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Résumé – Nous présentons les définitions et synthèses de processus stochastiques respectant des lois d’échelles voilées, qui
s’écartent de façon contrôlée d’un comportement en loi de puissance. Nous définissons des bruit, mouvement et marche aléatoire
issus de cascades infiniment divisibles (IDC) voilées. Nous étudions analytiquement le comportement des moments des accroisse-
ments de ces processus à travers les échelles. Ces résultats théoriques sont illustrés sur l’exemple d’une cascade log-Normale
voilée. Les algorithmes de synthèse et les fonctions Matlab utilisés sont disponibles sur nos pages web.

Abstract – We address the definitions and synthesis of stochastic processes which possess warped scaling laws that depart from
power law behaviors in a controlled manner. We define warped infinitely divisible cascading (IDC) noise, motion and random
walk. We provide a theoretical derivation of the scaling behavior of the moments of their increments. We provide numerical
simulations of a warped log-Normal cascade to illustrate these results. Algorithms for synthesis and Matlab functions are
available from our web pages.

1 Introduction

Scaling has been observed for many years in a large num-
ber of fields including natural phenomena: turbulence in
hydrodynamics, rhythm of human heart in biology, spatial
repartition of faults in geology and others such as com-
puter networks and financial markets. The multifractal
formalism[1, 12, 20] has become one of the most popu-
lar frameworks to analyse signals that exhibit power law
scaling. In current verbage, this latter term refers to the
power law behavior of the absolute moments of increments
δτX(t) = X(t + τ) − X(t) of a process X . Then, power
law scaling is to be described by a set of multifractal ex-
ponents ζ(q) such that1

E|δτX(t)|q = Cqτ
ζ(q) as τ → 0. (1)

For instance, statistically self-similar processes such as
fractional Brownian motions [15] with Hurst exponent H
fit into this framework with ζ(q) = qH . The so-called
multifractal formalism establishes conditions under which
property (1) and multifractal are equivalent. The mul-
tifractal decomposition gives precious information on the
presence of local singularities in the trajectories of pro-
cesses. However, this framework is restrictive in at least
two ways.

First, in real world applications one is usually confined
to observing power laws in a given range of scales τmin ≤
τ ≤ τmax which we then prefer to call multiscaling to

1A definition which works for any process is:

ζ(q) = lim inf
τ→0

log
τ

E|δτ X(t)|q .

distinguish it from multifractals. Multiscaling is usually
considered as a best approximation to (1) and as a first
step towards the use of the multifractal formalism. How-
ever, while property (1) is sensitive only to the limiting
behavior it might not capture some richness in the pro-
gression at all observable scales. Second, powerlaws may
not provide an accurate description of the scaling behavior
of data or models.

The need for an appropriate mathematical framework
substituting (1) was met with the infinitely divisible scal-
ing (for an overview see [7]). This setting allows for more
flexible scaling and thus better fitting of data and hon-
ors the contribution of all scales in a range of interesting
scales τmin ≤ τ ≤ τmax as follows:

E|δτX(t)|q = Cq exp[−ζ(q)n(τ)], τmin ≤ τ ≤ τmax, (2)

where n(τ) is some monotonous function. Such a behavior
is analysed in terms of a cascading mechanism through the
scales from τmax to τmin. In terms of scale dependence,
the infinitely divisible scaling framework generalizes (1)
which is recovered by choosing n(τ) = − ln τ . The dif-
ference in spirit lies in the fact that multifractal analysis
applies to any process (compare footnote 1) and is con-
cerned with local properties in the limit of fine scales, but
not finite scales. Note that both, multifractal analysis and
infinitely divisible scaling can be formulated using wavelet
coefficients [19, 23].

While analysis tools for multiscaling and infinitely di-
visible scaling processes have been widely developed, only
few recent works proposed tools for synthesis of processes
with prescribed and controllable infinitely divisible scal-
ing [3, 5, 11, 21, 22]. Multiplicative cascades have always
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Fig. 1: Comparison between the ”time-scale” construction of multiplicative cascades. (left) Binomial
cascade, (center) Compound Poisson Cascade, (right) Infinitely Divisible Cascade. The grey region indicates the
cone containing multipliers that determine the value of the density at time t.

played a central role to this purpose in intimate connec-
tion with multifractals. The synthesis of Infinitely Di-
visible Cascades (IDC) presented below can be seen as a
generalized continuous multiplicative cascade. Following a
work by Barral & Mandelbrot [5] and inspired by the den-
sified multiplicative cascades by Schmitt & Marsan [22]
and the Multifractal Random Walk by Bacry et al. [3],
we recently discussed and studied the Infinitely Divisible
Cascading processes [10]. Similar results were obtained in-
dependently and simultaneously by Bacry & Muzy [4, 18].
Here, we extend our previous work to the case of warped
IDC [8, 9]. These continuous-time processes have station-
ary increments and exhibit continuous scaling laws with
prescribed exponents (cf. ζ(q)) as well as prescribed de-
partures from power law behaviors (cf. n(τ) 6= − ln τ).
This article provides an easily accessible overview of their
known properties as well as a thorough illustration via
numerical simulations. The reader is referred to [9] for
a more formal presentation and complete mathematical
proofs.

2 IDC Noise

Intuitions towards continuous cascades. The origi-
nal ancestor of multiplicative cascades is the binomial cas-
cade introduced by Mandelbrot [14]. Under some conver-
gence hypotheses, binomial cascades lead to positive den-
sities that can display controlled multifractal properties.
From a time-scale point of view, the construction of a bi-
nomial density relies on two basic ingredients: a dyadic
grid {(tj,k, rj,k) = ((k + 1

2 )2−j , 2−j), j ∈ N, k ∈ N} in the
time-scale plane and positive i.i.d. mean one random mul-
tipliers Wj,k associated to dyadic grid points (tj,k, rj,k).
Without loss of generality, let us fix the range of scales to
(0, 1]. Roughly speaking, the binomial cascade is defined
as the limit of densities Qr(t) corresponding to resolution
1 > r = 2−n → 0. While literature introduces Qr of-
ten as an iterative redistribution of mass, an equivalent
formulation is more useful here which writes Qr as the
product of precisely those multipliers which belong to a
cone Cr(t) = {(t′, r′) : r ≤ r′ ≤ 1, t − r′/2 ≤ t′ ≤ t + r′/2}

pointing to the time instant t, see Fig. 1(left):

Qr(t) =
∏

{(j,k):1≤j≤n,k2−j≤t<(k+1)2−j}

Wj,k, (3)

Because of the dyadic structure, binomial cascades display
discrete scale invariance only. Moreover, such a construc-
tion is not time-shift invariant so that it is not stationary
in the strict sense.

The work by Barral & Mandelbrot[5] opened a door to
overcome these drawbacks by introducing the Multifractal
Products of Cylindrical Pulses (MPCP). Essentially, the
key idea consists in replacing the dyadic grid by a well
chosen random Poisson point process (ti, ri) in the time-
scale plane, see Fig. 1(center):

Qr(t) =

∏

(ti,ri)∈Cr(t) Wi

E

[
∏

(ti,ri)∈Cr(t) Wi

] (4)

Aiming at power law scaling, ”well chosen” means that
it has density dm(t, r) = dtdr/r2. Thus, the density in
points increases as r → 0 in a way similar to a dyadic
grid. Note that this density is time-shift invariant. Thus,
MPCP are stationary. Moreover, scaling laws are observed
over a continuous range of scales since no privileged scale
ratio has been introduced. From a time-scale point of
view, MPCP may be called Compound Poisson Cascades
since the distribution of Qr(t) is a compound Poisson dis-
tribution. The Poisson distribution coming from the point
process (ti, ri) is compound with the distribution of the
random multipliers Wi.

Noting that compound Poisson distributions are infinitely
divisible and that

lnQr(t) ∝ ln
∏

(ti,ri)∈Cr(t)

Wi =
∑

(ti,ri)∈Cr(t)

lnWi (5)

one may go one step further. Indeed, the right hand term
above can be read as a specific (discrete) case of a random
measure of the set Cr(t). This leads to the definition of
a process Qr(t) based on the summation of a continuous
random measure dM(t, r) [10, 18] :

Qr(t) ∝ exp

∫

Cr(t)

dM(t′, r′) = exp M(Cr(t)). (6)

It appears that the continuous random measure M needs
to be defined from an infinitely divisible distribution. The



idea of introducing an infinitely divisible random mea-
sure dM(t, r) appeared in [22] where no systematic scal-
ing analysis was performed. The multifractal random walk
(MRW) introduced in [3] was built without using any ex-
plicit multiplicative construction but, interestingly, the
MRW can be described as resulting from an infinitely di-
visible as well. Infinitely divisible cascades following the
intuition given by (6) were simultaneously and indepen-
dently introduced in [18] and [10] in the scale invariant
case (with power law scaling). The purpose of our con-
tribution below is to show how far infinitely divisible cas-
cades may lead to non power law scaling behaviors.

Infinitely divisible cascades. Now, we give precise
definitions. Let G be an infinitely divisible distribution
with moment generating function G̃(q) that can be writ-
ten in the form e−ρ(q).

Let dm(t, r) = g(r)dtdr a positive measure on the time-
scale half-plane P+ := R × R

+.
Let M denote an infinitely divisible, independently scat-

tered random measure distributed by G, supported on the
time-scale half-plane P+ and associated to its so-called
control measure dm(t, r). The random measure M is such
that IE[exp [qM(E)]] = exp [−ρ(q)m(E)]; for all disjoint
subsets E1 and E2, M(E1) and M(E2) are independent ran-
dom variables and M(E1 ∪ E2) = M(E1) + M(E2).

Definition 1.
A cone of influence Cr(t) is defined2 for every t ∈ R as
Cr(t) = {(t′, r′) : r ≤ r′ ≤ 1, t − r′/2 ≤ t′ ≤ t + r′/2}
(see Fig. 1(right)). With an infinitely divisible randomly
scattered measure M given, an Infinitely Divisible Cas-
cading noise (IDC noise) is a family of processes Qr(t)
parametrized by r of the form

Qr(t) =
exp [M(Cr(t))]

IE[expM(Cr(t))]
(7)

Possible choices for distribution G are the Normal dis-
tribution, Poisson distribution, compound Poisson distri-
butions, Gamma laws, Stable laws...See Fig. 3(left) for a
sample of a replication.

An immediate consequence of the definition is that Qr

is a stationary positive random process with:

EQr = 1. (8)

Stationarity is ensured by the time-invariance of both,
control measure and cone of influence. Moreover, Qr has
a log-infinitely divisible distribution, that is lnQr has an
infinitely divisible distribution.

Altogether, the measure M , the distribution G, the con-
trol measure m and the geometry of the cone of influence
Cr(t) control the scaling structure as well as marginal and
higher order distributions of the cascade. One major scal-
ing property of IDC noises is:

E[Qr(t)
q] = exp [−ϕ(q)m(Cr)] (9)

2Note that the large scale in the definition of Cr(t) has been
arbitrarily set to 1 without loss of generality. Choosing a different
large scale L would simply reduce to a change of units t → t · L,
r → r · L.

1

r

C
r
(s) ∩ C

r
(t)

0 s t

Fig. 2: Dependence between Qr(t) and Qr(s), in
particular their correlation, stems entirely from the con-
tribution of the intersection of two cones Cr(t) and Cr(s)

where
ϕ(q) = ρ(q) − qρ(1), (ϕ(1) = 0), (10)

for all q for which ρ(q) = − ln G̃(q) is defined. Note the
similarity between (9) and (2). Power laws are recovered
when m(Cr) is proportional to − ln r. The cascade is called
warped when m(Cr) is not proportional to − ln r.

A nice property of IDC noises lies in the geometrical
interpretation of their correlations that are controlled by
the intersections of cones Cr(t) ∩ Cr(s) in the time-scale
plane P+ (see Fig. 2):

E[Qr(t)Qr(s)] = exp [−ϕ(2)m(Cr(s) ∩ Cr(t))] (11)

This highlights the fact that multiplicative cascades pro-
vide an easy way towards complex correlation structures:
prescribing the autocorrelation function of Qr is equiva-
lent to choosing measure dm(t, r) and cone Cr(t).

As explained in the previous section, the IDC-noise can
be recognized as a ”continuously iterative” multiplication
(compare Fig. 1 (left) & (right)) where m(Cr(t)) can be
interpreted as the ”average number of multipliers” that
determine Qr(t). A causal definition can be proposed as
well by simply defining Cr(t) = {(t′, r′) : r ≤ r′ ≤ 1, t −
r′ ≤ t′ ≤ t}. For sake of simplicity in this presentation, we
will keep the symmetric non causal definition while results
presented below extend without restriction to the causal
definition.

3 IDC Motion & Random Walk

Besides their nice scaling properties, the IDC have the
distinct property of being positive. While this can pro-
vide an ideal match in some applications such as network
traffic modeling, it is inappropriate in others such as the
description of the velocity in a turbulent flow where data
shows oscillations in both positive and negative directions.
Two steps will permit to overcome this restriction. First,
we define an increasing process A(t) (IDC Motion). Then
we define some process VH(t) = BH(A(t)) (IDC Random
Walk) as a fractional Brownian motion BH of which time
has been replaced by the irregular time A(t).

By analogy with binomial measures, we introduce the
Infinitely Divisible Cascading Motion as the integral of
Qr(t).



Definition 2.
An Infinitely Divisible Cascading Motion (IDC-Motion)
A(t) is the limiting integral3 of an IDC-noise Qr(t) (see
Fig. 3):

A(t) = lim
r→0

Ar(t), (12)

where

Ar(t) =

∫ t

0

Qr(s)ds. (13)

The increment process δτAr(t) = Ar(t+τ)−Ar(t) of Ar

inherits stationarity from Qr since δτAr(t) =
∫ t+τ

t Qr(s)ds.
An IDC Motion A(t) inherits scaling properties from its
IDC Noise Qr(t) as shown below in Section 4.

By construction, A is a non-decreasing process which
appears most natural in some real world contexts, but can
be seen as a severe limitation in others. Following an idea
which goes back to Mandelbrot [16] and to the Brownian
motion in multifractal time, we define a fractional Brown-
ian motion in warped IDC time. This process has station-
ary increments, continuous scaling, prescribed departures
from power laws and prescribed scaling exponents as well
as positive and negative fluctuations.

Definition 3. Let A be an infinitely divisible cascad-
ing motion, and BH the fractional Brownian motion with
Hurst parameter H. The process

VH(t) = BH(A(t)), t ∈ R
+, (14)

is called an Infinitely Divisible Cascading Random Walk
(IDC Random Walk).

The IDC Random Walk inherits stationary increments
from both BH and A. Above all, the precise scaling be-
havior of A(t) is transferred to VH(t) thanks to the self-
similarity of the fractional Brownian motion as explained
below. A sample of infinitely divisible cascading processes
Qr(t), Ar(t) and VH(t) is shown on Fig. 3.

4 Scaling behavior of IDC

This section states our main results: it characterizes the
scaling properties of certain IDC-Motions and their as-
sociated IDC-Random Walk. The reader is referred to
Appendix A for the full theorem and an outline of its
demonstration. See [9] for detailed proofs. Here only a
corollary of the general results is stated.
Theorem (simplified version)
Let q > 0. Let Ar be either a CPC Motion with finite

IE[W q] or a log-normal IDC motion. Assume that the
control measure g(r)dtdr is such that g(n)(r) := b2ng(bnr)·
1[0,1] converges as n → ∞. Assume that Ar converges
in Lq; for q < 2, e.g., it suffices that cϕ(2) > −1 and
g(r) ≤ 1/r2. Then, there exist constants Cq and Cq and

C
′

q, C′
q such that for any t < b

Cq ≤ IEA(t)q · t−qeϕ(q)m(Ct) ≤ Cq, (15)

C ′
q ≤ E|VH(t)|q · t−qHeϕ(qH)m(Ct) ≤ C

′

q. (16)

3Conditions for the convergence of the positive martingale Ar as
r → 0 are detailed in [9].

The scaling behavior of VH is a direct consequence of the
self-similarity of a fractional Brownian motion BH com-
bined to the scaling behavior of an IDC Motion A [20].
Using the self-similarity of BH , one finds that

E[|VH(t)|q] = EE[|BH(A(t))|q
∣
∣A]

= E[|B(1)|q] · E[A(t)qH ]. (17)

The fact that A(t) and VH(t) have stationary incre-
ments and A(0) = 0 and VH(0) = 0 yields, ∀τ ≤ 1,

{
E[δτAq] = Cq(τ)τq exp [−ϕ(q)m(Cτ )] ,

E[|δτVH |q] = C′
q(τ)τqH exp [−ϕ(qH)m(Cτ )] ,

(18)
where Cq(τ) and C′

q(τ) are bounded, see (15) and (16).
In numerical experiments it turns out that both Cq(τ) and
C′

q(τ) are close to constant for τ � 1.
Moreover, one expects that E[δτAq] ∼ τq and E[δτV q

H ] ∼
τqH for large τ � 1. This can be understood thanks to
a central limit theorem argument under some technical
assumptions [9].

A key property of these scaling behaviors (15) or (18)
is that they hold continuously through the scales, not only
for a particular set of discrete scales. Again, we put the
emphasis as well on the fact that the construction of Qr

and A enables a full control of the way the cascading pro-
cess develops along scales and not only of the multifractal
behavior obtained in the limit τ → 0. As far as appli-
cations and real world data modeling are concerned, we
believe that the control of the entire cascade process is
probably more relevant than that of the asymptotic be-
havior as τ → 0 only.

5 Evolution of the increments dis-

tributions

IDCs and infinitely divisible scaling. Let us note
that previous work in this area [6, 7, 23] inspired a pri-
ori the search for non power law scaling as in (2) of the
form exp[−ζ(q)n(τ)] by analysis and measurement. This
approach has been referred to as log-infinitely divisible cas-
cades in the past. To avoid confusion between synthesis
and analysis, we prefer to reserve the word ”cascade” to
describe a construction and to talk of Infinitely Divisible
Scaling as far as the analysis is concerned below.

In this paper, we have focussed on the construction of
processes with such prescribed properties. On one hand,
this is achieved as far as the behavior of Qr with r or the
behavior of δτA/τ are concerned. On the other hand, we
are naturally led in (15) (16) and (18) to a mixture of
a power law and a non power law behavior of the form
τq · exp[−ϕ(q)m(Cτ )]. This result is inherent to the use of
an integral to define A(t). The τq term is due to the fact
that an IDC-Motion is obtained by integration of an IDC-
Noise. The exp [−ϕ(q)m(Cτ )] term is related to the un-
derlying IDC-Noise Qr(t). Equation (18) does not reduce
to (2) unless m(Cτ ) = n(τ) = − ln τ . Even though the
processes presented here do not exactly match the frame-
work of the traditional infinitely divisible scaling analysis,
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Fig. 3: Sample of a realization of (left) Qr(t), (middle) A(t) and (right) VH(t).

this approach provides us with a way to point out relevant
quantity to look at when aiming at a precise description
of IDC motion and IDC Random Walk introduced above.
The content of next paragraph is inspired by the spirit
of infinitely divisible scaling analysis but will mainly fo-
cus on the particular properties of the IDC Motion and
Random Walk.

Evolution of probability density functions. Self-
similar processes such as fractional Brownian motion and
Lévy motion are bound to have linear exponents ζ(q) =
qH . A non-linear dependence of scaling exponents on q
(ζ(q) 6= qH) on the other hand has its bearing on at least
two approaches to the analysis of process with complex
scaling structure.

First, in multifractal analysis the presence of a non-
linear function ζ(q) is usually taken as an indication of
a rich and highly interwoven local regularity structure,
though the connection between the global ζ and the local
Hölder regularity can be made precise only in the con-
text of the multifractal formalism, which usually has to be
established with much effort. Second, a non-linear func-
tion ζ can also be observed as well as an evolution of the
probability density functions (PDF) of the increments of
a process through the scales as we are about to explain.

For a self-similar process like a fractional Brownian mo-
tion, the PDF of the increments over small or large lags are
identical up to some adapted renormalization (e.g., a fBm
has Gaussian increments). In contrast, those PDFs for an
IDC process display an evolution from Gaussian at large
scales to non-Gaussian at small scales. We now briefly ex-
plain how those PDF of increments for IDC Motion and
Random Walk evolve through the scales (see Fig. 9).

Let Pτ the probability density function of Y = ln |δτX |
at scale τ . Note that,

E|δτX |q =

∫

eq ln |δτ X|Pτ (ln |δτX |)d ln |δτX | (19)

=

∫ +∞

−∞

eqY Pτ (Y ) dY = P̃τ (q) (20)

where P̃τ (q) is the moment generating function (analo-
gous to a two-sided Laplace transform) of Pτ . If scaling

laws (18) are power laws, one has for 0 < τ2 ≤ τ1 < 1:

E|δτ2
X |q = exp {−ζ(q).[(− ln τ2) − (− ln τ1)]} · E|δτ1

X |q

P̃τ2
(q) = G̃(q)[(− ln τ2)−(− ln τ1)]

︸ ︷︷ ︸

G̃τ1,τ2
(q)

·P̃τ1
(q). (21)

Subjecting the last product to an inverse Laplace trans-
form it turns into the following convolution in the ”real”
space:

Pτ2
(Y ) = G∗[(− ln τ2)−(− ln τ1)]

︸ ︷︷ ︸
∗ Pτ1

(Y )

= Gτ1,τ2
∗ Pτ1

(Y ),
(22)

where Gτ1,τ2
is the probability density function of a distri-

bution that carries the whole information describing the
evolution of the probability density functions Pτ (ln |δτX |)
through the scales τ . Note that Gτ1,τ2

takes a special form
with an exponent ln τ when associated to a power law
scaling.

Let us now remark that the general form of the last line
of (22) may suit more general scaling processes like IDC
Motion and Random Walk. Indeed, using (18), G̃τ1,τ2

(q)
in (21) becomes for A and VH respectively:
{

G̃A
τ1,τ2

(q) = exp[q ln( τ2

τ1

) − ϕ(q)(m(Cτ2
) − m(Cτ1

))]

G̃VH
τ1,τ2

(q) = exp[qH ln( τ2

τ1

) − ϕ(qH)(m(Cτ2
) − m(Cτ1

))].

(23)

Cumulants. Since the evolution of the PDF is described
by a convolution, a description in terms of the cumulants
of distributions is enlightening4:

ln G̃τ1,τ2
(q) =

∞∑

k=1

CG
k (τ1, τ2)

k!
qk. (24)

Thus, the cumulants CY
k (τ) of Y = ln | δτX | obey:

CY
k (τ2) = CG

k (τ1, τ2) + CY
k (τ1). (25)

Recall that C1 and C2 are respectively the mean and the
variance of the corresponding distribution. Note that only
the mean may vary for a self-similar process: the invari-
ance by dilation on δτX becomes an invariance by trans-
lation on Y = ln |δτX |. The PDF of the increments of

4This description makes sense only under the assumption that
the cumulants are well defined. This may not be true in some cases.
For instance, only one singular cumulants Cα, 0 < α ≤ 2, may be
defined for α-stable cascades.



δτX have the same shape at all scales; then the PDF of Y
at scale τ2 simply results from a translation of the PDF at
scale τ1. As a consequence, all the cumulants CG

k of order
k ≥ 2 are zero in the self-similar case. As soon as there
exists some non zero cumulant CG

k (τ1, τ2) of order k ≥ 2,
one observes an evolution of the PDF of the increments
through the scales.

One of the most simple example of multiscaling pro-
cess is the power law scaling log-normal cascade for which

ϕ(q) = σ2

2 q(1 − q), and

G̃VH (q) = exp(−(1 +
σ2

2
)qH + σ2H2q2/2) (26)

so that

Gτ1,τ2
= N (−(1 +

σ2

2
)H ln(

τ1

τ2
), σ2H2 ln(

τ1

τ2
)). (27)

Then {

CG
1 = (1 + σ2

2 )H ln( τ2

τ1

)

CG
2 = −σ2H2 ln( τ2

τ1

)).
(28)

Thus CY
1 (τ) (resp. CY

2 (τ)) is expected to be an increas-
ing5 (resp. decreasing) function of ln τ (see Fig. 10).
The log-normal cascade corresponds to Kolmogorov’s 1962
model of turbulence[13] and is usually referred to as the
simplest model to describe the evolution of the PDF of
the increments of a multiscaling process. Here a synthetic
(not analytic) model is provided.

In general, we get for IDC Motion A:

CG
1 (τ1, τ2) = ln( τ2

τ1

) − ϕ′(0)[m(Cτ2
) − m(Cτ1

)], (29)

CG
k (τ1, τ2) = −ϕ(k)(0)[m(Cτ2

) − m(Cτ1
)], k ≥ 2.

For IDC Random Walk VH , we get:

CG
1 (τ1, τ2) = H ln( τ2

τ1

) − Hϕ′(0)[m(Cτ2
) − m(Cτ1

)],(30)

CG
k (τ1, τ2) = −Hkϕ(k)(0)[m(Cτ2

) − m(Cτ1
)], k ≥ 2.

The next section will show that properties (29) and (30)
can be checked on synthesized processes A and VH . As
soon as ϕ(q) is a non-linear function of q (which is al-
ways the case, otherwise resulting processes are trivial),
the PDF of the increments evolve from large scales to
smaller scales from Gaussian to non-Gaussian.

6 Numerical validations

6.1 A model from hydrodynamics

To give some pictures of these processes, we describe the
numerical examples of two IDC with respectively power
law scaling and warped scaling behaviors. We propose
to consider a Log-Normal cascade, i.e., distribution G is

N (µ, σ2) and ϕ(q) = σ2

2 q(1 − q). For the warped IDC
we choose the control measure dm(t, r) = 1/r2+βdtdr
with β < 0, which leads to the function m(Cτ (0)) =
(τ−β − 1)/β. This choice provably satisfies the conditions
of the theorem above, e.g., there are no convergence prob-
lems, and corresponds to the model known as the Cas-
taing model [6] in hydrodynamic turbulence. Note that

5Recall that in the log-normal case, ϕ(q) = −µq − σ2/2q2 and
ϕ(1) = 0 ⇒ µ = −σ2/2 < 0.
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Fig. 4: Histogram of Qr compared to its theoretical
log-Normal probability density function: the agreement is
perfect.
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Fig. 5: Theoretical and estimated autocorrelation
functions of Qr respectively in a power law scaling
case (dm(t, r) = dtdr/r2) and a warped scaling case
(dm(t, r) = dtdr/r2+β): it is sensitive to a departure from
the reference power law behavior in a controlled manner.

β = 0 reduces to the well-known power law scaling case
(m(Cτ ) = − ln τ) [3, 5, 10]. Parameters of the simulation
are µ = −0.1, σ2 = 0.2 and β = −0.4. The Hurst ex-
ponent H of the fractional Brownian motion BH used to
build VH(t) has been set to H = 1/3.

The next sections will illustrate with some graphics that
the numerically synthesized processes have the prescribed
properties described in previous sections.

6.2 Scaling of IDC Noise

Marginal distribution. A very basic property of the
IDC noise under study is that Qr(t) has a log-Normal
distribution with known parameters µ(τ) = µm(Cτ ) and
σ2(τ) = σ2m(Cτ ). The log Normal nature of this dis-
tribution is independent of the precise form of m(Cτ);
only parameters µ(τ) and σ2(τ) are sensitive to m(Cτ).
Fig. 4 shows that the estimated normalized histogram
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Fig. 6: A power law scaling cascade: (a) ln E[(δτ A/τ)2] compared to cϕ(2) ln τ + Cte. (b) ln E[(δτ V/τH)2]
compared to cϕ(2H) ln τ + Cte. A warped cascade deviates from power laws: (c) ln E[(δτA/τ)2] compared
to −ϕ(2)m(Cτ ); (d) ln E[(δτV/τH)2] compared to −ϕ(2H)m(Cτ ). Power law scaling is associated to straight lines in
log-log diagrams.

and the theoretical probability density function are in per-
fect agreement.

Autocorrelation. From (11), we get in the power law
scaling case (dm(t, r) = dtdr/r2) for r ≤ |t − s| ≤ 1:

E[Qr(t)Qr(s)] = |t − s|ϕ(2)e−ϕ(2)(|t−s|−1). (31)

Note that a power law behavior is expected at small scales:
power law scaling is connected to the power law behavior
of the autocorrelation of Qr. In contrast, we get for the
warped scaling case under study (recall that β = −0.4)
for r ≤ |t − s| ≤ 1:

E[Qr(t)Qr(s)] =

exp

[

−ϕ(2)

(
1 − |t − s|−β

−β
+

|t − s| − |t − s|−β

1 + β

)]

.

(32)

Figure 5 shows both theoretical and experimental auto-
correlation functions obtained from a power law scaling
(dm(t, r) = dtdr/r2) and a warped (dm(t, r) = dtdr/r2+β)
cascades with identical parameters. The observed behav-
iors are clearly distinct and are in good agreement with
theoretical computations.

6.3 IDC Motion & Random Walk

Scaling behaviors. Departures from powerlaw behav-
iors corresponding to the exp[−ϕ(q)m(Cτ )] term in (15)
are expected. Fig. 6 and Fig. 7 shows the results ob-
tained from the analysis of IDC processes respectively in
the power law scaling and the warped scaling cases. The

0 1 2 3 4 5 6
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q

φ(
q)
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estimate

Fig. 7: Estimated exponents ϕ(q) correspond to
prescribed theoretical ones.

comparison between these results shows that such depar-
tures are observed on both A(t) and VH(t). The performed
analysis focuses on E[(δτA/τ)q ] ∼ exp[−ϕ(q)m(Cτ )],
resp. E[(δτV/τH)q] ∼ exp[−ϕ(qH)m(Cτ )]. In a log-log
plot, a curvature is clearly visible whereas the power law
scaling case (β = 0) would have led to straight lines. Note
that this warping is accurately controlled for τ < 1 by
the form of m(Cτ ) 6= − ln τ . These numerical observa-
tions are perfectly consistent with our theoretical results.
Exponents ϕ(q) can be estimated as well from linear re-
gressions in ln E[(δτA/τ)q] vs m(Cτ ) diagrams – Fig. 7:
prescribed exponents are recovered.

Note that a trivial scaling behavior is observed for A(t)
as well as for VH(t) at large scales. For τ ≥ 1, E[δτAq]
behaves as τq, while E[δτV q

H ] behaves as τqH (see Section
4).

At small scales, the behavior of E[δτAq] is dominated by
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Fig. 8: Autocorrelation of the log of increments
of VH from a warped cascade deviates from logarithmic
behavior.

the term τq. As a consequence, log-log diagrams display
close to linear behaviors if no renormalization is used. The
warping of the power law, due to the term exp[−ϕ(q)m(Cτ )],
may be subtle yet it is true functional dependence and can-
not be subsumed by a constant error bound. One may also
object that a trivial scaling may be observed at infinitely
small scales. Again, we emphasize that the infinitely small
scales limit remains out of reach from measurements in ap-
plications. Furthermore, there generally exists some finite
smallest scale, e.g., the dissipation scale in turbulence.
Thus, it should be clear that the purpose is not to con-
trol the scaling behavior over the whole range τ ∈ [0, 1]:
the control of a finite range of scales of several decades is
sufficient for modeling in applications.

We emphasize that, as far as we are aware of, these
are the first cascades displaying controlled non power law
behaviors up to a large range of scales (two decades on
Fig. 7).

Evolution of probability density functions. As ex-
plained in section 5, one expects that the probability den-
sity functions of the increments of an IDC Random Walk
change from Gaussian at large scales (τ ≥ 1) to non Gaus-
sian at smaller scales (τ � 1). This is numerically ob-
served on Fig. 9. Figure 9(a) shows this evolution in the
power law scaling case (m(Cτ ) = − ln τ) while Fig. 9(b)
deals with the warped case (m(Cτ ) 6= − ln τ ⇒ non power
laws scaling). From a qualitative viewpoint, the effect is
the same even though it seems that this evolution is less
important in the warped case – Fig. 9(b). This is actually
true: the kurtosis varies from 3 to 3.6 for the warped case
while it varies from 3 to 4.6 for the power law case. This
is consistent with the cumulant analysis performed below.

Cumulants of ln |δτ VH |. We have seen in section 5
that the information describing the evolution of the PDF
of the increments from large scales to smaller scales was
held by some distribution Gτ1,τ2

(see (22)). Moreover, the
cumulants of this distribution or equivalently the cumu-
lants CY

k of Y = ln |δτX | appeared as relevant quantities
to look at to precisely describe this evolution. Cumulants
of order 1 and 2 are shown on Fig. 10 for both a power
law scaling and a warped scaling processes. We emphasize

the fact that the comparison with the expected theoretical
behaviors is rather satisfactory in both cases. This is an
evidence of the quality of the synthesis method. Note that
it can be proven that if v is some Gaussian random vari-
able, the second order cumulant of ln |v| is some universal
constant close to 1.23. As a consequence, one expects that
CY

2 ' 1.23 at large scales as observed on Fig. 10(b).

Autocorrelation of ln |δτVH |. A last quantity people
often look at is the autocorrelation function of ln |δτVH |.
Indeed, its functional form is fundamentally linked to the
type of scaling the moments of the increments E|δτVH |q
obey. Power law scaling is intimately connected to a log-
arithmic dependence on τ [2, 3]. Figure 8 shows that
this is indeed the case for the power law scaling IDC Ran-
dom Walk while a departure from this canonical behavior
is clearly observed for the warped one. Again, the depar-
ture from a power law is visible where it was expected to
be.

7 Conclusion

In the present work, we gave an overview of the defini-
tions and main properties of continuous time processes
with controlled continuous multiscaling behavior. Most
importantly, scaling laws exist continuously through the
scales and possible departures from a power law behavior
are taken into account. We have shown that numerical
replications of such processes satisfied the expected the-
oretical properties that can be consistently studied from
various viewpoints (scaling of the moments E|δτX |q, auto-
correlation functions, probability density functions, cumu-
lants of ln |δτX |...). Reference [9] gives a detailed presen-
tation of synthesis algorithms and theoretical results. Up
to our knowledge, Infinitely Divisible Cascading processes
are the first continuous multiplicative cascades display-
ing controlled non power law scaling behaviors. Potential
fields of application range from hydrodynamic turbulence
to computer network traffic. Matlab routines to syn-
thetize these processes are available on our web pages:
www.isima.fr/∼chainais,

www.stat.rice.edu/∼riedi,
perso.ens-lyon.fr/patrice.abry.
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A Outline of proofs

This section outlines the proofs of our main theoretical re-
sults which characterize the scaling properties of an IDC-
Motion and its associated IDC-Random Walk. The reader
is referred to [9] for detailed proofs. While scaling behav-
iors are rather easy to describe, their mathematical proof
calls for some technical assumptions.
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Let us start by making precise the rescaling property of
IDCs. To this end we introduce for r < bn,

A(n)
r (t) =

1

bn

∫ tbn

0

Qr(s)

Qbn(s)
ds. (33)

This cascade has control measure dm(n)(t, r) where

g(n)(r) := b2ng(bnr) · 1[0,1]. (34)

Since m(n)(Cr/bn(s)) = m(Cr(b
ns)\Cbn(bns)) we may un-

derstand A(n) as a rescaled zoom into the small scale
details of A. In the power law scaling case (dm(t, r) =
dtdr/r2) we have g(n) = g and, thus, A(n) is equal in
distribution to A.
Lemma 1
Let Qr be an Infinitely Divisible Cascading Noise and Ar

its Motion. Let 0 < r ≤ b < 1. Then there exists a
non-decreasing process A

(1)
r independent of Qb, such that

Ar(t) = b

∫ t

0

Qb(s)d[A(1)
r (

s

b
)]. (35)

In analogy, we may replace A by A(n) and A(1) by A(n+1).

Proof of Lemma 1.
For the duration of the proof, we introduce the ”bandlim-
ited cone”

Cb
r(t) := {(t′, r′) ∈ Cr(t) : r′ ≤ b} = Cr(t)\Cb(t). (36)

and set

Qb
r(s) := exp

[
ρ(1)m(Cb

r)
]
exp

[
M(Cb

r(s))
]
. (37)

By convention, Qb
r(s) = 1 if r = b. Note that E[Qb

r(s)] =
1. Note also that for any r < b and any t we have m(Cr) =
m(Cb

r) + m(Cb) and thus

Qr(s) = Qb
r(s) · Qb(s). (38)

Now define Q
(1)
r (s) = Qb

r(bs) and set

A(1)
r (t) =

∫ t

0

Q(1)
r (s)ds =

∫ t

0

Qb
r(bs)ds =

1

b

∫ bt

0

Qb
r(s)ds.

(39)

Note that IE[A
(1)
r (t)] = t. Also, (35) follows by elemen-

tary operation. Further, A(1) = limr→0 A
(1)
r and Qb are

independent since they are built using disjoint sets of the
time-scale half-plane P+. Finally, Qb

r(b·) forms an IDC-
noise with control measure m(1) as claimed, which can be



verified by defining M (1)(Cr/b(s)) = M(Cb
r(bs). Note that

m(1)(Cr/b(s)) = m(Cb
r(bs)) = m(bCr/b(s)). ♦

If the integrand Qb in (35) were constant over the in-
terval [0, t] a scaling law of moments would immediately
follow. A measure for the variation of the integrand which
will prove useful is the following:

∆b(t) :=
E sup0≤s≤t |Qb(s)

q − Qb(0)q|
E[Qb(0)q]

. (40)

The next lemma quantifies by how much the scaling law
deviates from the Binomial case where Qb(t) is indeed a
constant for t < b.
Lemma 2
Fix q > 0. Let 0 < r ≤ b < 1 and 0 ≤ t ≤ 1. Then,

EAr(t)
q = bq · E[Qb(0)q] · E[A(1)

r (t/b)q] · (1 + ε). (41)

The error term ε is bounded as: |ε| ≤ ∆b(t).

Proof of Lemma 2.
We will be using the fact [17] that

∣
∣
∣
∣

(∫

I

x(s)dµ(s)

)q

− C

∣
∣
∣
∣
≤ sup

s∈I
|x(s)qµ(I)q − C| (42)

Applying it for the measure µ induced by A
(1)
r (·/b) and

using (9) and (35) we obtain
∣
∣
∣Ar(t)

q − bqQb(0)qA(1)
r (t/b)q

∣
∣
∣

=

∣
∣
∣
∣
∣

(

b

∫ t

0

Qb(s)d[A(1)
r (s/b)]

)q

− bq · Qb(0)q · A(1)
r (t/b)q

∣
∣
∣
∣
∣

≤ bq sup
0≤s≤t

∣
∣
∣Qb(s)

qA(1)
r (t/b)q − Qb(0)qA(1)

r (t/b)q
∣
∣
∣

= bq · A(1)
r (t/b)q · sup

0≤s≤t
|Qb(s)

q − Qb(0)q| . (43)

♦

The error term (41) in lemma 2 can be bounded for
certain IDCs, such as the ones featured in the next lemma.
To formulate it, some notation is required. For an IDC
Motion Ar with control measure dm(t, r) = g(r)dtdr we
set for convenience

g(b) :=

∫ 1

b

g(r)dr (44)

as well as for b ∈ (0, 1) and ν > 0

Cb,ν [g] := sup
0<t≤b

1

tν
· ∆b(t) ∈ [0,∞] (45)

Lemma 3
Fix q > 0. Let 0 < t ≤ b < 1.

CPC Case: If Qb is a Compound Poisson Cascade with
weights W which possess finite q-th moments, then Cb,1[g]
is finite. In other words, for all t < b:

1

t
∆b(t) ≤ Cb,1[g] < ∞. (46)

Log-normal Case: For any log-normal IDC with

ρ(q) := −qµ − q2σ2, (47)

0

1

b

L(0,u)
L(u,t)

L(0,t) = L(0,u) U L(u,t)

R(0,u)
R(u,t)

R(0,t) = R(0,u) U R(u,t)

B

0 u t < b

Fig. 11: Definition of L, B and R.

Cb,1/2[g] is finite. More precisely, given q > 0, b ≤ 1 and
g, there exist real numbers J , c1 and c2 depending only on
q, b, µ, σ2 and on g(b) such that:

1√
t
∆b(t) ≤ (J · c1

√
t + c2) · max(1, eρ(q)g(b)). (48)

In both cases, if in addition g(n) as defined in Theorem 1
converges, then the bounds Cb,1/2[g

(n)] remain uniformly
bounded as n → ∞.

Proof of Lemma 3.
First, we simplify the expressions and separate indepen-
dent from dependent parts of M(Cb(u)) and M(Cb(0)).
Thus, we write easily

∆b(t) =
E sup0≤u≤t |eqM(Cb(u)) − eqM(Cb(0))|

E[eqM(Cb(0))]
(49)

and introduce the following parallelepiped as subsets of
the time-scale strip:

L(u, v) = {(s, r) : b ≤ r ≤ 1, −r + u ≤ s < −r + v},
R(u, v) = {(s, r) : b ≤ r ≤ 1, r + u ≤ s < r + v}, (50)

B = Cb(t) ∩ Cb(0) = {(s, r) : b ≤ r ≤ 1, −r + t ≤ s ≤ r}.
Checking the constraints on the variable s one verifies
quickly the following decomposition of a cone Cb(u) into
disjoint sets which is valid for u ∈ [0, t] and for t ≤ b (see
Fig. 11):

Cb(u) = L(u, t) ∪ B ∪R(0, u). (51)

As a particular case we have Cb(0) = L(0, t) ∪ B. Not-
ing that L(u, v) ∪ L(v, w) = L(u, w) with disjoint union
whenever u ≤ v ≤ w, we find M(Cb(u)) − M(Cb(0)) =
M(R(0, u)) − M(L(0, u)) and may write ∆b(t) as:

E[eqM(B)]

E[eqM(Cb(0))]
· E

[

eqM(L(0,t)) sup
0≤u≤t

∣
∣
∣
∣

eqM(R(0,u))

eqM(L(0,u))
− 1

∣
∣
∣
∣

]

(52)

Here, we used that the term eqM(B) is statistically inde-
pendent of the others in the enumerator. We note that

E[eqM(B)]

E[eqM(Cb(0))]
= e−ρ(q)(m(B)−m(Cb(0)))

= eρ(q)m(L(0,t))

≤ max (1, exp[ρ(q)m(L(0, b))]) . (53)



using the fact that m(L(0, t)) is monotonous in t. Note
that m(L(0, b)) = g(b). It remains to bound the second
term in (52).

Now the idea is to show that with t very small and thus
u small, the control measures m(R(0, u)) and m(L(0, u))
are very small, thus the corresponding random variables
are small with high probability and thus eqM(R(0,u)) and
eqM(L(0,u)) are both close to 1. Thus their quotient is
close to one and the contribution to the last term in (52)
is small with large probability.

As a matter of fact, that quotient is exactly equal to 1
with large probability in the CPC case. The log-normal
case is somewhat more intricate but relies only on stan-
dard bounds [9].

♦

Theorem
Let q > 0. Let ρ(·) defining as above some infinitely divis-
ible law. Let Ar be an IDC Motion with control measure
g(r)dtdr. Assume that there are constants b ∈ (0, 1) and
ν > 0 such that Cb,ν [g(n)] are finite and remain bounded

as n → ∞; assume that Ar as well as A
(n)
r for large n

converge in Lq. Then there exist constants Cq and Cq

and C
′

q, C′
q such that for any t < b

Cqt
qe−ϕ(q)m(Ct) ≤

IEA(t)q (54)

≤ Cqt
qe−ϕ(q)m(Ct),

C′
qt

qHe−ϕ(qH)m(Ct) ≤
E[|VH(t)|q] (55)

≤ C
′

qt
qHe−ϕ(qH)m(Ct).

The assumptions of the Theorem are verified for com-
pound Poisson distributions as well as for the Normal dis-
tributions, assuming that the functions g(n) converge (see
above lemmas as well as [9]).

The proof of Theorem 1 relies on iterating (41) n times
keeping b fixed. Thus, we will apply it successively with

t/bk to the cascades A
(k)
r introduced in (33), for k =

0, . . . , n − 1. Note that A
(k)
r possesses the control mea-

sure g(k)(r)dtdr which leads to

EAr(t)
q = (bq · E[Qb(0)q])n · E[A(n)

r (t/bn)q] ·
n−1∏

k=0

(1 + εk).

(56)
The error terms can be bounded using Cb[g

(k)]. ♦
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