follow a power-law in
with exponent .

3) Analysis using the Logscale Diagram:From the plot of
against , the Logscale Diagram,2 the

scaling range where scaling occurs (i.e., where
the fall on a straight line) is determined.3

4) LRD parameters estimation: The LRD parameters
and 4 are extracted by performing a weighted linear
regression5 over the scaling region.6

Matlab source code for the AV estimate is available at
http://www.emulab.ee.mu.oz.au/~darryl.

An example of the regression fit using a simulated data set is
given in Fig. 1. The 95% confidence intervals for each, shown
as vertical lines at each octave, are seen to increase with. A
plot such as this of against , complete with confidence in-
tervals about the , has been termed theLogscale Diagram[4],
[7], and constitutes an effective starting point for the analysis
of scaling phenomenon. The estimator, being semi-parametric,
requires an analysis phase prior to estimation to determine the
scaling range where alignment is observed in the Logscale Dia-
gram (see [7] for further details on the reading of Logscale Di-
agrams).

III. ON-LINE ESTIMATOR

The AV estimator summarized above is gaining acceptance
as the method of choice for measuring LRD in traffic [14]–[16],
and wavelets are even being used to measure multifractal prop-
erties of traffic [17], [18]. Until now however, the AV estimator

1Since the expectations of the details are all identically zero� [13], [12], the
average of the squares of the details at a givenj is an estimate of the variance
at thatj.

2In forming the Logscale Diagram small corrective termsg(n ) are in fact
subtracted fromlog (� ) to computey to account for the fact thatE[log](�) 6=
log(E[�]).

3If the data is truly LRD then the upper cutoff scalej should always be the
largest possible given the length of the data, ie.j � log (n), however scaling
in a finite range is also observed in data [7].

4H is related to the slope of the plot, andc to a power of the intercept.
5The weights are functions of the known variances of they and donot de-

pend on the data.
6Confidence intervals forH are derived from the standard variance formulae

for weighted linear regression with mutually independenty , and so again are
not functions of the data.
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Fig. 1. Stages 3 and 4: estimation from the Logscale Diagram. An example of
they againstj Logscale Diagram and regression line for a LRD process with
strong SRD. The vertical bars at each octave give 95% confidence intervals for
they . The series is simulatedfARIMA(0; d; 2) with d = 0:25 (� = 0:50)
and	 = [�2;�1] implying c = 6:38. Selecting(j ; j ) = (4; 10) allows
an accurate estimation despite the strong SRD:�̂ = 0:53 � 0:07; ĉ = 6:0
with 95% confidence interval4:5 < ĉ < 7:8.

has been used as a batch estimator, that is, where a data set is
collected and analyzed off-line. It is ideally suited to on-line
use however, making it usable within network elements such as
switches as well as network monitoring systems. By on-line es-
timation we mean a data processing method whereby new frag-
ments of data are processed as they arrive. In what follows we
concentrate on the estimation of, although the second LRD
parameter and indeed the entire Logscale Diagram (as illus-
trated in Section VI), is also provided by the method.

On-line estimation has two main requirements:

1) that an algorithm be devised such that newly acquired data
elements can be processed individually and merged with
existing processed data, rather than requiring complete
re-computation;

2) that the algorithm be efficient enough to implement the
above at the rate that new data arrives.

The first requirement is critical for on-line estimation,
whereas the second is an issue of the necessary computing
power versus its cost. Because of the steadily increasing
bandwidth of networks however, the method must be scalable,
so the second requirement is in fact principally an issue of the
time and memory complexity of the algorithm.

The AV algorithm can be adapted to satisfy both require-
ments. The first stage of the estimator, the wavelet decompo-
sition, is implemented in an on-line fashion using a pyramidal
filter bank as shown in Fig. 2. Indeed, such filter banks were de-
vised with on-line applications in mind. The second stage can
be performed on-line as follows. Let the current stored sum
of squares at octave calculated from the first values be

. Assume that the arrival of the new data
point results in a new coefficient at octave
from the filter bank. The sum is then updated as follows:

Fig. 2. Filter bank. At each level in the recursive structure, the bandpass (BP)
outputd (j; �) and the low pass (LP) outputa(j; �) occur at half the rate of the
input a (j � 1; �).

When the variance estimate at octaveis required for the third
stage it can be calculated as .

The final two stages of the estimation algorithm need not
be adapted to on-line versions, as there is no need to compute
the Logscale Diagram or every time a new data point is ac-
quired. They may be recalculated only as needed, typically at
“human” time-scales several orders of magnitude larger than the
data collection rate. In any case the complexity of the final two
stages is only , with memory requirements of only

also, and therefore they pose no computational dif-
ficulties. The great advantage of keeping stage 3 separate from
stage 4 is that, at no extra computational cost, the nature of the
data as a function of scale can be freely examined over all the
scales available up to the current time, rather than simply as-
suming that the data is LRD and estimating blindly. The need
to choose the scaling range by examining the Logscale Diagram
can be automated when required to obviate the need for manual
intervention in real-time applications. This could be done either
by fixing values of based on prior “off-line” studies, or
by implementing heuristics which identify the scaling range au-
tomatically.

Some explanation is required to explain why the first stage of
the on-line estimator is scalable. The on-line filter bank, illus-
trated in Fig. 2, consists of a number of filters of fixed size
connected in series (typically the size of these filters is small, say

). Because the output rate of each filter is only half of its
input rate, data of length is effectively summarized and held
in the filter banks in the form of “half-processed”
values. These numbers are the only ones which must be stored in
memory, not the full set of historical input data . Regarding
the run-time complexity, on average each new data point
results in operations, a number independent of. The
maximum possible number of operations resulting from a single
new data point scales as , however this does not
occur very frequently, and if problems of processor load arise
the filter bank can be naturally implemented in digital signal
processing (DSP) hardware.

Regarding the scalability of the second stage, the number
of operations is , and the memory requirements are only

as only the sums of squares are kept, andnot
the full set of detail coefficients. The third and fourth stages are
based on simple processing of the, and so they scale satisfac-
torily with respect to both computation and memory.

Section V shows how a quite modest computer is capable
of performing the AV estimation algorithm, on-line and in
real-time on 10-Mb/s Ethernet data sampled every millisecond.

The obvious advantage of computing estimates on-line is that
results are immediately available, rather than after a lengthy
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cycle of collection and analysis. As mentioned earlier, this is
essential for real-time network management purposes, but also
offers important advantages for traffic collection and analysis
in general. For example, apart from reducing the analysis delay,
this approach allows the decision as to whether enough data has
been collected to be made as it arrives. It is also advantageous
to be able to detect unusual events as they occur, enabling im-
mediate modifications to the collection/analysis effort.

The other central advantage of on-line estimation is the re-
duction in memory requirements, both in terms of the algorithm
itself and of the storage of data sets. Batch analysis requires
the collection and analysis ofvery large data sets, and samples
larger than any standard computer’s memory space are easy to
collect. For example, a traditional Ethernet sampled every mil-
lisecond over one week represents 604 million sample points,
which stored as 4-byte integers requires approximately 2.4 GB
of space. Thus capture of this data may be a problem, as the data
cannot all be stored in memory and then saved to disk. Similarly
for analysis, the data cannot be held in memory all at the same
time resulting in large delays due to disk paging. In contrast, as
explained above, on-line measurement does not have substan-
tial memory requirements. Thus a traffic stream can be moni-
tored and measured continuously for weeks at a time, without
any delay in the estimation at the end of the process, and without
a large memory.

The number of scales available for estimation increases with
the length of the data. Ideally the number of available oc-
taves is simply , however edge effects limit the
number in practice. Fig. 3 shows the number of octaves in the
data and the number of octaves actually available as functions
of , for the Daubechies3 wavelets (implying a filter length of
six taps) that are used here.

IV. PERFORMANCE

In a system designed to measure traffic on-line in real-time
there are three key components: the packet capture process, the
prefiltering process where the raw data is converted to a time
series, and finally the on-line estimation itself. In this section we
discuss and measure the performance of the on-line estimator
only. The comments here are therefore valid regardless of the
computational details of the lower two levels, which will vary
according to the kind of network measured. The performance of
the first two processes, and of all three together, is addressed in
the next section in the context of Ethernet measurement.

The statistical performance of the batch joint AV estimator,
and comparisons with other methods of estimating LRD param-
eters, have been described in detail elsewhere [4], [11] (for
only see also [5], [3], [6]). Briefly, the estimator offers excellent
statistical performance: negligible bias, close to optimal vari-
ance, and robustness of various kinds including with respect to
superimposed deterministic nonstationarities. It is not the aim of
this paper to repeat these studies, but rather to illustrate the de-
pendence of certain properties on data length, as the new feature
of the on-line version is that the length of the data is constantly
increasing.

The series used in this section were all realizations of the frac-
tional Gaussian noise (fGn) process, precalculated using a stan-

Fig. 3. Number of available scales as a function ofn.

Fig. 4. Three example sample paths. The dashed line shows the true Hurst
parameter while the solid lines show examples of the on-line Hurst parameter
estimates.

dard spectral synthesis technique. In each case values from the
series were piped to the on-line estimator one at a time, in order
to simulate the arrival of raw measurements in real-time. Thus
the estimator used here is identical to that used with the working
on-line system described in the next section. The interval chosen
between the actual estimations of(stage 4 of the estimator)
was every data points. There is a warm up period at the be-
ginning of the measurement run to wait for the octaves required
for the analysis to become available (see Fig. 3).

For each of the values and , 100 inde-
pendent realizations of length were generated. Fig. 4
shows three examples chosen randomly from the set with

. The graph illustrates typical behavior of the estimator in
time. Here we use prior knowledge of the fGn process to choose
the lower end of scaling range to be , and the upper end

to be the largest octave available. A point of interest
is that there is no immediate jump in accuracy when a new oc-
tave (scale) becomes available for use in the estimation. This
is because when this occurs there are still relatively few data
points at the new octave, and so the weighted regression gives
little weight to it.

In Fig. 5, for each , averages over the set of 100 realizations
are plotted. The fact that the averaged estimates tend to the cor-
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Fig. 5. Average (solid lines) of the estimates of the Hurst parameter, and the
standard deviation around the average (dotted lines) for each set of 100 data
sequences.

Fig. 6. MSE of the estimated Hurst parameter for each of the four sets of 100
sample paths.

rect values illustrates the lack of bias of the estimator. The speed
of convergence to the correct value with increasingis shown
by the shrinking standard deviation of the 100 estimates shown
to either side. These sample standard deviations constitute em-
pirical estimates of the standard deviation of the estimator.

To further illustrate this convergence, Fig. 6 shows a log–log
plot of the mean squared error (MSE) of the estimates as a func-
tion of . The MSE corresponds closely to an empirical mea-
sure of the variance of the estimator, as we know the bias to be
negligible. The fact that an approximately straight line is seen
suggests that the variance of the estimator decreases as a power
law. It is also noteworthy that the MSE seems to have very little
dependence on . Both of these facts are in agreement with the
theoretical results of [4] which state that there is no(nor ,
nor , nor ) dependence in the variance of the estimate of

, and that asymptotically the variance goes as

(1)

where is the smallest scale used in the estimation. The
rate of decrease is a result typical of the variance of estimators
in a short range dependent context (for example independent

Fig. 7. Dependence of the MSE of the estimates onn.

random variables), and it is therefore particularly noteworthy:
the AV estimator obtains short range dependent statistics from
long-range dependent data. The hypotheses used to obtain the
theoretical results are never exactly satisfied in practice how-
ever, not even for a “model” LRD process such as the fGn. We
therefore repeated the test for , shown in Fig. 7, this
time over 500 realizations each of length , in order to ex-
amine more closely the decay rate of the MSE. In the plot the
MSE is compared to the asymptotic theoretical prediction given
above, and the full theoretical variance prediction of [4]. Per-
forming a linear regression on the MSEs in the plot leads to a
slope of , which agrees with the predicted rate of , the
minor discrepancy being easily accounted for by the asymptotic
nature of the dependence together with statistical fluctua-
tions in the MSE.

The computational performance of the estimator is also ex-
cellent. For instance we profiled the algorithm running on a
133-MHz Pentium PC (runningFreeBSD and compiled with
gcc ), on test data 100 000 elements long (piped directly to the
estimator), where estimates of the LRD parameters were made
every 1000 data elements (100 estimations in total). The wavelet
transformation and sum of squares computation consumed 1.8 s
of CPU time, and the estimation 4.8 s. Thus the transform took
on average 0.018 ms per data point, and the estimation 48 ms per
estimate. Taking the most conservative view, it is unnecessary
to perform the estimation more than once per second, implying
a negligible impact from the estimation phase and therefore al-
lowing sampling rates of 50 000 samples/s or better. Of course
this will be reduced if competition from other processes is sig-
nificant, notably from the packet capture process if it is running
on the same machine.

V. REAL-TIME ESTIMATION FOR ETHERNET

We have explained in Section III how the on-line estimator
is scalable, and in Section IV demonstrated the estimator using
simulated on-line data. In this section we use the estimator to
analyze 10-Mb/s Ethernet data on the local area network at the
Software Engineering Research Centre (SERC) without the use
of high performance hardware, proving that it is efficient enough
to be used on real, low-cost systems.
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An Ethernet was chosen for two reasons. First, it was the first
type of data network where self-similar traffic was shown to
exist [1]. Second, it is relatively easy to extract traffic from an
Ethernet because of the broadcast nature of the medium. The
Berkeley Packet Filter (BPF) [19], which is part of the kernel
of FreeBSD (a variant of theUnix operating system suitable
for Intel PC’s), was used to capture and time stamp packets.
The packet capture and the estimation algorithm were all run
on a 133-MHz Pentium computer. Though the timestamping
of the BPF on this system is not as accurate7 as that obtained
in the original Bellcore study [1], that same study showed that
timestamping accuracy of the order of 1 ms (significantly worse
than the accuracy obtained here) is quite sufficient to measure
self-similarity.

The output from the BPF passes through a simple prefiltering
program which generates a sequence of data values corre-
sponding to the number of bytes transferred over the Ethernet
during each sampling interval. This sequence is the raw data
series to be analyzed by the on-line estimator. In [16] the
authors demonstrated that a sampling interval as large as 100 ms
was adequate for measurements of self-similarity in real traffic.
A sampling interval as fine as 1 ms posed no computational
problems for the 133-MHz processor. At rates much faster than
this the packet capture and prefiltering processes can fail to
keep up with the data, whereas the load due to the estimation
algorithm, as detailed in the previous section, is small at such
rates. The bottleneck in this Ethernet measurement system is
therefore in the lower layers, not the on-line estimation.

Fig. 8(a) shows Ethernet data originally sampled at 1 ms in-
tervals and averaged over ms minute intervals. Fig. 8(b)
shows the on-line estimation for the same data, using

, based on visual inspection of Logscale Diagrams. The
latter figure shows real-time output, where at eachthe estimate
is based on all the data in . The graph therefore becomes
smoother with increasingas new data has proportionally less
impact on the growing weight of past data. It is important to
note that such long-term estimates are not usually meaningful,
due to nonstationarity in the data. The intent of these figures is
not to give useful estimates, and certainly not to demonstrate
self-similarity in Ethernet traffic as this has been demonstrated
many times before. Rather the results are intended to show that
the algorithm is efficient and robust enough to apply to real data,
in real time.

We mention briefly here that we have extended our on-line
monitoring efforts to 155 Mb/s ATM traffic, also on inexpensive
hardware. In this system the on-line estimation is identical to
that described here, only the lower layers have changed. The
details of the ATM traffic monitor are fully described in [9]. The
lower layers of the system are based around the OC3MON [20]
which has been used successfully to monitor the vBNS8 as part
of the CORAL project [21]–[23].9

7The exact accuracy of timestamps on a time-sharing system depends on what
else is running on the system.

8Very high performance Backbone Network Service. Online. Available:
http://www/vbns.net/

9Coral Network Traffic Analysis. Online. Available: http://moat.nlanr.net/
Coral/

Fig. 8. SERC local Ethernet data, October, 1997. (a) Ethernet byte data
averaged over approximately one-minute intervals. (b) Corresponding on-line
estimates.

VI. L ONG-TERM MEASUREMENTS

One of the major advantages of on-line measurement is that
measurements can be made over long periods. This is possible
because the data is not collected, but analyzed as it arrives, en-
abling it to be stored in a far more compact and useful form.
Thus the most onerous parts of “off-line” analysis, the data col-
lection and initial processing, can be performed in real-time,
leaving only the higher level aspects, for example the examina-
tion of Logscale Diagrams, as truly off-line. This “fast off-line”
(FOL) analysis method is illustrated in this section.

Note that not collecting data is also a disadvantage in that
new questions involving analysis outside of the standard suite
cannot be answered. For example, we are unable to return to the
original data to repeat our analysis on a per-application basis. It
is necessary in real-time analysis to know in advance all of the
questions of interest, and to have on-line algorithms for each.

As part of an ongoing data collection effort at SERC,
Ethernet data from the local network was collected from
March 4th to August 24th, 1998. A major reconfiguration
of the local network at the end of this period was a natural
breakpoint motivating a study, reported in [10], whose aims
were twofold: first, to illustrate the benefits of FOL analysis
by performing an analysis which would not have been possible
using ordinary off-line methods without great effort; and second,
to begin to investigate the important practical question of
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the diurnal or daily variation of the Hurst parameter. Here
we summarize the results of [10] and present additional data
on the link between load and . The data was collected
by running a set of monitors almost continuously over the
period (small gaps occurred as the monitors were also used
for other purposes). Note also that the network size and
configuration was significantly different from the previous
October 1997 data (Fig. 8) during the long-term study.

In current models of traffic, the parameteris a constant de-
scribing the scaling nature of arriving traffic which is deemed
to bestationary, that is, constant in time in the statistical sense.
Naturally in real data this assumption will hold only approx-
imately, and in some cases not at all (for instance see [24]).
For example diurnal variation in load is a recognized feature
of traffic in most contexts (for examples see [25], [26], [23]), is
this also true of ? In the seminal paper [1] the authors specu-
late that this is so, and further that there is a correlation between
the load and .

We performed monitoring separately over blocks of data 1,
4, and 24 hours long, with the intention of studying the diurnal
and weekly variations of the load and Hurst parameter, and their
correlations. It is important to bear in mind that with each mea-
surement, the implicit assumption made is thatis well de-
fined and constant over the block. If this is not the case thenno
estimator can return a meaningful single value. For example if
measurements over 24 contiguous one-hour blocks reveal that

changes, then we know that although a measurement over
the entire 24-hour period may still be a valuable summary of
scaling information, it cannot be taken as a meaningful estimate
of a constant .

On the other hand, if is well defined (and constant) over
a block, then we wish to measure it robustly, that is, despite
the possible presence of nonstationarities in other aspects of
the data, such as the mean. Although such nonstationarities can
cause problems for standard estimators of the Hurst parameter
[27], the AV estimator is remarkably robust to changes in the
mean or variance of a process [5], [28], and therefore we believe
that, provided the scaling exponent is itself well defined (see
[28], [24] for further discussions on this issue), reasonable esti-
mates can be made even in the presence of common nonstation-
arities, for example, slow periodic changes in the mean. There
are circumstances where the estimator can fail. These include
when there arevery large and sharp jumps in mean, the pres-
ence of overwhelming additive noise masking the LRD compo-
nent, or of power-law trends whose exponent corresponds to an

larger than that of the data. There is no evidence for nonsta-
tionarities of these types here.

Fig. 9 gives an example of Hurst parameter estimates over
the three different time-scales of 1, 4, and 24 hours during a
week in April. The graph shows considerable variation in the
estimates over this time period. In fact, we can immediately
conclude that is not constant, as the theoretical confidence in-
terval [assuming constant and Gaussian data, see (1)] for each
of the 24-hour estimates (not shown on the figure) is orders of
magnitude smaller than the variation observed. The confidence
intervals corresponding to the four and one-hour measurements
are also very small, however the data is highly non-Gaussian at
1 ms resolution, and we must be careful about interpreting the

Fig. 9. Example sample paths for Hurst parameter estimates. The three
curves are based on 1(�), 4 (�), and 24-hour blocks of data( ). Start time
= 05-Apr-1998 00:00:00.

Gaussian based confidence interval too strictly. Nonetheless, al-
though some of the large variation in one-hour estimates can
certainly be attributed to statistical fluctuation, the broad corre-
spondence between the estimates over the three time-scales sug-
gests that the variation reflects real changes below the 24-hour
time scale. Furthermore the four-hour measurements seem to
be more consistent with the one-hour measurements than the
24-hour are with the four-hour (though still with high variation),
hinting that may be taken as reasonably constant over inter-
vals close to, but below four hours. It is also noteworthy that
there is no obvious correlation between the load estimates over
the same time-scales (not shown) and the Hurst parameter esti-
mates.

How could such variations in occur? One way is suggested
by [29], [30], in which the authors demonstrated that LRD
in aggregated traffic may arise from the high variability
of the individual ON/OFF sources of which it is composed.
However when one measures the source of this variability
in individual applications such as WWW traffic [31], SS7
traffic [32], or Unix file sizes [33], one finds that they have
different degrees of variability. In theory, for aggregate traffic
formed by the mix of a set of applications, the most variable
source will eventually dominate, and determine the asymptotic
properties of the aggregate (including). However, in practice,
for finite data series, some applications may not make an
impact on the measurements. For instance, a source running
at very low rate might remain in theOFF state for the entire
period of measurement. Thus the effective Hurst parameter
which we measure may be dominated by a specific group of
applications. This group may change significantly over time
due to nonstationarities in the mix of applications, leading to a
variable Hurst parameter estimate. Despite these difficulties,
the Hurst parameter may still be a viable and important
parameter for modeling the aggregate traffic.

Given that may vary, the next question we ask is whether
it varies with time of day. Before considering this question
we examine the diurnal behavior of the load in our network.
Fig. 10(a) and (b) displays estimates of the average load
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(a) (b)

(c) (d)

Fig. 10. Diurnal cycle in load and Hurst parameter estimates. The results plotted for each hour are averages over many days. (a) Weekday load. (b) Weekend
load. (c) Weekday Hurst parameter. (d) Weekend Hurst parameter.

from March 4th to August 24th, 1998, during each one-hour
period of the day. Fig. 10(a) shows the weekday load, while
Fig. 10(b) shows the weekend load10 —the two are substantially
different, and it does not seem appropriate to combine them.
The figure also shows the empirical standard deviation of
the load about the mean, which reflects the range of truly
different values of load observed in a given hour of the day
over different days, not the variation of the load within a
particular hour. The implicit assumption behind these graphs
is that there is stationarity on weekly time-scales, so that
meaningful averages can be taken to reduce the variability of
the measurement at each hour, allowing the diurnal variation
to emerge from the background variation.

The first notable feature of the mean load during the week
is a weak busy cycle—the load increases during the day and
decreases during the night—which we will refer to as theuser
busy cycle. The peak of this cycle appears to occur at 4 pm.
The second notable feature is a large peak early in the morning,

10Backups on our system begin at approximately 3 am and may extend
past 6 am after weekdays and therefore occur on Saturday morning but
not Sunday or Monday morning. We consider the backups to be part
of the weekday workload, and hence we have adjusted the measured
begining and end of the weekend to 7 am on Saturday morning and
7 am on Monday morning respectively.

which results from the nightly backups. These backups start at
3 am each morning from Tuesday to Saturday.
We refer to the user busy cycle as weak because its magni-

tude is not large compared with the natural variation during the
day, and between days. Regarding the connection between the
average diurnal variation of Fig. 10(a) and (b) and the size of
daily fluctuations, note in Fig. 10(a) that the standard deviation
of the results does not appear to correlate well with the user busy
cycle, but that it does appear to be correlated with the backup
peak.

The traffic on the weekends is significantly lower than during
the week—not surprisingly. There is also a user busy cycle
during the weekends which has a later peak, around 7 or 8 pm.
The weekend cycle is also more variable (with respect to the
load). However we shall see presently, when considering the
Logscale Diagrams of Fig. 11, that this low load coincides with
a breakdown of scaling behavior at high scales.

Fig. 10(c) and (d) show the equivalent picture for Hurst pa-
rameter estimates. The standard deviation itself has not been
plotted in the results, as it remains roughly constant with a value
slightly larger than 0.1, but we do show the averagethe stan-
dard deviation.

Fig. 10(d) seems to indicate that the weekend traffic has a
variable Hurst parameter, but that it does not have a strong sys-
tematic dependence on the time of day (except for a possible
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(a)

(b)

Fig. 11. Diurnal cycle in Logscale Diagrams. (a) Three classes of LD’s can be
found during weekdays, corresponding to (from left to right) low load, high load
and backup periods. (b) On weekends the shape of the LD is roughly constant.

blip at 6 am). Fig. 10(c) seems to indicate that during the week
the Hurst parameter does have some dependence on time of
day—though it is not very strong. In comparison, two standard
deviations around the estimate covers almost the entire range of
values from 0.5 to 1.0 indicating that at any time of day, any of
the range of possible values of can occur.11 Thus averaging
over several months was needed to render this daily cycle vis-
ible.

There is a peak at about 4 am which appears to be strongly
correlated with the backup peak, and also a “Hurst user
busy cycle” which follows the user busy cycle fairly closely:
the Hurst parameter seems to be connected to the network
load. Interestingly, the peak due to the backups coincides
with the backup load peak, while the busy cycle behavior

11Values near 1 may be artifacts of nonstationarity, but not necessarily. The
estimator can take any real value, even whenH is well defined and in(0:5; 1).

of the Hurst parameter seems to begin earlier, and persist
for longer than that of the load. It is plausible that this
behavior relates to the type of traffic present, for instance the
applications being used (as discussed above). To investigate
this further new studies must be conducted partitioning the
data by application—unfortunately on-line analysis does not
allow one to reprocess the data to extract new information if
this was not obtained in the initial analysis. It is the central
feature of FOL analysis that it discards all the original data,
and though this is an advantage from most points of view,
it prevents re-examination of the original data.

In the above estimates of the full range of scales were used
to estimate , that is , and as large as possible, rather
than selecting the scales after examination of the Logscale Dia-
gram. As a result the estimates should be thought of as a rough
measure of the behavior of the data as a function of scale, rather
than unbiased estimates of the scaling parameter of LRD. This
choice was motivated by the fact that the significant nonstation-
arities observed in the data precluded the choice of universally
valid fixed values of , and automated selection is beyond
the scope of this paper.

In fact it is necessary to examine the scaling behavior in
detail, and not only to take measurements of the Hurst param-
eter over some fixed scale range. We therefore investigated
the time variation of the Logscale Diagram itself. Again
differences between weekdays and weekends were found, and
diurnal variations within these two. In Fig. 11 hourly Logscale
Diagrams, again averaged over different days, are grouped
into three classes corresponding to different time periods—low
load times (8 am–10 am and 10 pm–3 am), high load times
(11 am–6 pm) and times when backup load dominates the
network (4 am–5 am). During the weekdays each class is
characterized by a qualitatively different shape whereas during
the weekend there is little qualitative variation. Although during
high load periods the curves are approximately straight lines
which means that the Hurst parameter estimates give useful
information both at large and small scales, at low load periods
the curves are far from straight and the meaning and usefulness
of the estimates can be called into question.

Since during the busy hours of the day the workload is domi-
nated by applications controlled by human interaction, whereas
at night, and times of low load such as the weekend, applica-
tions controlled by automatic computer interaction dominate,
we speculate (as did the authors of [1]) that human interaction
plays an important role in the nature of the scaling behavior,
rather than load as such. This would also explain how the user
busy cycle is not identical to the Hurst busy cycle. Finally, we
note that when backup load dominates the network the Logscale
Diagrams shows a peak at octave 4—implying that the domi-
nant phenonomena in the backup load occurs at time scales16
ms—not a surprising conclusion given the machine-generated
nature of this traffic.

The authors of [1] also noted an apparent correlation between
load and , and so the next question we ask is “Given a much
longer series of data can we deduce a simple relationship
between the two?” Fig. 12 illustrates the correlations between
the load and the Hurst parameter by plotting them against
each other. The plots are based on the hourly load and
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(a) (b)

(a) (b)

Fig. 12. Correlation between the Hurst parameter and load. (a) Weekday correlations. (b) Zoom of (a). (c) Weekend correlations. (d) Zoom of (c).

Hurst parameter measurements. Again the data is divided
into weekday and weekend data. Plots (b) and (d) show
closeups of regions of plots (a) and (c) respectively. It is clearly
seen that there are correlations between load and the Hurst
parameter, but that they are not at all simple. For instance
plot (d) shows clear clustering, though at very low loads. This
could be due to a particular type of traffic dominating during
such time periods. Plot (b) appears also to have clustering,
though it is not as obvious—this could simply be because
during the week, the type of traffic which generates such
clusters cannot so easily dominate the other forms of traffic.
More work is required to determine appropriate classes of
models to account for such observations.

There are a great many things remaining to study in this data,
however this is not the intention of this report, and the study is
ongoing. Rather it is intended to provide a taste of the possibil-
ities created by the cheap, ubiquitous monitoring allowed by an
on-line estimator.

VII. CONCLUSION

We have shown that the Abry-Veitch estimator for the mea-
surement of the parameters of long-range dependence, including
the Hurst parameter, can be successfully applied on-line, in real-

time, enabling their use in real-time applications such as mea-
surement-based admission control (for instance see [34]). Fur-
thermore, the immediate analysis of data at the point of measure-
ment avoids the storage of huge data sets for off-line analysis.
The scalability of the method was demonstrated both with re-
spect to memory requirements, which are very modest, and pro-
cessing complexity. The algorithm’s performance was demon-
strated by applying it to simulated on-line data, and found to
be excellent and in agreement with theoretical results. The al-
gorithm was also demonstrated in a working system using a
modest PC to make real-time measurements of both Ethernet
traffic and ATM traffic. Thus the method is efficient enough to
deal with high data rates on inexpensive hardware. If, as network
speed increases, a point is reached where processing require-
ments exceed the capacity of the processor chips available at
the time, the algorithm could be implemented using DSP hard-
ware, to which it is ideally suited. Such a solution would be
able to cope with any data rates currently envisaged with room
to spare.

Finally we illustrated some of the possibilities opened up by
the on-line estimator in its role as a fast off-line analysis method.
It was used to simply and easily analyze the local area network
at SERC over a five-month period to assess diurnal variability
in the Hurst parameter, as well the behavior of the data as a
function of scale via diurnal changes in the Logscale Diagram.
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An interesting novel observation was that the scaling properties
could be ordered into a small number of groups which appear
to be correlated with the traffic load, and we speculate by the
origin—human or machine—of the traffic. Another key obser-
vation was that the Hurst parameter does vary with time, and
time of day, but the variations in individual days greatly out-
weigh the diurnal variation measured by averaging over many
days.

There is much scope for future work, notably:

1) use of smoothing, perhaps using a Kalman filter, in order
to discard old data, which might be more appropriate than
windowing as used here;

2) use of an adaptive choice of the scaling range ;
3) further study of the data presented in Section VI, notably

with respect to the connection between load and the form
of the Logscale Diagram;

4) collection and study of a substantial set of ATM data;
5) collection of data by application type in order to study

the origins of the correlations between load and Hurst
parameter;

6) application of the statistical test for the constancy of
scaling parameters to better judge when the exponent
changes [26];

7) application to call admission control and congestion con-
trol.
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