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Abstract

Let 0¡�62 and let T ⊆R. Let {X (t); t ∈ T} be a linear fractional �-stable (0¡�62)
motion with scaling index H (0¡H ¡ 1) and with symmetric �-stable random measure. Suppose
that  is a bounded real function with compact support [a; b] and at least one null moment. Let
the sequence of the discrete wavelet coe�cients of the process X be{

Dj;k =

∫
R
X (t) j;k(t) dt; j; k ∈ Z

}
:

We use a stochastic integral representation of the process X to describe the wavelet coe�cients
as �-stable integrals when H − 1=�¿− 1. This stochastic representation is used to prove that
the stochastic process of wavelet coe�cients {Dj;k ; k ∈Z}, with �xed scale index j∈Z, is
strictly stationary. Furthermore, a property of self-similarity of the wavelet coe�cients of X is
proved. This property has been the motivation of several wavelet-based estimators for the scaling
index H . c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let 0¡�62 and let T ⊆R. Let X ={X (t); t ∈ T} be a measurable version of linear
fractional �-stable (0¡�62) motion (or also linear fractional L�evy motion or LFSM)
with scaling index H ∈ (0; 1) and symmetric �-stable (S�S) random measure. Linear
fractional �-stable motion is a class of self-similar processes with stationary increments.
It is the most commonly used class of self-similar processes that extends the fractional
Brownian motion. It indeed o�ers an e�cient tool to model data exhibiting scaling
properties but whose probability density functions depart from the Gaussian law.
LFSM is mathematically de�ned as follows: let � ∈ (0; 2] and let M be an �-stable

random measure on R with Lebesgue control measure m. The linear fractional stable
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motion is then de�ned by

X (t) =
∫
R
f�;H (t; x)M (dx); (1)

where

f�;H (t; x) = ((t − x)+)H−1=� − ((−x)+)H−1=�; (2)

and where 0¡H ¡ 1. The notation (x)+ means that (x)+=x if x¿0 and 0 otherwise.
In this paper, we suppose that the �-stable random measure M is symmetric and we use
a measurable version of the process. We need the measurability of the process X when
we represent the wavelet coe�cients of X as stable integrals. If 0¡�62, we know
from Samorodnitsky and Taqqu (1994) that there exists a measurable version of the
de�ned process (1) if T ⊆R. Let  be a bounded real function with compact support
[a; b] and at least one null moment. A function with these properties is an example
of a wavelet function (see Cohen, 1992). The wavelet functions of this paper have to
satisfy the mentioned properties. De�ne the sequence of discrete wavelet coe�cients
{Dj;k ; j; k ∈ Z} of the process X as:

Dj;k =
∫
R
X (t) j;k(t) dt; (3)

where  j;k(t) = 2−j=2 (2−jt − k) and j; k ∈ Z.
In Section 2, we will represent the wavelet coe�cients of X as stable integrals.

Therefore, we need a Fubini-type result that permits us to interchange a determinis-
tic and a stochastic integration. In Section 3, we use the stochastic representation of
the wavelet coe�cients to show the main results of this work: the stochastic process
{Dj;k ; k ∈ Z} is strictly stationary for �xed scale index j. We also show that, if j ∈ Z
and k1; : : : ; km ∈ Z, then

(Dj;k1 ; : : : ; Dj;km)
d= 2j(H+1=2)(D0; k1 ; : : : ; D0; km) (4)

or also, for any j ∈ Z,
{Dj;k ; k ∈ Z} d={2j(H+1=2)D0; k ; k ∈ Z}:

This property of self-similarity has been the motivation and starting point for the
de�nition of several wavelet-based estimators for the scaling index H . Such estimators
are discussed and studied in detail in Delbeke (1998). We will use the following
notation:

L�(E; �; �) =
{
f: f is measurable;

∫
E
|f(x)|��(dx)¡∞

}
;

where E⊂R, � is the Borel �-algebra on (E;m).

2. The distribution of a wavelet coe�cient

In order to deduce the distribution of the wavelet coe�cients of the process X , we
use a measurable version of X . If 0¡�¡ 2 and T ⊆R, it is proved by Theorem 11:1:1
of Samorodnitsky and Taqqu (1994, p. 498) that X has a measurable version. When
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� = 2, the process X is clearly measurable since it has continuous sample paths (see
Exercise 9:15 (ii) in Samorodnitsky and Taqqu, 1994). The proof of the next theorem
is given in the appendix.

Theorem 1. Let 0¡�62 and 0¡H ¡ 1 such that H−1=�¿−1. Let X={X (t); t ∈
T⊂R} be a measurable version of LFSM. Let �(dt)=g(t) dt where g is a bounded
positive function with compact support. Then∫

T
|X (t)|�(dt)¡∞ a:s: (5)

We use the previous theorem to deduce the following result.

Theorem 2. Let T ⊂R. Let X = {X (t); t ∈ T} be a measurable version of LFSM.
Suppose that �(dt)=g(t) dt where g : [a; b]→ R is a bounded positive function. Then∫ b

a
X (t)�(dt) =

∫
R

(∫ b

a
f�;H (t; x)�(dt)

)
M (dx) a:s: (6)

Thus; in particular;
∫ b
a f�;H (t; x)�(dt) ∈ L�(R; �; m).

Proof. This follows directly from lemma Samorodnitsky and Taqqu (1994, p. 511)
and Theorem 1.

To �nd properties of the wavelet coe�cients of LFSM, we will use the following
corollary.

Corollary 1. Let T be a compact set in R (if 0¡�62) or T =R (if 0¡�¡ 2). Let
X = {X (t); t ∈ T} be a measurable version of LFSM and suppose that  : [a; b]→
R is a bounded function with at least one null moment. Let  1 = 1

2 (| | +  ) and
 2 = 1

2 (| | −  ) and suppose that  1 and  2 are bounded. Then∫ b

a
X (t)�(dt) =

∫
R

(∫ b

a
f�;H (t; x) (t) dt

)
M (dx) a:s: (7)

Thus; in particular;
∫ b
a f�;H (t; x) (t) dt ∈ L�(R; �; m).

Proof. The signed measure �(dt) =  (t) dt can be written as the di�erence of the two
positive measures �1(dt) =  1(t) dt and �2(dt) =  2(t) dt. The result follows then from
Theorem 2.

3. Main results

By Proposition 3:4:2 of Samorodnitsky and Taqqu (1994), we know that the wavelet
coe�cients

Dj;k =
∫
R
X (t) j;k(t) dt; j; k ∈ Z; (8)



180 L. Delbeke, P. Abry / Stochastic Processes and their Applications 86 (2000) 177–182

are jointly stable and, for �ju; ku ∈ R, j1; : : : ; jn, k1; : : : ; km ∈ Z,

Eei
∑m

u=1

∑n

v=1
�ju; kvDju;kv = exp

{
−
∫
R

m∑
u=1

n∑
v=1

�ju; kv

∫
R
f�;H (t; x)�ju; kv(t) dt

∣∣∣∣∣
�

dx:

Since the wavelet coe�cients are de�ned on the same probability space as the ran-
dom measure M , the sequence {Dj;k ; j; k ∈ Z} is a stochastic process. The wavelet
coe�cients of LFSM satisfy the following properties.

Theorem 3. (1) For each �xed j ∈ Z; the stochastic process {Dj;k ; k ∈ Z} is strictly
stationary;
(2) for each j ∈ Z and k1; : : : ; km; we have

(Dj;k1 ; : : : ; Dj;km)
d= 2j(H+1=2)(D0; k1 ; : : : ; D0; km): (9)

Proof. (i) The distribution of Dj;k does not depend on k since

Dj;k =
∫
R
X (t) j;k(t) dt = 2j=2

∫
R
X (2j(u+ k)) (u) du

= 2j=2
∫
R
(X (2j(u+ k))− X (2jk)) (u) du

d= 2j=2
∫
R
X (2ju) (u) du= Dj;0:

Similarly, one can prove that, for k1; : : : ; kn; k ∈ Z and �ki ∈ R,
n∑

i=1

�kjDki+k
d=

n∑
i=1

�kjDj;ki :

(ii) We prove that Dj;k
d= 2j(H+1=2)D0; k :

Dj;k = 2j=2
∫
R
X (2j(u+ k)) (u) du

d= 2j(H+1=2)
∫
R
X (u+ k) (u) du

= 2j(H+1=2)D0; k :

Similarly, one can prove that, for k1; : : : ; km ∈ Z and �ki ∈ R,
m∑
i=1

�kiDj;ki
d= 2j(H+1=2)

m∑
i=1

�kiD0; ki :

4. Conclusion

We have shown the following properties of the wavelet coe�cients of linear frac-
tional stable motion:

• the wavelet coe�cients are stable integrals;
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• the stochastic process of wavelet coe�cients with �xed scale index is strictly sta-
tionary;

• the self-similarity of linear fractional stable motion leads to a scaling property of the
wavelet coe�cients of the process.

This property has given rise to several estimation methods for estimating the scaling
index H . Studies and comparisons of various wavelet-based estimators for the scaling
index H of the fractional Brownian motion can be found in Delbeke (1998). Moreover,
in many situations, data exhibiting scaling properties also have non-Gaussian probability
density functions.

5. For further reading

The following references are also of interest to the reader: Billingsley, 1995; Cohen
et al., 1993; Maejima, 1994; Maejima, 1995.
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Appendix

Proof of Theorem 1. Take [a; b]=[0; 1] and let C ¿ 0 such that | (t)|6C ∀t ∈ [a; b].
Let d= H − 1=�.
The case H ¿ 1=�: it follows immediately since g has a compact support and LFSM

has continuous sample paths.
The case H ¡ 1=�: if �¡ 1, we use Theorems 11:3:2 and 11:4:1 of Samorodnitsky

and Taqqu (1994). One needs to prove that∫
R

(∫ 1

0
|f�;H (t; x)|�(dt)

)�

dx¡∞:

We have∫
R

(∫ 1

0
|f�;H (t; x)|�(dt)

)�

dx6C�
∫ 1

−∞

(∫ 1

0
|f�;H (t; x)| dt

)�

dx:

Let

I�;H =
∫ 1

−∞

(∫ 1

0
|f�;H (t; x)| dt

)�

dx:

Then

I�;H =
∫ 0

−∞

(∫ 1

0
|(t − x)d − (−x)d| dt

)�

dx +
∫ 1

0

(∫ 1

x
(t − x)d dt

)�

dx: (10)
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The �rst integral of (10) may diverge at (i) x = −∞ or at (ii) x = 0. As x → −∞,
the function∫ 1

0
|(t − x)d − (−x)d| dt

behaves like d=2|x|d−1. Thus, the integrand converges at x=−∞ since (d−1)�+1¡ 0.
As |x| → 0 in the �rst integral (10), then the integrand behaves like (−x)d�, which is
integrable since the condition to be satis�ed, d� + 1¿ 0, requires that H ¿ 0, which
is also the case. Note that the second integral of (10) is �nite since we suppose that
d+ 1¿ 0.
If �¿ 1, one needs to show that∫ 1

0

(∫
R
|f�;H (t; x)|� dx

)1=�
dt:

This follows immediately from∫
R
|f�;H (t; x)|� dx = ctH�

because LFSM is well-de�ned and self-similar. For �= 1, one needs to verify that∫ 1

0
dt
∫
R
dx|f(t; x)|(1 + log+ A(t; x))¡∞;

with A(t; x) de�ned by

A(t; x) =
|f(t; x)| ∫ 10 ∫R |f(t; v)|g(u) dv du∫
R |f(t; v)| dv

∫ 1
0 |f(u; x)|g(u) du

:

This can be done.
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