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M
ultifractal analysis is becoming a standard statistical analysis technique. In
signal processing, it mostly consists of estimating scaling exponents charac-
terizing scale invariance properties. For practical purposes, confidence inter-
vals in estimation and p values in hypothesis testing are of primary
importance. In empirical multifractal analysis, the statistical performance of

estimation or test procedures remain beyond analytical derivation because of the theoretically
involved nature of multifractal processes. Therefore, the goal of this article is to show how non-
parametric bootstrap approaches circumvent such limitations and yield procedures that exhibit
satisfactory statistical performance and can hence be practically used on real-life data. Such
tools are illustrated at work on the analysis of the multifractal properties of empirical hydrody-
namic turbulence data.

MOTIVATION: BOOTSTRAP FOR MULTIFRACTAL ANALYSIS?

SCALE INVARIANCE
The concept of scale invariance, or scaling, refers to systems or signals for which no scale of time
or space can be identified as playing a characteristic role. Historically, scale invariance had been
tied to 1/f spectrum for stochastic second-order stationary processes. However, it has been
shown [1] that scale invariance can fruitfully be modeled with self-similar [2] and/or multifractal
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[3] processes. This implies two major changes in paradigms [4]:
First, the definition of scaling involves a whole range of statistical
orders (positive, negative, and fractional), and not only the sec-
ond one, as for the spectrum. Second, standard spectral esti-
mates are replaced with
multiresolution quantities, labeled
TX(a, t), i.e., quantities describing
the content of X (the process under
analysis) around a time position t and
a scale a. Standard examples for the
TX(a, t) are given by wavelet, incre-
ment, or box-aggregated coefficients.
Therefore, scale invariance is now
commonly and operationally defined
as the power law behaviors of the time average of the qth power
of the TX(a, t) with respect to the analysis scale a for a given
(large) range of scales a ∈ [am, aM], aM/am � 1: 

1
na

na∑

k=1

|TX(a, k)|q � cqaζ(q). (1)

PRACTICAL SCALING ANALYSIS
Practical scaling analysis mostly amounts to measuring the
scaling exponents ζ(q) from the observed data. The estimated
exponents are used for the physical understanding of the
mechanisms producing the data or for standard signal process-
ing tasks such as detection, identification, or classification.
Scaling analysis, often referred to as multifractal analysis, is
currently becoming a standard technique in statistical signal
processing available in most up-to-date empirical data analyses
toolboxes. It has been involved in a large variety of applications
and in the analysis of data with very different nature, ranging
from natural phenomena to human activities.

LIMITATIONS AND NEEDS 
IN PRACTICAL SCALING ANALYSIS
In real life applications, practical interest lies as much in the
confidence that can be granted to an estimate as in the esti-
mate itself. Equivalently, stronger inference can be drawn
from hypothesis tests if they output not only decisions but
also reliable p values or if their powers are known.
Surprisingly, and despite its being widely used and increasing-
ly popular, scaling analysis suffers here from a major difficul-
ty: Little is known theoretically on the statistical performance
of the scaling analysis procedures commonly used in practice,
and essentially based on log-log plots, as suggested by (1).
When X is a Gaussian self-similar process, the statistical per-
formances can be studied theoretically and asymptotical
results (in the limit of large observation durations) can be
established (see, e.g., [4]–[7]). However, for multifractal
processes, no theoretical statistical performance study is
available, and little has been done empirically (see, a con-
trario, [8]). This is mainly due to the fact that most, if not all,
stochastic multifractal processes practically used are defined

from multiplicative martingales. The construction of such
mathematical models is involved and results in strongly
dependent and heavy tailed (hence strongly non-Gaussian)
stochastic processes. The statistical performance of the analy-

sis procedures hence turn out to
be too difficult for analytical deri-
vation. This implies that practi-
tioners are lacking tools to assess
the confidence they should grant
to the obtained estimates. Along
the same line, no hypothesis test
validating the precise multifractal
nature and properties of the data
under analysis is available, while

this issue is mentioned as crucial in most contributions where
multifractal analysis is used. For instance, there is so far no
statistical procedure available in the literature that enables us
to decide whether real-life data are better described by
monofractal self-similar processes [such as fractional
Brownian motion (FBM)] or by truly multifractal processes.
Also, practitioners often need to decide whether a simple mul-
tifractal model satisfactorily matches the data or if a more
elaborate model is to be involved. Answering such questions is
of major theoretical and practical importance. First, the
inferred understanding of the phenomena producing the data
under analysis may be dramatically changed. Self similar
processes are deeply related to random walks and additive phe-
nomena, while multifractal processes are historically tied to
multiplicative structures. Second, for these different classes of
models, both the number of parameters that need to be
matched and the computational complexities that need to be
handled are radically different. However, despite the huge col-
lection of research articles describing the practical use of mul-
tifractal analysis on real-life data, the state-of-the-art tools to
assess confidence in estimates and decision making remained,
up to a recent past, the experience and eyes of the practitioners. 

NONSTANDARD STATISTICAL TECHNIQUES
In this article, we illustrate how the use of nonstandard statisti-
cal techniques such as bootstrap may bring relevant solutions
to overcome the difficulties mentioned above. The most recent
and up-to-date theoretical developments (wavelet leaders) in
multifractal analysis are first given a tutorial introduction.
Bootstrap procedures applied to multiresolution quantities are
then detailed. They aim at providing the practitioners with con-
fidence intervals for multifractal attribute estimates and
hypothesis tests for assessing the multifractal nature of the data
under analysis. The effectiveness and benefits of these proce-
dures are studied and illustrated on reference synthetic multi-
fractal processes. We end up with a set of procedures that can
be applied to a single observation of data with finite duration
and that output not only estimates of multifractal attributes
but also confidence intervals for theses estimates and not only
the test decisions but also the p values obtained for a priori
chosen null hypotheses.

PRACTICAL SCALING ANALYSIS
MOSTLY AMOUNTS TO

MEASURING THE SCALING
EXPONENTS ζ(q)FROM THE

OBSERVED DATA.



HYDRODYNAMIC TURBULENCE
Hydrodynamic turbulence (cf. [9] for a review) is the scientific
domain that gave birth to the concept of multifractal. The sem-
inal works by Yaglom and Mandelbrot in the 1960s and 1970s
indeed proposed to describe the celebrated Richardson energy
cascade of turbulence flows by means of split and multiply iter-
ative constructions. It has since been recognized that velocity
or dissipation turbulence fields pos-
sess scale invariance properties and
are well described with multifractal
models. It remains, however, to
decide whether a simple log-normal
multifractal model or a more elabo-
rate log-Poisson one better fits the
data, an open and much controver-
sial issue. Answering such a question
is of theoretical importance as it may
help to better understand the physi-
cal mechanisms at work in the development of turbulence
flows. The bootstrap-based estimation procedures and hypothe-
sis tests enable us to revisit this old question. 

MULTIFRACTAL ANALYSIS

MULTIFRACTAL SPECTRUM
Multifractal analysis describes the fluctuations along time t
of the regularity of the sample path of a function X(t). This
is achieved by comparing the local variations of X(t) ,
around time position t0, against a local power law behavior:
X(t0) is said to belong to Cα(t0) with α ≥ 0 if there exists a
posit ive constant C and a polynomial  P,  satis fying
deg(P) < α ,  such that |X(t) − Pt0(t)| ≤ C|t − t0|α .  The
Hölder exponent is  def ined as the largest  such α :
h(t0) = sup{α : X ∈ Cα(t0)} . The information regarding the
variability of the regularity of X(t) along t is usually
described through the so-called singularity (or multifractal)
spectrum D(h). It is defined as the Hausdorff dimension of
the set of points {tk, k ∈ K} on the real line, where the
Hölder exponent takes the value h. For a detailed introduc-
tion to multifractal analysis, see [3] and [10]. A key practi-
cal issue consists of obtaining D(h) from a single finite
duration observation of data. This can be achieved using the
wavelet leader multifractal formalism [10], [11].

WAVELET LEADER MULTIFRACTAL FORMALISM

WAVELET LEADERS
Let ψ0(t) be an elementary function, referred to as the
mother-wavelet. It is characterized by its number of van-
ishing moments, a strictly positive integer Nψ ≥ 1, such
tha t  ∀k = 0, 1, . . . , Nψ − 1, 

∫
R

tkψ0(t)dt ≡ 0, and∫
R

tNψ ψ0(t)dt �= 0. Also, the collection of dilated and translated
templates of ψ0, {ψ j,k(t) = 2− j/2ψ0(2− jt − k), j ∈ Z, k ∈ Z }
form an orthonormal basis of L2(R). The discrete wavelet trans-
form (DWT) of X is defined through its coefficients

dX( j, k) = ∫
R

X(t) 2− jψ0(2− jt − k) dt (cf. [12] for details on
wavelet transforms). 

Let us now further assume that ψ0(t) has a compact time support,
and let us define dyadic intervals as λ = λ j,k = [k2 j, (k + 1)2 j).
Also, let 3λ denote the union of the interval λ with its two adjacent
dyadic intervals: 3λ j,k = λ j,k−1 ∪ λ j,k ∪ λ j,k+1. Following [10], we
define wavelet leaders as: LX( j, k) ≡ Lλ = supλ′⊂3λ |dX,λ′ |. Hence,

LX( j, k) consists of the largest wavelet
coefficient dX( j ′, k ′) computed at
all finer scales 2 j ′ ≤ 2 j within a
narrow t ime neighborhood
(k − 1) · 2 j ≤ 2 j ′

k ′ < (k + 2) · 2 j .
In all cases and for all processes,
under mild regularity conditions
on X ,  wavelet leaders exactly
reproduce the Hölder exponent of
X at t0: h(t0) is the supremum of
the values h such that

LX( j, k) ≤ C2 jh is verified in the limit of fine scales (2 j → 0)
and for j, k such that 2 jk = t0 [10]. The general validity of
this local power law behavior is the key property ensuring
the validity and relevance of the multifractal formalism
developed in the following.

MULTIFRACTAL FORMALISM
For fixed analysis scales a = 2 j, the time averages of (the
qth powers of) the LX( j, k) are referred to as the structure
functions (with nj the number of LX( j, k) available at scale
2 j) :  SL( j, q) = (1/nj)�

nj

k=1LX( j, k)q .  Fol lowing develop-
ments in [13] and intuitions based on the fact that wavelet
leaders reproduce exactly Hölder regularity, it can be
shown [10], [11] that, under mild uniform Hölder regular-
ity condition on X(t), 

SL( j, q) = Fq2 jζ(q), (2)

in the limit 2 j → 0. Moreover, the Legendre transform of the
scaling exponents ζ(q) provides an upper bound for the multi-
fractal spectrum D(h) ≤ minq�=0(1 + qh − ζ(q)). This inequali-
ty turns into an equality for most commonly used multifractal
models. Hence, the multifractal formalism consists of obtaining
D(h) from the measurement of the ζ(q).

LOG CUMULANTS
The S L( j, q), consisting of time averages, can be read as sample
mean estimators for the ensemble averages ELX( j, ·)q. This
heuristic analysis was first proposed using increments in [14]
and further developed for continuous wavelet coefficients in
[15]. We further extend this interpretation to wavelet leaders.
Hence, (2) is rewritten as ELX( j, ·)q = Fq2 jζ(q) . When
ELX( j, ·)q is finite, a standard generating function expansion
yields: ln Eeq ln LX ( j,·) = ∑∞

p=1 CL( j, p)(q p/p !) , where CL( j, p)
stands for the cumulants of order p ≥ 1 of the ln LX( j, ·).
Combining the equations above compels CL( j, p) to satisfy the
following scale dependence: 
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∀p ≥ 1, CL( j, p) = c0,p + cp ln 2 j (3)

and yields ζ(q) = ∑∞
p=1 cp(qp/p!). The knowledge of the ζ(q)

(and therefore of D(h)) can hence be rephrased in terms of the log
cumulants cp. More specifically, c1 mostly characterizes the loca-
tion of the maximum of D(h), c2 its width and c3 its asymmetry.
The triplet (c1, c2, c3) thus gathers most of the multifractal
information practically available from empirical data. For practi-
cal purposes, approximating the functions ζ(q) or D(h) with a
limited number of cp can hence significantly ease the classifica-
tion or detection tasks based on multifractal (MF) attributes. 

MONO- VERSUS MULTIFRACTAL
A crucial question in applications lies in deciding whether the
data should be described by a monofractal process [2], or with
multifractal models. For the former, if the multifractal formal-
ism holds (which is the case for Gaussian self-similar processes
with stationary increments), then ζ(q) = qH and hence
∀p ≥ 2 : cp ≡ 0, while for most multifractal processes of inter-
est, c2 �= 0. This is where estimating precisely c2 and testing
c2 = 0 or not, is useful.

WAVELET LEADERS VERSUS WAVELET COEFFICIENTS
Previous multifractal formalisms, based on increments or
wavelet coefficients instead of wavelet leaders, fail to provide the
practitioners with a correct analysis of the entire multifractal
spectrum and do not generally hold, even for standard processes
such as FBMs. In contrast, the wavelet leader multifractal for-
malism holds for most multifractal processes of practical inter-
est and gives access to their entire multifractal spectrum [11].
Another multifractal formalism based on the skeleton of the
continuous wavelet transform has been previously proposed and
is also commonly used in the context of turbulence, (see, e.g.,
[16]). For a detailed analysis of the theoretical and practical rele-
vance and benefits of the use of wavelet leaders for multifractal
analysis, see [8], [10], and [11]. 

MULTIFRACTAL PARAMETER ESTIMATION
Empirical multifractal analysis mostly consists of estimating the
ζ(q) or the cp. Equations (2) and (3) suggest that estimations
are to be performed by means of linear regressions in
log2 2 j = j versus log2 SL( j, q) and ln 2 j versus CL( j, q) coordi-
nates, respectively.

ζ̂ (q) =
j2∑

j= j1

wj log2 S L( j, q), (4)

ĉp = (log2 e) ·
j2∑

j= j1

wjĈ
L( j, p), (5)

where the estimates ĈL( j, p) for the cumulants of ln LX( j, ·) are
obtained from standard sample cumulant estimators. To esti-
mate the multifractal spectrum, we can use a parametric formu-
lation, proposed in [17], that avoids the computation of the
Legendre transform: 

D̂(q) =
j2∑

j= j1

wjU
L( j, q), ĥ(q) =

j2∑

j= j1

wjV
L( j, q), (6)

where U L( j, q) = �
nj

k=1 R q
X( j, k ) log 2 R q

X ( j, k) + log 2 nj ,
V L( j, q) = �

nj

k=1 R q
X( j, k ) log 2 LX( j, k ) and R q

X( j, k ) = LX

( j, k )q/�
nj

k=1LX( j, k)q.

The weights wj have to satisfy the constraints � j2
j1

jwj ≡ 1
and �

j2
j1

wj ≡ 0 and can be expressed as wj = bj

((V0 j− V1)/(V0 V2 − V2
1 )) with Vi = �

j2
j1

jibj, i = 0, 1, 2 . The
freely selectable positive numbers bj reflect the confidence
granted to each ĈL( j, p) or log2 SL( j, q). Following [4], we per-
form weighted (bj = nj) or nonweighted (bj = 1) linear fits.

BOOTSTRAP AND MULTIFRACTAL ANALYSIS
Standard methods for estimating confidence limits and null
distributions are based on Gaussian theory. For instance, for
Gaussian self-similar processes, asymptotic expansions for
confidence intervals of scaling exponents have been derived
[4], [7]. However, such approximations perform poorly when
applied to multifractal processes because of their non-
Gaussian nature. Practical multifractal analysis demands
robust statistical techniques such as nonparametric bootstrap;
indeed, the aim of nonparametric bootstrap is to compensate
for the fact that little, if not nothing, is known about the mod-
els underlying the analyzed data besides their possessing some
form of scale invariance.

NONPARAMETRIC BOOTSTRAP
In a nutshell, nonparametric bootstrap makes use of the empir-
ical distribution, obtained from the available sample, to approx-
imate the unknown population distribution from which the
sample is drawn. This empirical distribution is then used to
estimate the distribution of the estimators of the targeted pop-
ulation parameters. More precisely, a collection of resamples is
constructed, each resample being drawn with replacement
from the original sample. Then the estimates are calculated for
each resample, and hence, their empirical distributions can be
estimated (see, e.g., [18] and [19]).

BLOCK BOOTSTRAP
The simple nonparametric bootstrap procedure needs to be
adapted if the sample X is not independent identically distrib-
uted (i.i.d.) but correlated. Then, rather than drawing a single
observation at a time, blocks of observations of length l are
drawn randomly with replacement. This ensures that the
dependence structure of the original observations is preserved
within each block. Among the various block bootstrap methods,
the popular moving blocks and circular block bootstrap belong
to the most performant ones in many situations [20]. They are
based on overlapping blocks Bi = {Xi, . . . , Xi+l−1},
i = 1, . . . , n − l + 1 of fixed size l. The circular block bootstrap
uses additional periodically extended blocks at the end of the
sample, ensuring that the same weight is assigned to all observa-
tions. This latter choice is used in the multifractal analysis
resampling scheme described below.



RESAMPLING SCHEME
The bootstrap procedure, adapted for multifractal analysis, is
illustrated in Figure 1, together with the estimation procedures
described in the previous section: At first, the wavelet leaders
L j = {LX( j, 1), . . . , LX( j, nj)}, j = 1, . . . , jmax are calculated
from the sample X . Then, at each scale j, R bootstrap resam-
ples L∗(1)

j , . . . ,L∗(R)
j are generated from the original sample of

leaders L j. Each resample L∗(r)
j = {L∗(r)

X ( j, 1), . . . , L∗(r)
X ( j, nj)}

is an unsorted collection of nj sample points, drawn blockwise
and with replacement from the original sample L j. For each
resample, the R bootstrap structure functions {SL∗(r)( j, q)}R

r=1,
{UL∗(r)( j, q)}R

r=1, {VL∗(r)( j, q)}R
r=1 and {CL∗(r)( j, p)}R

r=1 are cal-
culated. Finally, we obtain the R bootstrap estimates by plug-
ging-in the bootstrap structure function estimations in (4)–(6).

BLOCK SIZE
An optimal block length l exists that theoretically depends joint-
ly on the correlation, the length of the sample, and the defini-
tion of the estimator itself (cf. [20]). In the case of DWTs,
correlation among wavelet coefficients remains significant over
an interval whose size is of the order of magnitude of the time
support of the mother wavelet Mψ and then decreases exponen-
tially. By construction of the DWT, the length of the sample
nj ≈ n · 2− j is different at each scale j. Therefore, the optimal
block length at each scale should be different. Numerical simu-

lations show that fixing the same block length lj = l rather than
choosing the optimal block length for each sample size n and
scale j has only very little impact on the performance of the
bootstrap estimators as soon as l ≥ Mψ . We therefore fix
l = Mψ for each scale j and sample size n (for the Daubechies
wavelets used here: Mψ = 2 · Nψ ).

BOOTSTRAP CONFIDENCE LIMITS
The empirical distributions of the bootstrap estimates are used to
approximate the distributions of the estimators in (4)–(6) and
hence for constructing confidence limits for these quantities. 

PERCENTILE LIMITS
The equitailed (1 − α) percentile confidence limit for the
parameter � ∈ {ζ(q), D(q), h(q), cp} is defined as

[
�̂∗

α
2
; �̂∗

(1− α
2 )

]
.

Here, �̂∗
α is the α quantile of the empirical distribution of �̂∗,

the bootstrap equivalents of (4)–(6).

STUDENTIZING
If accurate standard deviation estimates for
�̂ ∈ {ζ̂ (q), D̂(q), ĥ(q), ĉp} are available, confidence limits
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[FIG1] Bootstrap-based multifractal parameter estimation with confidence intervals scheme. (a) From the data, the wavelet leaders are
computed (top). From the wavelet leaders, structure functions SL(j, q) and CL(j, p) (middle) and the corresponding estimates for the
multifractal parameters � ∈ {ζ(q), D(q), h(q), cp} (bottom) are obtained. (b) At each scale independently, the wavelet leaders are block
bootstrapped (top). From these R resamples, confidences intervals for SL(j, q) and CL(j, p) (middle) and for the multifractal attributes
(bottom) are obtained and reported on the original estimates (in red).
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based on the distribution of the studentized parameter
�̂ = (�̂ − �)/σ̂ ∗ , are intrinsically more accurate (cf. [19]).
Here σ̂ ∗ is the bootstrap standard deviation of �̂ estimated on
the resamples �̂∗. The bootstrap approximation to the studen-
tized distribution is given by the empirical distribution of
�̂∗( r) = (�̂∗( r) − �̂)/(σ̂ ∗∗( r)), r = 1, . . . , R , where
σ̂ ∗∗ (r) = Std ∗∗�̂∗∗ (r,s) are the bootstrap standard deviation
estimates of �̂∗(r) obtained from S double bootstrap estimates
�̂∗∗(r,s), s = 1, . . . , S. The (1 − α) studentized confidence limit
for � is defined as [

�̂ − σ̂ ∗�̂∗
(1− α

2 )
; �̂ − σ̂ ∗�̂∗

α
2

]
,

where �̂∗
α is the α quantile of the empirical distribution of the

studentized variable �̂∗.

ESTIMATION FROM A SINGLE OBSERVATION
The procedures (estimates and confidence intervals) can be
applied to a single observation of data with finite (possibly short)
duration, as illustrated in Figure 1(a) and Figure 2 with synthet-
ic processes and hydrodynamic turbulence data, respectively. 

BOOTSTRAP HYPOTHESIS TESTS

TESTS ON LOG CUMULANTS
As discussed previously, key issues in practical multifractal
analysis consist of deciding whether monofractal or multifrac-
tal processes better match the data and whether simple
(cp ≡ 0, p ≥ 3) or more elaborate multifractal models are pre-
ferred. As detailed previously, the log cumulants c1, c2, c3 ,
provide us with central attributes to quantify the multifractal
nature of the data. Therefore, being able to perform statistical
tests on cp constitutes a major step to address such issues. We
study hypothesis tests of the form H0 : cp = cp,0 against the
double-sided alternative cp �= cp,0. The tests are based on the
basic and on the studentized test statistics

t̂B = ĉp − cp,0, t̂S = ĉp − cp,0

σ̂ ∗ . (7)

STATISTICAL TESTS
A significance (1 − α) test rejects H0 when the probability of
observing t̂ under the hypothesis is smaller than α. More precise-
ly, the test dα reads dα = 1 if t̂ /∈ T(1−α) and dα = 0, otherwise,
where the acceptance region T(1−α) is defined as
Pr{t ∈ T(1−α)|PH0

t } = 1 − α . A good test should have both low
probability of rejecting H0 when it is true, and high probability
when H0 is false. The former is the significance α and is usually,
in practice, set a priori. The probability of rejecting
H0 : cp = cp,0 when it is false is called the power β of the test
against a specific true alternative cp,A. The p-value p of an obser-
vation t̂ is defined as the critical value α for which t̂ would be
regarded as just decisive against H0 and quantifies the plausibili-
ty of rejecting H0 having observed t̂ (see e.g., [21] for more
details on tests).

BOOTSTRAP TESTS
The distribution of the test statistic under H0 ,
PH0

t (τ) = Pr(t < τ |H0), is unknown in most situations and in
practice often approximated by parametric models. Due to the
lack of knowledge on the statistical properties of multiresolu-
tion quantities for multifractal processes, the nonparametric
bootstrap scheme described previously is used to obtain esti-
mations of the null distribution of t̂. They are given by the
empirical distributions of t̂∗B and t̂∗S [22]–[24]

{
t̂∗(r)
B = ĉ∗(r)

p − ĉp

}R

r=1
,

{
t̂∗(r)
S = ĉ∗(r)

p − ĉp

σ̂ ∗∗(r)

}R

r=1

.

The approximate acceptance regions are now constructed from
the quantiles of these estimated distributions 

T̂ per
(1−α)

=
[
− t̂∗B(1− α

2 ),− t̂∗B( α
2 )

]
, T̂ stu

(1−α) =
[

t̂∗S,( α
2 ), t̂∗S, (1− α

2 )

]
.

Plugged into the bootstrap test formulation, they give rise to the
percentile and the studentized bootstrap test, respectively.

OTHER TESTS AND CONFIDENCE LIMITS
There exists a variety of bootstrap tests and confidence limits
(see e.g., [23], [24]). We chose the percentile and studentized
constructions as one representative of simple and double boot-
strap methods. The detailed performance of various bootstrap
tests were carefully compared in the context of multifractal
analysis in [8]. Generally, double bootstrap methods are asymp-
totically more accurate, at the price, however, of a computation-
al load increase by a factor ≈ S when applied naively, which may
not be acceptable in numerous practical situations.

STRUCTURE FUNCTIONS CONFIDENCE LIMITS:
REGRESSION RANGE SELECTION
A key issue in practical multifractal analysis remains the
selection of an appropriate range of scales for the regressions
(4)–(6). As with real-life empirical data, scaling properties are
likely to exist only over a finite range of scales. This selection
is usually performed by eyes by practitioners. The empirical
distributions of the bootstrap structure functions can be used
to construct confidence limits for the structure functions
S( j, q) and C( j, p), in similar ways as confidence limits for the
estimates themselves (cf. Figure 1). Such confidence limits
can help the practitioner in selecting the operational scaling
range by choosing the scales for which the regression line lies
within confidence intervals. This is the first step toward a true
goodness-of-fit statistical test, an issue currently under analy-
sis. To illustrate the regression range selection issue, Figure
1(a) and Figure 2(a) and (b) show structure functions togeth-
er with percentile bootstrap confidence limits obtained from a
single observation of a synthetic multifractal process and real
hydrodynamic data, respectively.



BOOTSTRAP MULTIFRACTAL ANALYSIS: 
STATISTICAL PERFORMANCE

SYNTHETIC MULTIFRACTAL PROCESSES
To assess the statistical performance of the proposed bootstrap
procedures, we apply them to three different types of stochas-
tic processes with a priori known and controlled scaling and
multifractal properties, FBM [2], Multifractal random walk
(MRW) [25] and FBM in compound Poisson motion (CPM)
multifractal (MF) time (CPM-MF-FBM) [26]. These three
processes are chosen for their being representative of large
classes of situations: FBM is a Gaussian monofractal process,
cp = 0,∀p ≥ 2, while MRW and CPM-MF-FBM are non-
Gaussian heavy tail multifractal processes. The pair FBM/MRW
can be used to validate estimation and hypothesis tests related
to nonzero c2 while MRW/CPM-MF-FBM enables to assess the
relevance of the estimation and hypothesis tests for nonzero

c3 , as for MRW cp = 0,∀p ≥ 3. To the
best of our knowledge, this last issue has
never been addressed in the literature.

ESTIMATION PROCEDURES

SIMULATION SETUP
The results presented here are obtained
using Daubechies wavelets with Nψ = 3,
sample size n = 215 , NMC = 1,000 and
bj= nj. The bootstrap parameters are fixed
to l = 2 · Nψ = 6, and R = 399, S = 50.
The nominal significance is chosen to be
α = 0.05. Parameters (c1, c2, c3) for the
three processes have been varied over
wide ranges.

PERFORMANCE OF PARAMETER
ESTIMATORS
The performance of the estimators in
(4)–(6), �̂ ∈ {ζ̂ (q), D̂(q), ĥ(q), ĉp} , are
quantified by their (root) mean squared
error (MSE) (V̂arNMC and ÊNMC stand for
the sample variance and sample mean
estimates obtained from NMC independent
realizations)

MSE�̂
NMC

=
√

V̂arNMC�̂ + (ÊNMC�̂ − �)2.

MSE results are compared in Table 1
(obtained from CPM-MF-FBM). For nega-
tive q, wavelet coefficient-based estima-
tors exhibit very large MSEs and are not
meaningful: Hence, they can not capture
the entire multifractal spectrum of the
analyzed process. Moreover, compared to
wavelet coefficient-based estimates,
wavelet leader estimates exhibit signifi-

cant MSE gains for the estimations of the cp, p ≥ 2 (i.e., for the
parameters measuring the discrepancies between mono- and
multifractality). This clearly indicates that, while the estimation
of self-similar attributes can satisfactorily be conducted with
wavelet coefficients, multifractal attribute estimations require
the use of wavelet leaders to be reliable. Note moreover that, to
the best of our knowledge, it has never been shown before in the
literature that a nonzero c3 can be correctly estimated.

COVERAGE OF BOOTSTRAP CONFIDENCE INTERVALS
The reliability of the percentile and the studentized confi-
dence limits CI� for � ∈ {ζ(q), D(q), h(q), cp} are evaluated
through their empirical coverage: Cover�̂NMC

=
ÊNMC I{� ∈ ĈI�} , where I{·} is the indicator function of the
event {·}. Thus, the empirical coverage consists of the esti-
mated probability that the parameter � lies in the estimated
confidence region. Results in Table 1 clearly show that the
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[FIG2] Multifractal analysis of Turbulence data. (a) Structure functions (q = 2) and (b)
cumulant estimates (p = 2) for a single run of Jet Turbulence data (n = 220). The
confidence limits confirm the choice of regression range, j = 9 − 13. (c) Estimates (in solid
black) of scaling exponent ζ(q), (d) multifractal spectrum D(h), and (e)–(g) log cumulants
log cp. The boxplots are obtained on ĉ∗

p and show the lower and upper quartile, median,
and support of their empirical distributions. All bootstrap confidence limits (in red) are
obtained with the percentile method (α = 0.05).
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leader-based bootstrap confidence limits closely reproduce
the target coverage of 95% and are thus highly reliable. The
coefficient-based confidence limits have similar performance,
with the exception of estimates for negative q. The calcula-
tion intensive studentized limits do not perform better than
the percentile limits.

HYPOTHESIS TESTS

SIGNIFICANCE OF BOOTSTRAP TESTS
The actual significance of the tests are estimated as
α̂NMC = ÊNMC{d̂α|cp = cp,0} and should ideally equal the preset
significance α. Results obtained for CPM-MF-FBM are summa-
rized in Table 2. We observe that for both leaders and coeffi-
cients and for tests on both c2 and c3, the actual significance

of α = 0.05 is reproduced closely. This indicates that the non-
parametric bootstrap null distribution estimates t̂∗(r)

B and t̂∗(r)
S

are valid approximations to the real null distributions of the
test statistics. 

POWER OF BOOTSTRAP TESTS
The power of the tests on H0 : cp = cp,0 against a certain
al ternat ive  cp,A �= cp,0 are  est imated as
β̂NMC(cp,A, α) = ÊNMC{d̂α|cp = cp,A} and the larger, the bet-
ter. With p = 2, the test essentially aims at rejecting self-similar-
ity in favor of multifractality. The power of the tests H0 : c2 = 0
against the alternatives c2,A = {−0.08,−0.07, . . . ,−0.01} is
assessed using MRW. Results are shown in Figure 3 and indicate
that the leader-based tests have consistently much larger powers
than the coefficient-based tests. Hence, whereas a wavelet

[FIG3] Powers of c2,0 = 0 against c2,A �= 0. (a) Powers β̂NMC of percentile and (b) studentized tests of c2,0 = 0 against multiple
alternatives c2 = c2,A for MRW (blue circles: wavelet coefficients—red crosses: wavelet leaders).
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[TABLE 2]  SIGNIFICANCE AND POWERS OF WAVELET COEFFICIENT AND LEADER-BASED BOOTSTRAP TESTS. BOTH FOR c2, c3,
LEADER-BASED TEST POSSESS SIGNIFICANTLY LARGER POWERS. THE NOMINAL SIGNIFICANCE IS α = 0.05 AND IS 
SATISFACTORILY REPRODUCED.

c2 = −0.08 c3 = 0.0311

dX L X dX L X

PER STU PER STU PER STU PER STU

cp,0 = cp, α̂NMC 0.07 0.05 0.05 0.05 0.10 0.10 0.07 0.06
cp,0 = 0, β̂NMC 0.57 0.40 1.00 0.96 0.13 0.11 0.39 0.28
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dX L X

TRUE EST (MSE) PER STU EST (MSE) PER STU

ζ(−1) −0.85 −0.95 (0.27) 84 87 −0.83 (0.02) 92 97
D(−1) 0.95 0.56 (0.62) 68 80 0.95 (0.02) 86 88
h(−1) 0.90 1.40 (0.87) 74 83 0.88 (0.03) 88 92
ζ(+1) 0.77 0.76 (0.01) 98 99 0.76 (0.01) 94 99
D(+1) 0.97 0.97 (0.01) 95 97 0.97 (0.01) 95 96
h(+1) 0.73 0.73 (0.02) 96 99 0.73 (0.02) 91 98
c1 0.80 0.80 (0.02) 98 99 0.79 (0.02) 94 98
c2 −0.08 −0.08 (0.04) 93 95 −0.07 (0.02) 95 96
c3 0.03 0.05 (0.26) 90 93 0.03 (0.09) 90 94

[TABLE 1] ESTIMATION PERFORMANCE AND CONFIDENCE INTERVAL COVERAGE. TRUE VALUE (LEFT COLUMN) AGAINST
WAVELET COEFFICIENT (dX ) AND WAVELET LEADER (LX ) ESTIMATES TOGETHER WITH THEIR (ROOT) MEAN SQUARED ERROR
MSE AND EMPIRICAL COVERAGES FOR THE PERCENTILE AND STUDENTIZED CONFIDENCE INTERVALS. THE TARGETED
COVERAGE IS 95% AND IS SATISFACTORILY REPRODUCED FOR LX .



coefficient-based multifractal analysis would have poor perform-
ance in detecting that the analyzed data do depart from a
monofractal model, a wavelet leader-based analysis rejects H0

with high probability, even in situations where the alternative is
close to the null value [8].

The power of a test postulating that c3 = 0 is estimated by
applying it to realizations of CPM-MF-FBM, for which
c3 = c3,A = 0.0311 �= 0. Results, reported in Table 2, show that
wavelet leader-based tests are much more powerful than wavelet
coefficient-based tests, hence allowing satisfactory detection of
true departure from zero values for c3. Complementary results
for estimations and tests can be found in [8].

CONCLUSIONS
The results obtained from the numerical simulations described
here as well as the more complete results reported in [8] yield
a number of conclusions. First, besides being mathematically
well-grounded with respect to multifractal analysis, wavelet
leaders exhibit significantly enhanced statistical performance
compared to wavelet coefficients. This is notably true for the
parameters controlling the difference between monofractal
self-similar Gaussian and multifractal non-Gaussian processes,
such as scaling exponents with negative statistical orders q or
log cumulants cp with p ≥ 2. Second, bootstrap procedures
provide practitioners with satisfactory confidence limits and
hypothesis test p-values for multifractal parameters. Third, the
computationally cheap percentile method achieves already
excellent performance for both confidence limits and tests. It
may thus be preferred over studentized or other double boot-
strap methods in empirical multifractal analysis, when compu-
tation time is critical. In conclusion, combining the
theoretically recommended and statistically efficient wavelet
leader multifractal analysis with bootstrap procedures provides
the practitioner with an empirical multifractal analysis toolbox
enabling to estimate multifractal attributes, to provide (boot-
strap-based) confidence intervals for these estimates and
hypothesis tests for the values of these parameters, and hence
to assess the multifractal properties of real-world empirical
data. There are two key practical contributions. These proce-
dures can be applied to a single observation of data with finite
(possibly short) duration; they output not only multifractal
parameter estimates and test decisions, but also estimated
confidence limits and p-values.

MULTIFRACTAL ANALYSIS IN 
HYDRODYNAMIC TURBULENCE

TURBULENCE AND SCALING: 
A SHORT SURVEY
After the early work of Richardson in the 1920s, the heuristic
understanding of hydrodynamic turbulence relates the erratic
behaviors of most natural flows to a transfer of energy from
large to small flow scales. This celebrated energy cascade-based
heuristic analysis of turbulence flows is deeply associated with
scale invariance. Between a coarse scale (where energy is inject-
ed by an external forcing) and a fine scale (where energy is dis-
sipated by viscous friction), no characteristic scale can be
identified. It led to the use of stochastic processes with built-in
scale invariance properties for turbulence modeling. In 1941,
Kolmogorov proposed the first stochastic description of turbu-
lence based on FBM, hence on a monofractal model. However,
after the seminal work by Yaglom, the energy transfer has often
been modeled via split/multiply iterative random procedures,
which match the physical intuitions beyond the vorticity
stretching mechanisms at work in turbulence flows.
Mandelbrot in the 1970s fruitfully gathered these models in the
unified framework of multiplicative martingales and studied
their properties [1]. Nowadays most practitioners agree on the
existence of scale invariance in turbulence data and, following
the analyses of Parisi and Frisch [27], on its multifractal nature.
However, a major open issue consists of deciding which partic-
ular multifractal process better models turbulence flows. A
large variety of cascades has been proposed over the last 30
years, each trying to better fit experimental data and/or to bet-
ter account for a specific fluid flow property and yielding a dif-
ferent prediction for the multifractal spectrum. Let us
concentrate on two among the most popular such models. In
1962, Obukhov and Kolmogorov proposed a model mostly
based on a law of large numbers argument and referred to as
the log-normal multifractal model (predicting cp ≡ 0 for
p ≥ 3). More recently, She and Lévêque proposed an alternative
construction relying on the key assumption that energy dissi-
pation gradients must remain finite within turbulence flows,
referred to as the log-Poisson model (predicting ∀p : cp �= 0).
Discriminating between the log-normal and log-Poisson mod-
els hence requires the use of tools providing us with an accu-
rate estimate for the c3 parameter and with a statistical test

JET TURBULENCE DATA WIND TUNNEL DATA

p 1 2 3 1 2 3

ĉp 0.304 −0.021 −0.000 0.352 −0.026 0.001

LOWper 0.287 −0.026 −0.002 0.342 −0.029 −0.001
HIGHper 0.321 −0.016 0.002 0.361 −0.022 0.002
LOWstu 0.284 −0.026 −0.002 0.341 −0.030 −0.001
HIGHstu 0.326 −0.014 0.002 0.362 −0.022 0.003

[TABLE 3] MULTIFRACTAL PARAMETER ESTIMATES FOR TURBULENCE DATA. JET TURBULENCE (LEFT) AND WIND TUNNEL
TURBULENCE (RIGHT) WAVELET-LEADER-BASED ESTIMATES OF LOG CUMULANTS cp, TOGETHER WITH 95% BOOTSTRAP 
CONFIDENCE LIMITS. THE RESULTS ARE AVERAGED OVER RUNS.

IEEE SIGNAL PROCESSING MAGAZINE [46] JULY 2007



aiming at rejecting the null-hypothesis c3 ≡ 0. For the log-nor-
mal and log-Poisson models, the canonical values for (c2, c3)

are (−0.0250, 0) and (−0.0365, 0.0049), respectively (cf. Table
4). For thorough introductions to turbulence, see [9] and [28]. 

DATA DESCRIPTION
In this article, we analyze large turbulence data sets from two
different experiments. They consists of high quality, high sam-
pling rate and long observation duration longitudinal Eulerian
velocity signals measured with hot-wire anemometry tech-
niques. The first set is obtained from a jet turbulence experi-
ment, with approximate (Taylor scale based) Reynolds number
Rλ � 580, due to C. Baudet [29] The second data set consists of
wind-tunnel turbulence (1995 campaign), with Rλ � 2000, due
to Y. Gagne. It is worth mentioning that these data sets consist
of 79 and 24 million samples, respectively! 

ESTIMATION PARAMETERS
The remaining estimation parameters are set to bj= 1,
l = 2 · Nψ = 6 and R = 399, S = 50, α = 0.05. According to
turbulence common understanding, the power law behavior
associated with scale invariance takes place in the so called iner-
tial range of scales, which spreads from above the Taylor scale to
below the integral scale, which are estimated at (in sample num-
bers) 26 and 213 for the Jet data set and 24 and 213 for the Wind-
Tunnel, respectively. Careful analysis of the structure functions
(as those in Figure 2) leads to the choices [ j1, j2] = [9, 13] for
the Jet data set and [ j1, j2] = [6, 10] for Wind-Tunnel data set.
In Turbulence analysis, selecting the regression range is, in itself
an issue, which is not further discussed here.

RESULTS
From the structure functions [cf. Figure 2 (top row)], estimates
for the multifractal attributes ζ(q), D(h), cp, computed from a
single run with n = 220, are shown together with their 95%
percentile confidence intervals (second and third row).
Estimates and confidence intervals confirm that the data are
multifractal: ζ(q) is not a linear function of q, the multifractal
spectrum D(h) has support on an whole range of Hölder expo-
nents h, and the confidence interval for c2 excludes the 0 value. 

Wavelet leader-based estimates for
c1, c2, c3 averaged across the entire data sets
for both Jet and Wind Tunnel turbulence are
reported in Table 3, together with their boot-
strap-based confidence intervals. It shows
that confidence limits based on percentile or
studentized statistics are extremely close.
Furthermore, it indicates that the estimated
cps are close but not equal for the two data
sets. This can be either due to difficulties in
the regression range selection or to the dif-
ference in Reynolds numbers (and can hence
be related to the much debated issue in tur-
bulence of universal values for multifractal
attributes at infinite Reynolds numbers, [9]).

The leader bootstrap-based hypothesis tests on c2 = 0 yield
unambiguous results. Both data sets reject monofractality, with
extremely low p-values (0.005), for both percentile and studen-
tized tests. This is consistent with results in Table 3 where confi-
dence intervals for c2 clearly exclude the 0 value. Hence, this
confirms that turbulence data select multifractal models rather
than monofractal ones.

Table 4 shows the results of the leader bootstrap-based
hypothesis tests on c3 = 0. For both data sets, only a low frac-
tion of the runs reject the hypothesis c3 = 0. The corresponding
p-values remain large, indicating a strong risk of incorrectly
rejecting c3 = 0. Percentile and studentized statistics-based
tests are in good agreement. This is consistent with results in
Table 3 where confidence intervals for c3 do include the 0 value.
Note that the estimates for c3 are in agreement with value 0 up
to the fourth digit for both data sets, as opposed to results for c1

and c2 that slightly differ from one data set to the other. The
numerical simulations reported previously clearly indicate that
nonzero c3 values can be estimated from data. Moreover, they
show that the tests possess satisfactory power even for small
c3,A when only n = 215 samples are available, as opposed to the
many n = 220 samples of the turbulence data sets used here.
Therefore, the results reported in this article are strongly in
favor of the conclusion that turbulence c3 can be considered to
be practically zero. The remainder of Table 4 indicates that both
data sets strongly reject both the c2 and c3 of the She-Lévêque
log-Poisson model while those of the log-normal Obukhov-
Kolmogorov 62 are clearly preferred. The c2 and c3 values of the
former are rejected for almost all runs for both data sets and
both by percentile and studentized bootstrap tests with very
small p-values, whereas the c2 and c3 of the latter are rejected
for only a small fraction of runs and have large p-values. Our
major conclusion—c3 = 0—is in agreement with results
reported in [30], confirming and strengthening them by the
analysis of two different major turbulence data sets and by the
use of a better mathematically grounded tool (wavelet leader)
and of a statistically more meaningful (bootstrap confidence
intervals and hypothesis tests) framework. From our point of
view, it is an absolutely remarkable fact that the Obukhov-
Kolmogorov 62 model, one of the oldest and mostly based on a

JET TURBULENCE DATA WIND TUNNEL DATA

MODEL: LN c2,0 c3,0 c2,0 c3,0

−0.0250 0.0000 −0.0250 0.0000
REJECTper 42.5% 18.8% 16.6% 20.8%
REJECTstu 40.0% 15.0% 8.3% 20.8%
P-VALUEper 0.23 0.36 0.43 0.33
P-VALUEstu 0.22 0.37 0.47 0.36
MODEL: LP c2,0 c3,0 c2,0 c3,0

−0.0365 0.0049 −0.0365 0.0049
REJECTper 98.8% 95.0% 100% 95.8%
REJECTstu 98.8% 87.5% 100% 87.5%
P-VALUEper 0.005 0.009 0.005 0.034
P-VALUEstu 0.005 0.026 0.005 0.043

[TABLE 4] TESTING THE LOG-NORMAL AND THE LOG-POISSON MODELS. 
JET AND WIND TUNNEL TURBULENCE WAVELET LEADER-BASED BOOTSTRAP
HYPOTHESIS TESTS FOR THE c2 AND c3 OF THE LOG-NORMAL (LN) AND 
LOG-POISSON (LP) MODELS (AVERAGE OVER RUNS, SIGNIFICANCE α = 0.05).
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law of large number argument, is consistently preferred by data
against the numerous declinations proposed since and elaborat-
ed from potentially more relevant physical arguments. 
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