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Abstract

We show that a non-trivial continuous-time strictly �-stable, �∈ (0; 2), stationary process cannot be repre-
sented in distribution as a discrete linear process

∞∑
n=−∞

ft(n)�n; t ∈R;

where {ft}t∈R is a collection of deterministic functions and {�n}n∈Z are independent strictly �-stable random
variables. Analogous results hold for self-similar strictly �-stable processes and for strictly �-stable processes
with stationary increments. As a consequence, the usual wavelet decomposition of Gaussian self-similar pro-
cesses cannot be extended to the �-stable, �¡ 2 case.
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1. Introduction and main results

Suppose that X = {X (t)}t∈R is a continuous-time strictly �-stable, �∈ (0; 2), process
which is stationary, that is, for all h∈R, the processes {X (t+h)}t∈R and {X (t)}t∈R have the same
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Dnite-dimensional distributions. We want to know whether the process X can be represented in the
sense of the Dnite-dimensional distributions as a linear process

∞∑
n=−∞

ft(n)�n; t ∈R; (1.1)

where the functions ft(n) :R �→ R are measurable and deterministic for all n∈Z and {�n}n∈Z are
independent strictly �-stable random variables. Recall that a random variable 
 is strictly �-stable
with �∈ (0; 2) and � �= 1 if its characteristic function satisDes

E exp{i�
}= exp
{
−
�|�|�

(
1− i� sign(�) tan

��
2

)}
; (1.2)

for all �∈R and for some parameters 
¿ 0 and �∈ [− 1; 1], called scale and skewness parameters,
respectively (see, for example, Samorodnitsky and Taqqu, 1994). When �=1; 
 is strictly 1-stable if
�=0 (Property 1.2.8 in Samorodnitsky and Taqqu, 1994) and, in view of (1.2), we have E exp{i�
}=
exp{−
|�|}, that is, there is no shift parameter. A process X = {X (t)}t∈R is called strictly �-stable
with �∈ (0; 2) if all its linear combinations

∑n
k=1 �kX (tk); �k ; tk ∈R, are strictly �-stable random

variables. When � = 0 in (1.2), a strictly �-stable random variable or process is called symmetric
�-stable. Let us also note that the case �=2, not considered here, corresponds to centered Gaussian
distributions or processes.

We shall now state our main result, provide some insight about it and discuss its implications.

Theorem 1.1. A continuous-time strictly �-stable stationary process X = {X (t)}t∈R with �∈ (0; 2)
has a representation (1.1) if and only if it is a trivial stationary process, that is, there is a strictly
�-stable random variable Z such that, for all t ∈R, X (t) = Z a.s.

Theorem 1.1 is proved in Section 2. The theorem implies that if {X (t)}t∈R is stationary and
non-trivial, then there is at least one Dnite-dimensional distribution (X (t1); : : : ; X (tk)) which is dif-
ferent from (

∑
n ft1(n)�n; : : : ;

∑
n ftk (n)�n). The proof relies fundamentally on the assumptions of

continuous time and strictly �-stable, �∈ (0; 2), distributions.
Theorem 1.1 holds for �¡ 2. The Gaussian case � = 2 is very diHerent. Gaussian stationary

processes have discrete linear representations (1.1) under very weak assumptions. In the Gaussian
case, one can use series expansions in L2-orthogonal function bases and that Gaussian integrals
over L2-orthogonal functions are independent. KwapieJn and WoyczyJnski (1992, p. 52), for example,
provide a Karhunen–LoLeve representation for Gaussian processes with paths in a Banach space.
Theorem 1.1 states that there is no such thing in the stable case �∈ (0; 2).
Recall that the process X = {X (t)}t∈R has stationary increments if, for all h∈R, the pro-

cesses {X (t + h) − X (s + h)}s; t∈R and {X (t) − X (s)}s; t∈R have the same Dnite-dimensional dis-
tributions. If, for all c¿ 0 and some H ¿ 0, the processes {X (ct)}t∈R and {cHX (t)}t∈R have
the same Dnite-dimensional distributions, then X is called self-similar (or H -self-similar). The fol-
lowing result, proved in Section 2, extends Theorem 1.1 to self-similar strictly stable processes
and strictly stable processes with stationary increments. It follows from Theorem 1.1 by using
one-to-one transformations between self-similar or stationary increments processes and stationary
processes.
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Corollary 1.1. Suppose that X = {X (t)}t∈R is a strictly �-stable, �∈ (0; 2), process having a rep-
resentation (1.1).

(i) {X (t)}t∈R is H -self-similar if and only if there are two strictly �-stable random variables Z1
and Z2 such that for t ¿ 0,

X (t) = tHZ1 a:s:

and for t ¡ 0,

X (t) = |t|HZ2 a:s:

(ii) Suppose also that
∫ 0
−∞ es|X (s)| ds¡∞ a:s. Then, {X (t)}t∈R has stationary increments if and

only if there is a strictly �-stable random variable Z such that, for all t ∈R,
X (t)− X (0) = tZ a:s:

(iii) Supposing
∫ 0
−∞ es|X (s)| ds¡∞ a:s., {X (t)}t∈R is H -self-similar and has stationary incre-

ments if and only if

H = 1 and X (t) = tZ a:s:

for some strictly �-stable random variable Z .

Remark. The technical condition
∫ 0
−∞ es|X (s)| ds¡∞ a.s. allows the use of a one-to-one trans-

formation between stationary increments and stationary processes. It always holds if the process
{X (t)}t∈R is a strictly �-stable process, continuous in probability, with stationary increments (see
the bottom of page 307 in Cambanis and Maejima, 1989). In the case of stationary increments
processes, continuity in probability follows from measurability (see Proposition 2.1 in Surgailis
et al., 1998).

Corollary 1.1, in particular its part (iii), should be contrasted to the Gaussian case � = 2. In the
Gaussian case, self-similarity and stationarity of the increments properties characterize the distribution
of a Gaussian process up to a multiplicative constant: the only H -self-similar Gaussian process with
stationary increments is fractional Brownian motion. It is deDned for any H ∈ (0; 1) and, when H= 1

2 ,
it coincides with the usual Brownian motion (see, for example, Samorodnitsky and Taqqu, 1994).
Meyer et al. (1999) showed that fractional Brownian motion admits an almost sure expansion in a
wavelet basis

∞∑
j; k=−∞

2−jH (�H (2jt − k)−�H (−k))�j;k ; (1.3)

where �H is some deterministic function and {�j;k} are independent standard normal random vari-
ables, and hence that it has a representation (1.1). In the stable case �∈ (0; 2), for Dxed H , there
are inDnitely many diHerent H -self-similar processes with stationary increments (for examples, see
Samorodnitsky and Taqqu, 1994; Pipiras and Taqqu, 2002b). Corollary 1.1 states that, under weak
assumptions, none of these processes have a discrete linear representation (1.1). In particular, none
of these processes will have a wavelet like expansion (1.3) where {�j;k} are independent stable
random variables.
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Theorem 1.1 and Corollary 1.1 may seem discouraging, in particular as compared to the Gaussian
case, because they rule out representations (1.1) which have simple structure and are easy to work
with and often useful in practice. For example, wavelet expansion (1.3) provides a way to simulate
a fractional Brownian motion (see Abry and Sellan, 1996). However, these results in the case �¡ 2
suggest that one ought to look at alternatives. One can expect to represent, for example, a stationary
or self-similar stable process as a series (1.1) but with dependent stable innovations, or one could
still take these innovations independent and obtain approximations to the processes. Both of these
alternative approaches can be found in the probabilistic literature. For example, a linear fractional
stable motion which is one of the simplest stable self-similar processes with stationary increments
(see Samorodnitsky and Taqqu, 1994), can be approximated as in Section 7.11 of Samorodnitsky
and Taqqu (1994) by using (1.1)-type approximating sums of its integral representation. The same
process is represented as the wavelet expansion series (1.3) with dependent innovations in Benassi
and Roux (2000). The results of this note show that both of these approaches are natural because
they are the best that one can do under the circumstances.

The rest of the note is organized as follows. In Section 2, we prove Theorem 1.1 and Corollary
1.1. The proofs of these results employ minimal integral representations of stable processes and
their connections to non-singular Oows. Since we work with linear processes of form (1.1), these
sophisticated notions take more elementary and intuitive forms which may be of independent interest.
In Section 3, we consider an alternative approach based on spectral measures which can be used
when dealing with speciDc processes.

2. Proofs of Theorem 1.1 and Corollary 1.1

If the process {X (t)}t∈R has representation (1.1), then we can represent it as

{X (t)}t∈R d=
{∫

E
ft(x)M (dx)

}
t∈R

; (2.1)

where E=Z, ft(x)=ft(n) for x= n∈Z; M is a �-stable random measure (see Samorodnitsky and
Taqqu, 1994) on E with a control measure

m(dx) =
∑
n∈Z


n�{n}(dx)

and a skewness intensity � :E �→ [− 1; 1] deDned by �(x) =
∑

n∈Z �n1{x=n}. The coePcients 
n¿ 0
and �n ∈ [ − 1; 1] are the scale and the skewness coePcients, respectively, of independent strictly
stable random variables �n (�n = 0 when � = 1). More generally, strictly stable processes might be
deDned by (2.1) on any measure space (E;E; m) with a stable random measure M having a control
measure m and a skewness intensity � :E �→ [ − 1; 1], and {ft}t∈R ⊂ L�(E;E; m). The collection
{ft}t∈R is then said to be a spectral representation for the process {X (t)}t∈R.

In the proof of Theorem 1.1, we use the notion of a minimal spectral representation of a stable
process. It is deDned as follows (see Hardin (1982), RosiJnski (1995) in the symmetric case and
RosiJnski (1994, 1998) in the more general strictly stable case).

Suppose that E is a subset of a Polish (that is, metric, complete and separable) space, E is the

-algebra of the Borel subsets of E and m is a 
-Dnite measure on E. We write A = B m-a.e.
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if m(AQB) = 0 and say that two sub-
-algebras of E are equal modulo m if their sets are equal
m-a.e. Let F={ft; t ∈R} and deDne supp(F), that is, the support of ft; t ∈R, as a minimal (m-a.e.)
set A∈E such that m{x: ft(x) �= 0; x �= A}= 0 for every t ∈R.

De�nition 2.1. The spectral representation {ft}t∈R ⊂ L�(E;E; m) is called minimal for the process
{X (t)}t∈R if the following two conditions are satisDed:

(M1) supp(F) = E(m-a:e:);

(M2) #(F) = E(modulom);

where #(F) is the smallest 
-algebra, called ratio 
-algebra, generated by the extended-valued func-
tions f=g with f; g∈F .

A more practical condition (M2′), equivalent to (M2), can be found in Theorem 3.8 of RosiJnski
(1998). It is also the one that we shall use. One says that a map & :E �→ E is non-singular 1 when
m(&−1(A)) = 0 if m(A) = 0 for A∈E.

De�nition 2.2. Condition (M2′) is said to hold if for every non-singular map &: E �→ E and a map
a :E �→ R\{0} such that, for every t ∈R,

ft(&(x)) = a(x)ft(x) m-a:e:; (2.2)

one has

&(x) = x m-a:e:

The usefulness of minimal spectral representations will become apparent later. We now focus
on processes of type (1.1) and show that one may suppose without loss of generality that the
representation (1.1) is minimal. The proof below, in fact, shows how representation (1.1) can be
modiDed to make it minimal. This modiDcation also provides an idea of the type of redundancy that
one seeks to eliminate in order to obtain a minimal representation.

Lemma 2.1. Suppose that the process {X (t)}t∈R has a representation (1.1). Then it has also a
minimal representation∑

k∈K
gt(k)
k =

∫
K
gt(k)M (dk);

1 In the ergodic literature, one Dnds two diHerent deDnitions of a non-singular map & : E �→ E, namely,
(a) m(A) = 0 implies m(&−1(A)) = 0, for every A∈E,
(b) m(A) = 0 if and only if m(&−1(A)) = 0, for every A∈E.
(See, for example, P. Walters, An Introduction to Ergodic Theory, pp. 236–237 or K. Petersen, Ergodic Theory, p. 2 for
(a), and U. Krengel, Ergodic Theorems, p. 3 for (b)). RosiJnski (1998), on which property (2.2) is based, does not deDne
non-singularity explicitly. The proofs of that paper, however, indicate that non-singularity is used in the sense (a). This
was later conDrmed by Jan RosiJnski in a personal communication. We have, therefore, adopted deDnition (a) as well.
We also consider below “non-singular Oows” {&t}t∈R (see (2.4)), but since these are invertible (&−1

t =&−t), non-singularity
for the Oow {&t}t∈R, can be deDned either as
(a′) m(A) = 0 implies m(&−1

t (A)) = 0, for every t ∈R and A∈E or, equivalently, as
(b′) m(A) = 0 if and only if m(&−1(A)) = 0, for every t ∈R and A∈E.
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where K is a countable set, {gt(k); k ∈K}t∈R is a collection of deterministic functions, {
k}k∈K is
a sequence of independent strictly �-stable random variables and M is a �-stable random measure
satisfying M ({k}) = 
k .

Proof. We assume

X (t) =
∞∑

n=−∞
ft(n)�n; t ∈R:

Consider the following relation on Z: n ∼ l if and only if ∃a(n; l) �= 0 such that ft(n)= a(n; l)ft(l)
for all t ∈R. It is clear that ∼ is an equivalence relation. Let K denote the set of equivalence
classes and let Z =

∑
k∈K Ck be the decomposition of Z into the equivalence classes with respect

to the relation ∼. Observe that the set K of equivalence classes is countable. Let us also take a
representative nk ; k ∈K , from each equivalence class Ck . It follows from the deDnition of Ck that{ ∞∑

n=−∞
ft(n)�n

}
t∈R

d=

{∑
k∈K

ft(nk)

(∑
n∈Ck

a(n; nk)�n

)}
t∈R

=:

{∑
k∈K

gt(k)
k

}
t∈R

; (2.3)

where we set

gt(k) = ft(nk)

and where the random variables 
k =
∑

n∈Ck a(n; nk)�n are strictly �-stable and independent. Let us
show that representation (2.3) is minimal for the process {X (t)}t∈R. Since one of the equivalence
classes Ck may contain all those n such that ft(n)= 0 for all t ∈R, we implicitly exclude this class
from the representation (2.3). Then,

supp{gt; t ∈R}= K;

so that the Drst condition (M1) of minimality is satisDed. To show that the second condition (M2′)
holds as well, let &:K �→ K be a non-singular map between equivalent classes (since K is countable,
“non-singular” map here means “any” map because m(A)=0 implies A= ∅ and hence m(&−1(A))=
m(&−1(∅)) = 0.) Let a :K �→ R\{0} be another map such that

gt(&(k)) = a(k)gt(k) for all t ∈R:
Then

ft(n&(k)) = a(k)ft(nk) for all t ∈R:
The last relation implies that n&(k) and nk belong to the same equivalence class. Since n&(k) and
nk are representatives of the classes &(k) and k, respectively, and since n&(k) and nk belong to the
same class, this implies &(k) = k and proves (M2′).

We shall now prove Theorem 1.1. The proof, given below, uses the notions of a Oow and a related
cocycle. A <ow on a space (E;E) is a collection {&t}t∈R of measurable maps &t :E �→ E; t ∈R,
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which satisfy &0(x) = x and the translation equation

&s+t(x) = &s(&t(x)); (2.4)

for all s; t ∈R and x∈E. A Oow {&t}t∈R is said to be non-singular if the maps &t :E �→ E; t ∈R,
are non-singular, and it is said to be measurable if the map &t(x) :R × E �→ E is measurable. A
cocycle {at}t∈R for the Oow {&t}t∈R is a measurable map at(x) :R× E �→ {−1; 1} such that

as+t(x) = as(&t(x))at(x) (2.5)

for all s; t ∈R and x∈E. Flows and cocycles have proved useful in the study of stable processes
with an invariance property, such as stationarity or self-similarity (see RosiJnski, 1995; Pipiras and
Taqqu, 2002a).

Proof of Theorem 1.1. Suppose that {X (t)}t∈R is a stationary stable process with a representation
(1.1). We want to show that the process {X (t)}t∈R is then trivial. By Lemma 2.1, we have that

{X (t)}t∈R d=
{∫

K
gt(k)M (dk)

}
t∈R

;

where the set K is countable, M is a strictly �-stable random measure on K with a control measure
m(dk)=

∑
l∈K 
l�{l}(dk); 
l ¿ 0, and a skewness intensity �(k)=

∑
l∈K �l1{l=k}, �1 ∈ [−1; 1], and

{gt}t∈R is a minimal spectral representation for the process {X (t)}t∈R. Then, by Theorem 3.1 in
RosiJnski (1995) and the proof of Theorem 3.2 in RosiJnski (1994), there is a measurable non-singular
Oow {&t}t∈R on K and a related cocycle {at}t∈R such that, for each t ∈R and k ∈K ,

gt(k) = at(k)
{
d(m ◦ &t)

dm
(k)
}1=�

g0(&t(k)); (2.6)

the set K0 = {k ∈K : �(k) �= 0} is invariant under the Oow (that is, K0 =&−1
t (K0) for all t ∈R) and

the relations |� ◦&t|= |�| and at =� ◦&t=� hold on the set K0. By Lemma 2.2 below, {&t}t∈R is an
identity Oow, that is, &t(k)= k for all t ∈R and k ∈K . Relation (2.6) reduces to gt(k)= at(k)g0(k).
Since relation (2.5) becomes as+t(k)=as(k)at(k) for an identity Oow, by taking s= t in this relation,
we obtain that a2t(k) = (at(k))2 = 1 for all t ∈R and k ∈K . Then, we have that

gt(k) = g0(k)

for all t ∈R and k ∈K which implies that

{X (t)}t∈R d=
{∫

K
g0(k)M (dk)

}
t∈R

=: {Z0}t∈R:

By using (X (t); X (0)) =d (Z0; Z0), we obtain that P(X (t) = X (0)) = P(Z0 = Z0) = 1 and hence
X (t) = X (0) =: Z a.s. for all t ∈R.

Remark. The assumption of the measurability of the function ft(n) in (1.1) is technical. One can
reformulate it by requiring the discrete linear process (1.1) be measurable (see Samorodnitsky and
Taqqu, 1994, Chapter 13).

The following lemma was used in the above proof.
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Lemma 2.2. Let K be a countable set and {&t}t∈R be a non-singular measurable <ow on K . Then,
{&t}t∈R is an identity <ow, that is, &t(k) = k for all k ∈K and t ∈R.

Proof. Fix k ∈K . The Oow {&t}t∈R takes this point k and moves it to &t(k)∈K at time t. Since
the function t �→ &t(k) takes at most a countable number of values, there is k0 ∈K such that the set

{t ∈R: &t(k) = k0}
has a positive Lebesgue measure, and hence &t0(k)=k0 for some t0. Since &t−t0(k0)=&t−t0(&t0(k))=
&t(k), the set

+= {t ∈R: &t(k0) = k0}
has a positive Lebesgue measure as well. Since + is an additive group (if t1; t2 ∈ +, then t1 + t2 ∈ +
because &t1+t2(k0)=&t1(&t2(k0))=&t1(k0)=k0) and has a positive measure, Corollary 1.1.4 in Bingham
et al. 1987 implies that += R. Hence,

&t(k0) = k0 for all t ∈R (2.7)

and, since &t0(k) = k0, by applying the map &−t0 to both sides of this relation, we get

k = &0(k) = &−t0(&t0(k)) = &−t0(k0) = k0:

We conclude from (2.7) that

&t(k) = k for all t ∈R and k ∈K:

Heuristically, Lemma 2.2 is based on the following idea. Consider a particle moving under the
Oow {&t}t∈R. If K is countable, then the particle must stay at some point k ∈K for a Dnite amount
of time, say �¿ 0. But by taking s; t ∈ [0; �] in the Oow equation &s+t(k) = &s(&t(k)), one gets
&s+t(k) = k and hence the particle must stay at k forever. The Oow, therefore, must be the identity
Oow.

We now prove Corollary 1.1.

Proof of Corollary 1.1. Consider Drst part (i). Suppose that the process {X (t)}t∈R is H -self-similar
and has a representation (1.1). Then, by applying the Lamperti’s transformation (see Samorodnitsky
and Taqqu, 1994, Section 7.1), the process

Y1(t) = e−tHX (et); t ∈R
is stationary and

{Y1(t)}t∈R d=

{ ∞∑
n=−∞

e−tHfet (n)�n

}
t∈R

:

By Theorem 1.1, there is a strictly �-stable random variable Z1 such that for all t ∈R, Y1(t) = Z1
a.s. The inverse transformation which leads Y1 back to X is

X (t) = tHY1(ln t); t ¿ 0:
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Hence we get that, for all t ¿ 0; X (t)= tHZ1 a.s. To obtain an analogous relation for t ¡ 0, consider
the stationary process Y2(t)=e−tHX (−et); t ∈R, which yields for s¿ 0; X (−s)= sHY2(ln s)= sHZ2
by a similar argument.

Suppose now that {X (t)}t∈R has stationary increments. Under the assumptions of part (ii), the
well-known transformation (see Cambanis and Maejima, 1989)

Y (t) = X (t)−
∫ t

−∞
e−(t−s)X (s) ds; t ∈R; (2.8)

deDnes a stationary process. It is well-deDned because we suppose
∫ 0
−∞ es|X (s)| ds¡∞ a.s. More-

over, relation (2.8) is invertible in the sense that

X (t)− X (0) = Y (t)− Y (0) +
∫ t

0
Y (s) ds; t ∈R: (2.9)

Since transformation (2.8) preserves structure (1.1) of a discrete linear process, Theorem 1.1 implies
that Y (t) = Z a.s. for some strictly �-stable random variable Z . Then after substituting this Z into
(2.9), we get X (t)− X (0) = tZ a.s.
Part (iii) follows from the parts (i) and (ii) by using the fact that X (0) = 0 a.s. for a self-similar

process {X (t)}t∈R (see, for example, Samorodnitsky and Taqqu, 1994, p. 312).

3. A di erent perspective

Theorem 1.1 and Corollary 1.1 provide general results valid for stationary, stationary increments
or self-similar processes. Their proof was based on minimal representations and Oows. One can
sometimes use an alternative approach, based on “spectral measures”, when dealing with a speci=c
process. For each n¿ 1, there is a measure on the unit sphere Sn, called a “spectral measure”,
which characterizes the n-dimensional distributions of the stable process. It is known that processes
of form (1.1) constitute a small subclass of stable processes because their spectral measures are
discrete, that is, they are concentrated only on a countable number of points of the corresponding
unit spheres. If one is given a (stationary) stable process, it is sometimes possible to show that it
cannot be represented as a series (1.1) because the spectral measure of some of its Dnite-dimensional
distributions is not discrete. We illustrate this method on the “linear fractional stable motion” process.

Example 3.1. Consider the so-called linear fractional stable motion {L(t)}t∈R which is a symmetric
�-stable, self-similar process with stationary increments having the integral representation

{L(t)}t∈R d=
{∫

R

(
(t − u)H−1=�

+ − (−u)H−1=�
+

)
M (du)

}
t∈R

; (3.1)

where �∈ (0; 2), H ∈ (0; 1), H �= 1=� and M is the so-called symmetric �-stable random measure
with the Lebesgue control measure on R. This means that the characteristic function of a vector
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(L(t1); : : : ; L(tn)); t1; : : : ; tn ∈R, is given by

E exp

{
i
n∑

k=1

�kL(tk)

}
= exp

{
−
∫
R

∣∣∣∣∣
n∑

k=1

�k
(
(tk − u)H−1=�

+ − (−u)H−1=�
+

)∣∣∣∣∣
�

du

}
:

For more information on linear fractional stable motion, see Samorodnitsky and Taqqu (1994). (One
can also consider strictly �-stable random measures M in (3.1) which leads to strictly �-stable linear
fractional stable motions. We assume here that M is symmetric �-stable for simplicity.)
Since linear fractional stable motion is self-similar and is not of the form tHZ , Corollary 1.1

implies that it cannot be represented as a series (1.1). This result can also be obtained by using
the approach based on “spectral measures” as follows. Let L0 = (L(s); L(t)) and X0 = (X (s); X (t)),
s �= t, s, t �= 0, be two-dimensional distributions of the linear fractional stable motion {L(t)}t∈R
and a process {X (t)}t∈R of form (1.1), respectively. Since we focus now on symmetric �-stable
distributions, assume that the independent �-stable random variables �n in (1.1) are symmetric. By
Theorem 2.4.3 in Samorodnitsky and Taqqu (1994), the vectors L0 and X0 are uniquely characterized
by a symmetric Dnite measure on the unit sphere S2, called a spectral measure. The spectral measure
/X0 , corresponding to the vector X0, can be seen to be concentrated on a countable number of points

sn =
(

fs(n)
(f2

t (n) + f2
s (n))1=2

;
ft(n)

(f2
t (n) + f2

s (n))1=2

)

and −sn; n∈Z, where ft is given by (1.1). On the other hand, as in Samorodnitsky and Taqqu
(1994, p. 116), the spectral measure /L0 of the vector L0 is given by

/L0(A) =
1
2

∫
g−1(A)

du+
1
2

∫
g−1(−A)

du; (3.2)

where g(u)=(g1(u); g2(u)) with g1(u)=hs(u)=(h2t (u)+h2s (u))
1=2 and g2(u)=ht(u)=(h2t (u)+h2s (u))

1=2,
and

ht(u) = (t − u)H−1=�
+ − (−u)H−1=�

+ ; u; t ∈R

is the kernel function in (3.1). Observe that the relation g1(u) = a for some |a|6 1 is equivalent to
h2s (u)(1− a2) = a2h2t (u). This last relation cannot hold for more than a countable number of points
u and hence, by (3.2), /L0({s}) = 0 for all s∈ S2. Since /X0 is concentrated on a Dnite number of
points, we have /L0 �= /X0 and hence that the vectors L0 and X0 have diHerent distributions. This
shows that linear fractional stable motion (3.1) cannot be represented as a series (1.1).

The method of proof in the previous example does not always work.

Example 3.2. Consider the strictly �-stable LJevy motion {L(t)}t∈R which has stationary independent
and strictly �-stable increments (and is self-similar with H = 1=�). Since the increments of stable
LJevy motion are independent, any Dnite-dimensional distribution L0 = (L(t1); : : : ; L(tn)) is a linear
combination of independent strictly �-stable random variables and hence, by Proposition 2.3.7 in
Samorodnitsky and Taqqu (1994), the spectral measure /L0 of the vector L0 is concentrated on a
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Dnite number of points on the unit sphere Sn. Since the spectral measure /X0 of a Dnite-dimensional
distribution X0 = (X (t1); : : : ; X (tn)) of a process {X (t)}t∈R of the form (1.1) is also concentrated
on a countable number of points on the sphere, we cannot immediately conclude by analyzing the
spectral measures that stable LJevy motion cannot be represented as a series (1.1).

The strength of Theorem 1.1 resides in its generality, namely, that one does not have to work
as in Example 3.1 with the particular stable process at hand, and show, by analyzing its spectral
measures, that it does not have the representation (1.1). Theorem 1.1 and its Corollary 1.1 state that
there are no continuous-time stationary or stationary increments or self-similar processes with the
representation (1.1) except in trivial cases. These trivial cases are of the forms

X (t) = Z; X (t)− X (0) = tZ; X (t) = tHZ:

The proof of Theorem 1.1 also illustrates how one can derive these results by using minimal repre-
sentations and Oows.
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