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Abstract—A statistical test is described for determining if

scaling exponents vary over time. It is applicable to diverse

scaling phenomena including long range dependence and ex-
actly self-similar processes in a uniform framework, without

the need for prior knowledge of the type in question. It is

based on the special properties of wavelet-based estimates

of the scaling exponent, strongly motivating an idealised
inference problem: the equality or otherwise of means of

independent Gaussian variables with known variances. A

uniformly most powerful invariant test exists for this prob-

lem and is described. A separate UMPI test is also given for
when the scaling exponent undergoes a level change. The

power functions of both tests are given explicitly and com-

pared. Using simulation the effect in practice of deviations
from the idealisations made of the statistical properties of

the wavelet detail coefficients are analysed and found to be

small. The tests inherit the significant robustness and com-

putational advantages of the underlying wavelet-based esti-
mator. A detailed methodology is given describing its use

in practical situations. The use and benefits of the test are

illustrated on the Bellcore Ethernet data sets.
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I. Introduction

Stochastic processes exhibiting scaling behaviour, such as
exact self similarity or long-range dependence, have been
recognised in many fields as relevant models of time series
data with scale invariance features. A prominent new ex-
ample of the latter is telecommunications network traffic,
the extraordinary scaling properties of which have stimu-
lated much new work in the area [27], [17].

An interest in modelling data necessarily leads to is-
sues of measurement and statistical estimation. One of the
difficulties in the analysis of data with scaling features is
the poor and non-standard performance of many statistical
tools, which rely typically on stationarity of the model or
on a short range correlation structure, or both. It has been
recently shown however how estimation approaches based
on wavelet analysis [2], [3], [24], [4] can overcome many
of these disadvantages. Notably, efficient semi-parametric
estimates of the scaling exponent, the key parameter de-
scribing scaling, are possible with negligible bias, and O(n)
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computational complexity.
There is another key difficulty however which, although

raised from time to time [7], has as yet received little atten-
tion and no satisfactory solution. It is the fact that the very
high variability inherent in scaling processes is very easily
confused with non-stationarity. This difficulty affects both
the fundamental issue of the choice of model class, and
the reliable estimation of model parameters in the pres-
ence of polluting non-stationarities. It is entirely possible
for example that, by using an inappropriate statistical tool
to detect self-similarity and measure its Hurst parameter
H , results will be obtained which seem to indicate scaling
behaviour, when in fact the data is not scaling but is non-
stationary (in a non-scaling sense). Conversely, the large
excursions in sample paths of stationary scaling processes
can be erroneously taken as evidence of non-stationarity.
This could lead for example to the attempted removal of
deterministic trends which do not in fact exist.

The main contribution of this paper is the description of
a simple yet optimal (in an idealised sense to be detailed)
statistical test for the central problem of determining the
constancy or otherwise in time of the scaling exponent. It
is based on a wavelet domain estimator described in [2],
[24], [4] which enables many of the statistical difficulties
due to scaling and non-stationarity to be avoided in a nat-
ural way. Essentially the test consists of splitting the data
into m non-overlapping blocks, and separately estimating
the exponent over each. Under well motivated idealisations
the wavelet based estimates can be taken as uncorrelated
Gaussian variables with unknown means but known vari-
ances. It turns out that there exists a test which is Uni-

formly Most Powerful Invariant for this problem. A second
test, also UMPI, is provided for the special case when the
scaling exponent undergoes a level shift. A second aim is
to provide a methodology to allow the test to be meaning-
fully applied in practical situations. To this end a detailed
discussion is given on the vital question of the choice of m,
and a global analysis procedure is provided3.

II. The Wavelet Approach to Scaling Analysis

A. Scaling phenomena

Under the term scaling we gather several different
phenomena. We first consider Long-Range Dependence

(LRD), a long-memory property of second-order station-
ary stochastic processes. Its simplest definition is given by
the power-law divergence at the origin of the spectrum:

3Matlab code for the estimation and test available upon request.
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fx(ν) ∼ cf |ν|−α , |ν| → 0. (1)

This asymptotic definition involves two parameters, the di-
mensionless scaling exponent α, and the ‘power parameter’
cf which has the dimensions of variance (see [24] for a de-
tailed discussion of the role of cf).

An important class of scaling processes which are non-
stationary are the exactly self similar processes, charac-
terised by the famous scaling exponent H , the Hurst pa-
rameter. A process x = {x(t), t ∈ R} is self-similar with

parameter H > 0 (H-ss) if x(0) = 0 and {x(at), t ∈ R}
and {aHx(t), t ∈ R} have the same finite-dimensional dis-
tributions. For H < 1, such processes may have stationary

increments, and if so, for 1/2 < H < 1 the increment pro-
cesses are LRD processes, with α = 2H − 1. We also con-
sider self-similar processes whose increments of order p ≥ 1
(i.e., increments of increments, p-times) are stationary [4].

In what follows we let α denote generically the second
order scaling exponent of the process x(t) under study, re-
gardless of the exact kind of scaling it describes, and denote
by scaling processes either a LRD process or a self-similar
one with stationary increments of order p. There are other
kinds of scaling processes, such as fractal, 1/f , and multi-

fractal (see [21], [10], [17]), for which the test procedure
developed here could be straightforwardly applied, at least
for moments of second order, but for simplicity we do not
do so here.

B. Wavelets: essential properties

The coefficients dx(j, k) of the discrete wavelet transform
(DWT) [8], [15] result from the comparison, by means of
inner products, of the process to be analysed x and a fam-
ily of functions {ψj,k}, called the wavelet basis: dx(j, k) =
〈x, ψj,k〉. The wavelet basis {ψj,k} consists of shifted and
dilated templates of a single reference pattern ψ0, usually
called the mother-wavelet. The mother-wavelet has a time
support and frequency support which are strongly concen-
trated: it therefore acts as an elementary atom of informa-
tion. From it the time-shift operator and the dilation (or
change of scale) operator together generate the full, two
parameter set of basis functions:

ψj,k(t) =
1√
2j
ψ0

(

t− 2jk

2j

)

,

centred on a sparse set of points in the time-scale plane
known as the dyadic grid, that is the points {(scale =
2j , t = 2jk), j, k ∈ Z}.

The mother-wavelet is moreover characterised by an in-
teger N , called the number of vanishing moments, defined
as:

k = 0, 1, 2 . . . , N − 1,

∫

tkψ0(t)dt ≡ 0 .

Consider first self-similar processes, which are scaling at
all scales. The wavelet coefficients satisfy the following two
key properties.
• P1: Provided N ≥ (α − 1)/2, the sequences

{dx(j, k), k ∈ Z} are stationary, and their variances re-
produce precisely the power law underlying the scale in-

variance of the process:

IEdx(j, k)2 = C2jα ,

where C is a constant which can be calculated [4].
• P2: Any two wavelet coefficients exhibit a correlation

that is asymptotically controlled by N such that the larger
N , the weaker the correlation:

IEdx(j, k)dx(j′, k′) ∼ C1|2jk − 2j′k′|α−1−2N , (2)

|2jk − 2j′k′| → ∞, where C1 is a constant. Thus, the
non-stationarity of x is reduced to short-range dependent
stationarity of each dx(j, ·) in the wavelet domain provided
N ≥ α/2. These correlations are not only short-range, but
are weak. It is therefore useful to consider the following
idealised property:
– ID1: The dx(j, k) are strictly uncorrelated.

Remarks. Properties P1 and P2 exactly hold for self-
similar processes with stationary increments of some order
p ≥ 1 [12], [9], [22], [2], [4]. In the LRD case, P1 does not
hold identically, but holds approximately over a range of
large enough scales: j ∈ [j1,∞]. The j dependence thereby
introduced in C by the scales outside of this range is weak
and can be ignored, as shown numerically in [2], [24], [5].
For LRD processes (2) does not hold strictly, however the
key result that the dx(j, ·) are short range dependent pro-
vided N ≥ α/2 remains valid, and is heuristically summa-
rized as P2, see [5] for a complete discussion. Finally, it
is worth noting that (2) does not hold, in any case, when

2jk = 2j′k′, or more generally when the two wavelet coef-
ficients are within their so-called cone of influence, where
the time support of the wavelets ψj,k and ψj′,k′ overlap
significantly. It is known however that for self similar pro-
cesses one then has an exponential decrease in correlation
along lines of constant time [12]. In this respect, ID1,
which overlooks such correlations, may appear unrealistic.
In the sequel, it will be shown from numerical simulations
that the constancy tests inspired by the idealisation have a
statistical performance close to the theoretical predictions
assuming ID1.

C. Estimation of the scaling exponent

Definition of the estimator From P1, one can think
of estimating the scaling exponent from a linear fit in a
log2 IEdx(j, k)2 vs log2(2

j) = j plot or Logscale Diagram.
The wavelet based estimator reads [2], [3], [24]:

yj = log2

(

1/nj

∑

k dx(j, k)2
)

− gj

α̂ =
∑

j wjyj
(3)

where the sum is over j ∈ [j1, j2], the range of octaves over
which the scaling phenomenon is observed and the linear
regression performed. The gj are deterministic quantities
that account for the fact log2 IEdx(j, k)2 6= IE log2 dx(j, k)2,
see [24], [4] for details and complete expressions. The
weights wj follow the standard formulae for weighted linear
regression using the variances of the yj .

The choice of the cutoff scales j1, j2, is an important
issue, discussed in detail in [4], which is beyond the scope
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of the paper. In the case of LRD, where only j1 need be
chosen, [5] provides a rigorous way to define it for a given
model. We use this method below when estimating α from
synthetic data. In section 5, a robust method based on a
goodness of fit statistic was used to select j1 from data [25].

Statistical performance of α̂ The following properties
have been established in [2], [24], [4]. We assume that P1

and ID1 hold. The effect of deviations from these are small
as documented in the references above. We also assume
that {j1, j2} have been well chosen.

1. Procedure: the estimation and its statistical perfor-
mance are the same regardless of the precise nature of the
scaling existing in x.
2. Bias: the estimator is unbiased.
3. Variance: the Cramer-Raò lower-bound of the corre-

sponding idealised estimation problem is attained [24], [26],
with a known variance.
4. Robustness: i) It is semi-parametric, so does not re-

quire a priori knowledge of the model, ii) Via N , it is in-
sensitive to superimposed deterministic trends [3], [4], or
even to smooth time evolution of the variance of x itself
[20].
5. Computational load: complexity of order O(n), and

can be implemented in real-time [19].

We now require that two additional properties be ad-
dressed: the Gaussianity of α̂, and the independence of
estimates obtained from adjacent non overlapping blocks.

D. Gaussianity of the estimator

If we assume (ID1), we have exact decorrelation of the
yj that enter in the definition of α̂ in equation (3). For
all processes x such that the yj have finite variance, and
this includes many with infinite variance [4], [6], one can
apply a generalised central limit argument (see e.g., [11],
theorem 3, section VII) to suggest that α̂ is asymptoti-
cally normally distributed. To test the effect in practice
of residual correlation between wavelet coefficients on the
asymptotic gaussianity of α̂, numerical simulations were
performed.

We studied fractional Gaussian noise (fGn), whose
LRD is deeply related to self-similarity, and a particu-
lar fractional AutoRegressive Integrated Moving Average
(fARIMA) process, whose LRD has no relation to self-
similarity. More precisely, a so-called fARIMA(1, d, 1)
model with cf = 1, ψ = 0.3, θ = 0.7 was chosen for its
strong short range dependence [5], requiring j1 = 6, in
contrast to the j1 = 3 for fGn. For simplicity these val-
ues are used in all cases, although they are in fact func-
tions of n and α, and may vary slightly (see [5] for a com-
plete discussion). In what follows fARIMA denotes the
specific process with the parameters given above. We syn-
thesized, by the so-called spectral synthesis method (see
[16] for one implementation) K realisations for both types
of processes, for different values of α and of various lengths
n, and recorded an estimate of α for each (for unifor-
mity we use α rather than the customary choice of H :
α = 2H − 1). For each {α, n} pair the empirical prob-

ability distribution function of α̂ given by the K inde-
pendent estimates was compared with that of a Gaus-
sian random variable in quantile-quantile plots. For the
results shown in figure 1 we have K = 10000, {α, n} =
{0.5, 217}, {0.5, 29}, {−0.5, 217}, {−0.5, 29} for the fGn, and
{α, n} = {0.5, 217}, {0.5, 212}, {−0.5, 217}, {−0.5, 212} for
the fARIMA, and (here and later) Daubechies3 (N = 3)
wavelets were used. The agreement is not only excellent
for long data sets, being close in the range correspond-
ing to ±3σ for fGn with n = 217, but also for much shorter
data sets: between ±2σ for n = 29 for fGn. Similar conclu-
sions hold in the fARIMA cases where, since j1 is 3 octaves
larger, the smallest n used is also: 212 rather than 29, to
maintain the same minimum range of scales for estimation.
This numerical study reveals that asymptotic Gaussianity
for α̂ remains valid under realistic departures from ID1,
and also that it can hold even when the scaling range is
very narrow.
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Fig. 1. Distributional comparison of α̂ against Gaussian.
Quantile-quantile plots of α̂ against a standard Gaussian vari-
able, obtained from 10000 realisations of fGn (4 top plots), and
fARIMA (4 bottom plots) for various values of {α, n}.
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E. Correlation between adjacent blocks

If estimates on adjacent blocks are computed using a
time domain estimator, they will be strongly dependent
because of the non-stationarity or long-range dependence
of the original process. In contrast to this, exact de-
correlation (ID1) would imply that wavelet-based esti-
mates were mutually uncorrelated.

Using the spectral synthesis technique, K realisations of
fGn and fARIMA (as previously defined) were synthesized
for each of various lengths n, with a common value of α cor-
responding to strong LRD: α = 0.6 (H = 0.8). Each series
was split in half and an estimation of α performed indepen-
dently on each. Let {α̂n

1 (k), α̂n
2 (k)}, k = 1, . . . ,K denote

these series of estimates. For each n the Fischer z-statistic
[18] is computed, and the corresponding test applied to
examine the null hypothesis of complete decorrelation. In
the numerical simulations performed: K = 2000, N = 3,
for both processes, and n = {29, 210, · · · , 218}, j1 = 3 for
the fGn, n = {212, 213, · · · , 218}, j1 = 6 for the fARIMA.
Again, in the fARIMA case smaller n cannot be explored
because of the large ARMA components. Figure 2 shows,
as a function of the length of the original series n, that
the z values all fall well within the 95% confidence inter-
val (dashed lines) corresponding to zero correlation: we
accept the hypothesis of decorrelation. Experiments for
other values of α, not reproduced here, yielded identical
conclusions. Although the details of residual correlations
are model dependent, they tend to be stronger for larger
α. The example given here shows them to be small even
then.
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Fig. 2. Testing for correlation between adjacent α estimates.

Fisher’s z-statistics (fGn: ∗, fARIMA: ◦) computed from α es-
timates from pairs of adjacent blocks, as a function of n (block
length equals n/2). For each n the z-values fall within the 95%
confidence interval (dashed lines) indicating that there is no rea-
son to reject the exact decorrelation idealisation.

III. Two Inference Problems, Tests and

Properties

In this section we discuss optimal tests pertaining to two
idealised parametric inference problems inspired by the at-
tractive properties, discussed above, of wavelet-based α es-

timates made over m adjacent blocks. In each problem
there are m independent Gaussian variables X = {Xi}
with unknown means µ = {µi} taking real values, and
known common variance {σ2

i = σ2}, i = 1, 2, . . . ,m. By µ
we denote the mean of the components of µ, and similarly
for the vectors X and Y below. Our main focus is on the
‘general’ problem where no structure is assumed between
the unknown means. Thus the null hypothesis H0 is that
the means share a common (unknown) value µ, against the
alternative hypothesis H1 that they are not all the same.
The second problem has the same H0 but considers that
the unknown means must obey the structure of a level shift,
so that H1 is more restrictive. Note that in each case both
the null and alternative hypotheses are composite, that is
that they are sets in parameter space with more than a
single element, so that they are a priori difficult problems.

The tests given below can be shown to be Uniformly

Most Powerful Invariant (UMPI) [13]. Essentially this
means they have optimal power, that is their probability
of accepting H1, if true, is greater than that of any (rea-
sonable) alternative test, regardless both of which specific
H1 is true, and of the significance level δ. The reader is
referred to [23] and specifically [13] for more details on in-
variant tests in general and their application to the present
inference problems.

A. An UMPI test for the constancy of means

The UMPI test can be defined as rejection of H0 in the
critical region V > C, where

H0 : θ =
∑

(µi − µ)2/σ2 = 0 (means equal),(4)

H1 : θ > 0 (means unequal)

Critical Region: V =
∑

(Xi −X)2/σ2 > C (one-sided),

where θ measures the distance of µ from H0. Due to the
cylindrical symmetry [13], a m dimensional problem has
been reduced to one dimension, both the statistic V and
the (unknown) parameter θ are scalars, and H0 is now
simple, being just the point θ = 0.

The distribution of V under H0 is just that of a Chi-
squared variable with m − 1 degrees of freedom [23], and
is thus independent of the common mean µ. The constant
C is therefore determined from the significance level δ via
∫

∞

C fm−1(v) dv = δ, where fm−1(v) is the density function
of the Chi-squared variable.

In the case of different variances σ2
i , the test readily gen-

eralises ([13], p.377) to V > C where V =
∑

1
σ2

i

(

Xi −
∑

Xj/σ2

j
∑

1/σ2

j

)2

, and θ becomes θ =
∑

1
σ2

i

(

µi −
∑

µj/σ2

j
∑

1/σ2

j

)2

.

Under H0 we still have θ = 0 with C determined exactly
as before. For clarity we will continue to concentrate on
the simpler case.

The power of the test Under H1 the distribution
of V becomes that of a non-central Chi-squared variable
with m − 1 degrees of freedom and a non-centrality pa-
rameter equal to θ. The power is therefore given by
∫

∞

C fm−1,θ(v) dv, where fm−1,θ(v) is the non-central Chi-
squared density. This integral can be readily evaluated in
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practice as a sum of central Chi-squared distributions ([1],
equation 26.4.25, p.942.). Exactly the same facts hold in
the case of general σ2

i , provided the generalised definition
of θ above is used. Although the above test is optimal with
respect to the power of competing tests, actual values of
power depend on the closeness of the unknown parameters
to H0, and can be very poor, in fact arbitrarily close to δ.
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Fig. 3. Power functions. Power functions for different m values as

a function of
√

θ, corresponding to the distance of µ from H0.

Figure 3 gives power functions for several values of m
as functions of

√
θ. Note however that for each m the θ

parameter is really a separate quantity θm, identified in
the plot for ease of display, corresponding to separate in-
ference problems. Thus, in figure 3, it does not necessarily
follow that ‘increasing m results in a lower power’. Com-
parisons across m can only be made in a context where
further details/assumptions of the experimental situation
allow the specification of the dependence of θm on m:
θm = θ(m,σi(m), µi(m)), including how the different θm

can be meaningfully compared. As power is not defined
under H0 there is no question of how it varies with m, but
only of chosing C(δ) = Cm(δ) to fix the significance level.
Since θ = θm is zero under H0, independently of m, it fol-
lows that Cm(δ) is a function of m only, and can always
be found.

B. An UMPI test for the two-level problem

An important special case of non-constant scaling is that
of a ‘level change’. If there are physical reasons to expect
behaviour of this type in data, or if there is compelling
empirical evidence, then it may be desirable to exploit the
additional structure and test directly for it. Let the first
m1 variables, denoted by {Xi}, i = 1, . . . ,m1, each have
mean µ1, and the remaining m2 = m−m1 variables {Yi},
i = 1, . . . ,m2 have common mean µ2. The UMPI two-level
test can be defined as

H0 : θ2 = (µ1 − µ2)/σ = 0 (means equal)

H1 : θ2 > 0 (means unequal)

Critical Region: V2 = |X − Y |/σ > C (one-sided)

where C is chosen from the significance level δ using the
fact that V2 is normally distributed with mean θ2 = (µ1 −

µ2)/σ and variance Var[V2] = m/(m1m2) = (β(1 − β))−1,
where β = m1/m. Again the null hypothesis, originally
composite, has become simple through the symmetry.

Note that it is β, the relative number of points in the
first group, but not their order, that determines the dis-
tribution of V2, so the same analysis applies to situations
other than level shift. When applying the test however
which are in which group must be specified.

Because of the form of Var[V2](β), at fixed m the power
functions are uniformly (in θ2) monotonically increasing
in m1 = 1, 2 · · · bm/2c. Power between the tests can be
compared when µ obeys a two-level scenario, where one
can show that the two-level test has the higher power, the
more so for higher m. In such a comparison, note that
θ2 =

√

Var[V2] θ/m. The exception is the trivial case of
m = 2 where the tests are identical. Finally, note that
this test can also be generalised to allow for different σi,
which for m = 2 would again be identical to the general
test (with different σi). This m = 2 different-σi test is used
in section 4.3 to give an upper bound on the power of the
more practical constant σ tests.

Tests in simple hypothesis cases It may be required to
perform tests against specific values of µ. Optimal tests
for these simpler situations are also available.

IV. A Wavelet Test for the Constancy of

Scaling

A. Definition of the test

Let x denote the series to be analyzed of length n.
Compute the estimates {α̂1, . . . , α̂i, . . . , α̂m}, according to
the definitions given in section 2, for each of m adjacent
blocks with, possibly, unequal lengths ni, using a common
scaling range [j1, j2]. From section 2, we know that the
{α̂1, . . . , α̂m} can be considered as uncorrelated Gaussian
variables, with unknown means, but known, possibly dif-
ferent variances, that is

α̂i ∼ N(αi, σ
2
i ), and (5)

σ2
i =

(

2j1−1(1 − 2−J)/(ln2 2(1 − 2−J(J2 + 4) + 2−2J))
)

/ni

to an excellent approximation, ni being the number of sam-
ples in the ith block, and J = j2 − j1 + 1 the width of the
scaling range (see [24] for the exact expression). We wish
to test the null hypothesis H0 : the means are identical,
againstH1 : the means differ. The tests from section 2 then
apply immediately upon making the identification αi = µi.
Note that this choice of H0, which in fact puts a priority
on high confidence in decisions to reject rather than accept
the proposition that scaling is constant, allows us to accept
a simple constant α model whenever this is reasonable, in
keeping with the principle of parsimonious modelling.

B. Statistical properties

The idealised tests from the previous section are based
on the central axiom of a well defined set of m random
variables, with known variances. In this section we examine
only the effect of residual correlations among the wavelet
coefficients on the corresponding wavelet tests (both the
general and two-level tests with constant σi), and so it
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is essential to satisfy this axiom, which corresponds to α
values being constant on each block.

To study the type I error (reject H0 when true), K sam-
ple paths of fGn and fARIMA of length n and constant
parameter α were synthesized. Each sample path was split
into m blocks of equal length and the above tests applied
to each, counting the number of times that V fell within
the critical region V > C(δ), with a significance level of
100(1− δ) = 95%. In the results presented in figure 4 (top
plots), we have K = 2000, m = {2, 4, 8, 16}, α = {0.6, 0.8}
(H = {0.8, 0.9}), and n = 213 for the fGn, but n = 216

for the fARIMA, so that the range of octaves [j1, j2] are of
identical width. The plot shows that the two wavelet tests
closely reproduce the theoretical 5% rejection rate, so we
conclude that residual correlations only slightly affect the
type I error probability.

To study the type II error (accept H0 when false), K
sample paths of fGn and fARIMA of length n were synthe-
sized with α abruptly changing from α to α+∆α at sample
n/2+1. The samples were then split into m blocks of equal
length and the above tests applied to each as described
above, again with a significance level of 95%. In the re-
sults presented in figure 4, (lower plots), we have K = 400,
m = 10, α = {0.6, 0.8} (H = {0.8, 0.9}) and n = 214 for
the fGn, n = 217 for the fARIMA, and ∆α was set to four
different values: ∆α = {−0.1,−0.17,−0.23,−0.3}, corre-
sponding to four evenly spread values of power. Figure 4
shows that, for both tests, the resulting values of the power
for the four different values of θ are close to those derived
theoretically (solid curves), as well as being insensitive to
the initial α values. Note that the fact that the change
point occurs at sample n/2 + 1 is only a convenient way to
achieve the targeted power values and is in no way a simpli-
fication of the test. A different situation will be addressed
in the next subsection.

This study reveals that, despite residual correlations
(i,e., departures from ID1 leading to asymptotic gaussian-
ity, non-zero correlations between blocks, and only approx-
imate expressions for estimation variances), the properties
of the wavelet-based hypothesis tests are very close to those
of the idealised problem for which exact theoretical results
are available. The tests can therefore be regarded as close
to UMPI in practice.

C. Choosing the number of blocks m

When applying the test to a set of data of length n, one
has to select the number m and sizes {ni} of the blocks
into which the data is split. For simplicity we will mainly
discuss the general test in the case where the blocks are
of equal size, leading to the question, how is m to be cho-
sen? An essential difference from the ideal situation is that
here, in order to use the test for an m fixed, it is neces-
sary to assume that scaling is constant over each of the
blocks separately. Such an assumption must of course be
tested, and this can only be done by increasing m to ex-
amine the data at a higher time resolution. Only if m is
high enough so that scaling is effectively constant over each
block – and this may never be the case – can the test be
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Fig. 4. Statistical properties of the wavelet-based constancy

tests. Left plots: General test, Right plots: Two level test.
Top plots – Type I error: the proportion of rejections of H0

(when true) in simulations using fGn (◦’s) and fARIMA (∗’s) as
a function of the number of blocks m, is very close to the chosen
target of 5% (horizontal solid line), independently of m and the
α value (α = {0.6, 0.8} given by {solid, dashed} lines). Lower

plots – Type II error: for each of four θ values the actual power
of four wavelet tests (for α = {0.6, 0.8}; with fGn: {�, ◦}; with
fARIMA: {+, ∗}) are compared against the idealised tests (solid
curves). They are very close despite the residual correlations
between the wavelet coefficients.

applied rigorously in essentially the same way as in the
idealised context.

To begin, first note from 6 that for a given m the com-
mon variance σ2

m of the estimates α̂i are roughly inversely
proportional to the number of analyzed samples. Hence
σ2

m ' σ2m, where σ2 = σ2
1 is the variance of the estimate

over the full series.
Under H0 the assumption of scaling over each block is

clearly satisfied, so the discussion at the end of section III-
A applies: there is no preferred value of m. To understand
the role of m under H1, consider the following simple toy
problem: the data to be analysed consists of 4 concatenated
subseries, each exhibiting scaling with scaling parameters
{αA, αB, αA, αB} over a shared scaling range.
∗ If one choses m = 2, scaling is not constant over each

block, violating the assumptions of the test and yielding
estimates {α̂1, α̂2} which do not in fact correspond to any-
thing meaningful. Nonetheless, the two estimates are sta-
tistically identical, and via the test procedure one is there-
fore very likely to accept H0, as it is not possible from
looking at m = 2 alone to determine if scaling is constant
over each block or not. Essentially the number of blocks
is not large enough to see or follow precisely enough the
variation in time of α.
∗ If one chooses m = 4 one obtains {α̂1, α̂2, α̂3, α̂4},

estimates which are meaningful, and the assumptions of
the test are satisfied, as the scaling is constant over each
block with exponents {αA, αB, αA, αB}. The variances are
σ2

4 = 4σ2 yielding θ4 = (αA−αB)2/(4σ2). In this case, the
power of the test (probability of accepting H1 when true)

is P4(θ4) =
∫ +∞

C4

f3,θ4
(x)dx and can be read off the m = 4
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curve of figure 3.
∗ If one now chooses m = 8, we obtain the estimates

{α̂1, α̂2, α̂3, α̂4, α̂5, α̂6, α̂7, α̂8}, which again are meaning-
ful, the exponents being {αA, αA, αB , αB, αA, αA, αB, αB}.
The variances are σ2

8 = 8σ2, yielding a θ8 which from equa-
tion (4) can be shown to be θ8 = 2θ4/2 = θ4. In this case

the power of the test is P8(θ8) =
∫ +∞

C8

f7,θ8
(x)dx and can

be read off the m = 8 curve of figure 3. Since θ8 = θ4, it is
valid to compare the two power functions using a common
θ coordinate, and so from figure 3 one sees that for any
fixed value of θ > 0, the power of the test decreases when
m is increased from 4 to 8. This is valid in general: there

is no benefit in increasing m beyond a given m0, provided

that the assumptions of the test are valid at m = m0.

Trade-off We see that the choice of m is subject to
trading-off the need for m to be large enough to resolve
time variations of the scaling parameter; but small enough
to retain useful power. The optimal choice is therefore that
the data be split into the largest possible (unequal) blocks
within which the scaling parameter is not varying. This of
course can not be achieved in practice as it depends on the
specific unknown H1, imposing an experimental methodol-
ogy where m is varied. Thus, if the decision is accept H0

for all m, then the final decision is accept H0. Under H1,
the recommendation of the test may be accept H0 for small
m (because the blocks are too wide to see the variations
of α), then reject H0 for a given set of median values of
m as the time variation of α is resolved, then again accept

H0 for large values of m because the statistical fluctuations
of the estimates have become so high that they mask that
variation. In other words, the power has become so low
that one can no longer reliably detect that H1 is true. In
this case, the final decision should be reject H0. We resist
the urge to offer a definitive algorithm for the determina-
tion of the optimal m. We believe that so many factors are
involved in practice that any simple criterion could lead to
erroneous conclusions. Instead we continue to explore the
basic factors that must be taken into account.

The above argument overlooks the fact that vary-
ing m implies varying the range of octaves of analysis
[j1(m), j2(m)], which implies a maximum m in practice to
ensure sufficient scales per block for a reasonable estimate,
another reason why m should be chosen as small as pos-
sible. A limitation intrinsic to the semi-parametric nature
of the underlying estimator is that this maximum m may
not be sufficient to resolve the time variation.

To illustrate the above issues, figure 5 gives a measure
of how the tests behave in a more realistic context. As
in section 4.2, the full wavelet tests are applied to fGn
series generated according to a level change scenario for α.
However, the change point is no longer in the middle, but at
n∗, chosen to be 27% into the series, a value which ensures
that it does not fall on a block boundary for any m used.
Again, for simplicity a uniform value of j1 = 3 is taken
for each m. The range of m chosen is the largest possible
satisfying the constraint that there be at least 4 scales, the
minimum practical number. Thus, since j1 = 3, we require
j2 ≥ 6 which, with n = 214, results inm = 2, 3 · · ·, 43. Two

sets of α values are used each with ∆α = 0.2: {α1, α2} =
{0.6, 0.8} and {0.4, 0.6}. Very similar results are obtained
for both scenarios, as required, since they share the same
θ, even though the second crosses the white noise frontier
of α = 0.5.

Figure 5 plots the percentage of rejections in K = 500
realisations. This (estimated) empirical measure of power
is lower bounded by the significance level of 0.05, and up-
per bounded by the power of the optimal test (topmost
line), obtained by splitting the data about n∗ into m = 2
unequal blocks, with constant α in each, and calculating
analytically the power of the test with unequal variances
(see section 3.2). By inspecting Logscale Diagrams and
estimates for several m values, one is led to suspect a
change point around 1/4 into the trace, motivating the
use of the two-level test. Thus we give results (using equal
sized blocks) both for the general test, and the two-level
test with the change point as near as possible to m/4 (in
factm1 = max(1, bm/4c)). Between the bounds, the power
varies with m according to the discussion above: low power
when insufficient resolution mixes and hides changes in α, a
peak at the minimum m value when resolution is adequate,
and then a steady decline as variance increases (though
with some fluctuations at very large m due to the small
amount of effective data available). The oscillatory nature
of the curves is an integer arithmetic effect, corresponding
to when a block boundary passes particularly close to n∗.
In particular, power is relatively higher at the ‘harmonics’
of m = 4, where power peaks. The general test has lower
power than the two-level test, consistent with the fact that
the ‘guessed’ change point of n/4 is close to n∗. In conclu-
sion, despite the ‘difficult’ choice of n∗, the wavelet tests
can successfully detect the lack of constancy in α over a
reasonable range of m values (together with a reasonable
choice of change point in the case of the two-level test),
with power a good fraction of the theoretical maximum.
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0.6 (∗’s) which agree closely.
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D. The practical test procedure

To analyse the existence, and check for the constancy of,
scaling in data, one can proceed as follows:
Initial Step Perform a global analysis of the data as pro-
posed in [3], [4]. The choice of wavelet is not crucial but the
number of vanishing moments N of the wavelets should be
chosen to ensureN ≥ α/2, and as high as necessary to elim-
inate possible trends. ¿From the Logscale Diagram (the yj

vs j plot) of the full data set, determine an initial scaling
range [j1, j2] and estimate α according to equation (3).

If scaling is found the question is: is the observed α̂
meaningful? and if no scaling range is found, it is: can
the data be split into sub-blocks over some or all of which
scaling exists?

Procedure on blocks
1. Choose a significance level δ.
2. Choose am>1, but not so large as to exclude the scales

of interest from each block (four is a practical minimum).
3. Examine the Logscale Diagrams for each block, and se-

lect a range of scales [j1(m), j2(m)] common to each where
scaling is observed. If no common range can be chosen,
scaling is not constant and the test at this m is not de-
fined. Go to step 5.
4. Compute and compare the threshold Cm(δ) and the

test statistic Vm and record the test outcome at this m.
5. If valid m values remain go to step 2.
6. Analyse the set of m dependent test outcomes to draw

the final conclusion as discussed above.

V. Application to Ethernet Data

To illustrate the use of the test on actual data, we apply
it to some of the celebrated Bellcore Ethernet data sets.
Recall briefly that these consist in lists of arrival times and
Ethernet frame lengths recorded on a local area computer
communications network. For a thorough description the
reader is refered to [14] (see also [3]). From each of the
data sets “pAug”, “pOct”, “OctExt” and “OctExt4” we
have extracted an aggregated rate process of arriving work,
that is a discrete time series corresponding to the number of
bytes transmitted during contiguous constant length time
intervals, here of length 12, 10, 1000, and 10 milliseconds
respectively, values chosen for convenience so that the se-
ries would have approximately the same length. The time
series for pAug and OctExt are plotted in the middle plots
in figures 6 and 7 respectively.

For each time series the Logscale Diagram (LD) (top
plot) is first computed with N = 3, and evidence for LRD
(0 < α̂ < 1) is seen in all but OctExt4. We then split into
blocks. For pAug, pOct, and OctExt we are interested
in checking that the evidence for LRD observed over the
whole series is confirmed as being valid and constant in
time, and for OctExt4 we wish to see if clear evidence of
scaling appears over subsets of the series.

The m = 12 estimates, made in each case with [j1, j2] =
[7,max-possible], are shown in the bottom right plots of
the figures together with their confidence intervals and the
outcome of the test with a significance level of 95%. The
observations were robust to changes ofm. For each of pAug
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Fig. 6. pAug. Left: the LD of the whole time series with N = 3.
Top right: the time series of bytes per 12ms intervals. Bottom
right: the estimates from 12 adjacent blocks with [j1, j2] = [7, 12],
and the test outcome: Accept H0. One then has α̂ = 0.64.
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Fig. 7. OctExt. Left: the LD of the whole time series with N = 3.
Top right: the time series of bytes per 1000ms intervals. Bottom
right: the estimates from 12 adjacent blocks with [j1, j2] = [7, 12],
and the test outcome: Reject H0: one cannot estimate α over the
whole series.

and pOct it was observed (not shown) that there is accept-
able evidence that scaling is present in the same scaling
range over each block, so that the assumptions of the test
are satisfied and can be applied. In both cases H0 was
accepted. One can therefore return with confidence to the
full series to estimate its value. For the times series OctExt
and OctExt4 it was also observed, albeit less convincingly,
that scaling is present in the same scaling range over each
block. In both cases the test strongly indicated that H0 be
rejected.

It is instructive to examine a little further the case of
OctExt. Since H0 was rejected, we must consider in hind-
sight that the LD of the entire series, shown in figure 7, is
meaningless from the point of view of measuring a scaling
exponent. This alignment in the LD is merely an unde-
sirable artifact resulting from the ‘averaging’ of the non-
stationarity across the series. The fact that in reality the
scaling is not constant is graphically illustrated in the ex-
treme variability of the α̂i in the lower plot of figure 7, as
detected in the negative test outcome.

VI. Conclusion

Two statistical tests were provided to investigate for-
mally the question of the constancy in time of scaling expo-
nents of scaling processes, the first in the general case and
the second for changes following a level shift. The prop-
erties of the tests are very close to those of corresponding
idealised inference problems, for which they are uniformly
most powerful invariant, with explicitly known power func-
tions. The reduction to such elegant tests is due the many
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advantageous properties of the wavelet based estimator of
scaling exponents which underlies the test design. In addi-
tion a methodology was developed for the use of the tests
in practical situations, which involves non-trivial compli-
cations, and examples are given using real data. A key
outcome is an ability to determine if an apparent scaling
observed across a time series is in fact meaningful, and the
corresponding estimate reliable.
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