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3 Univ Lyon, Inria, CNRS, ENS de Lyon, UCB Lyon 1, LIP UMR 5668, Lyon, France
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Among the different indicators that quantify the spread of an epidemic, such as
the on-going COVID-19, stands first the reproduction number which measures how
many people can be contaminated by an infected person. In order to permit the mon-
itoring of the evolution of this number, a new estimation procedure is proposed here,
assuming a well-accepted model for current incidence data, based on past observa-
tions. The novelty of the proposed approach is twofold: 1) the estimation of the repro-
duction number is achieved by convex optimization within a proximal-based inverse
problem formulation, with constraints aimed at promoting piecewise smoothness; 2)
the approach is developed in a multivariate setting, allowing for the simultaneous
handling of multiple time series attached to different geographical regions, together
with a spatial (graph-based) regularization of their evolutions in time. The effective-
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ness of the approach is first supported by simulations, and two main applications
to real COVID-19 data are then discussed. The first one refers to the comparative
evolution of the reproduction number for a number of countries, while the second
one focuses on French counties and their joint analysis, leading to dynamic maps
revealing the temporal co-evolution of their reproduction numbers.

1 Introduction
Context. The ongoing COVID-19 pandemic has produced an unprecedented health and
economic crisis, urging for the development of adapted actions aimed at monitoring the
spread of the new coronavirus. No country remained untouched, and all of them experi-
enced a propagation mechanism that is basically universal in the onset phase: each infected
person happened to infect in average more than one other person, leading to an initial ex-
ponential growth.

The strength of the spread is quantified by the so-called reproduction number which
measures how many people can be contaminated by an infected person. In the early phase
where the growth is exponential, this is referred to asR0 (for COVID-19,R0 ∼ 3 [13, 23]).
As the pandemic develops and because more people get infected, the effective reproduction
number evolves, hence becoming a function of time hereafter labeled R(t). This can
indeed end up with the extinction of the pandemic, R(t) → 0, at the expense though of
the contamination of a very large percentage of the total population, and of potentially
dramatic consequences.

Rather than letting the pandemic develop until the reproduction number would even-
tually decrease below unity (in which case the spread would cease by itself), an active
strategy amounts to take actions so as to limit contacts between individuals. This path has
been followed by several countries which adopted effective lock-down policies, with the
consequence that the reproduction number decreased significantly and rapidly, further re-
maining below unity as long as social distancing measures were enforced (see for example
[14, 23]).

However, when lifting the lock-down is at stake, the situation may change with an ex-
pected increase in the number of inter-individual contacts, and monitoring in real time the
evolution of the instantaneous reproduction number R(t) becomes of the utmost impor-
tance: this is the core of the present work.

Issues and related work. Monitoring and estimatingR(t) raises however a series of issues
related to pandemic data modeling, to parameter estimation techniques and to data avail-
ability. Concerning the mathematical modeling of infectious diseases, the most celebrated
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approaches refer to compartmental models such as SIR (“Susceptible - Infectious - Re-
covered”), with variants such as SEIR (“Susceptible - Exposed - Infectious - Recovered”).
Because such global models do not account well for spatial heterogeneity, clustering of
human contact patterns, variability in typical number of contacts (cf. [15] ), further refine-
ments were proposed [3]. In such frameworks, the effective reproduction number at time
t can be inferred from a fit of the model to the data that leads to an estimated knowledge
of the average of infecting contacts per unit time, of the mean infectious period, and of
the fraction of the population that is still susceptible. These are powerful approaches that
are descriptive and potentially predictive, yet at the expense of being fully parametric and
thus requiring the use of dedicated and robust estimation procedures. Parameter estima-
tion become all the more involved when the number of parameters grows and/or when the
amount and quality of available data are low, as is the case for the COVID-19 pandemic
real-time and in emergency monitoring.

Rather than resorting to fully parametric models and seeing R(t) as the by-product of
its identification, a more phenomenological, semi-parametric approach can be followed
[11, 18, 25]. This approach has been reported as robust and potentially leading to relevant
estimates ofR(t), even for epidemic spreading on realistic contact networks, where it is not
possible to define a steady exponential growth phase and a basic reproduction number [15].
The underlying idea is to model incidence data z(t) at time t as resulting from a Poisson
distribution with a time evolving parameter adjusted to account for the data evolution.
This parameter can be written as R(t)

∑
s≥1 Φ(s)z(t − s), where z(t − s) accounts for

the past incidence data, as convolved with a function Φ(s) standing for the distribution of
the serial interval. The serial interval function Φ(s) models the time between the onset of
symptoms in a primary case and the onset of symptoms in secondary cases, or equivalently
the probability that a person confirmed infected today was actually infected s days earlier
by another infected person. The serial interval function is thus an important ingredient of
the model, accounting for the biological mechanisms in the epidemic evolution.

Assuming the distribution Φ to be known (which can be questionable), the whole chal-
lenge in the actual use of the semi-parametric Poisson-based model thus consists in devis-
ing estimates R̂(t) of R(t) that have better statistical performance (more robust, reliable
and hence usable) than the direct brute-force and naive form:

R̂naive(t) = z(t)/
∑
s≥1

Φ(s)z(t− s). (1)

This has been classically addressed by approaches aimed at maximizing the likelihood
attached to the model. This can be achieved, e.g., within several variant of Bayesian frame-
works [1, 11, 14, 15, 25], yet at the expense of a heavy computational burden. We promote
here an alternative approach based on inverse problem formulations and proximal-operator
based nonsmooth convex optimisation [2, 4, 9, 19, 21].
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The questions of modeling and estimation, be they fully parametric or semi-parametric,
are intimately intertwined with that of data availability. This will be discussed in further
detail in Section 2, but one can however remark at this point that many options are open,
with a conditioning of the results to the choices that are made. There is first the nature of
the incidence data used in the analysis (reported infected cases, hospitalizations, deaths)
and the database they are extracted from. Next, there is the granularity of the data (whole
country, regions, smaller units) and the specificities that can be attached to a specific choice
as well as the comparisons that can be envisioned. In this respect, it is worth remarking
that most analyses reported in the literature are based on (possibly multiple) univariate
time series, whereas genuinely multivariate analyses (e.g., a joint analysis of the same
type of data in different countries in order to compare health policies) might prove more
informative.

Goal, contributions and outlines. For that category of research work motivated by con-
tributing in emergency to the societal stake of monitoring the pandemic evolution in real-
time, or at least, on a daily basis, there are two classes of challenges: ensuring a robust and
regular access to relevant data; rapidly developing analysis/estimation tools that are the-
oretically sound, practically usable on data actually available, and that may contribute to
improving current monitoring strategies. In that spirit, the overarching goal of the present
work is twofold: (1) proposing a new, more versatile framework for the estimation of R(t)
within the semi-parametric model of [11, 25], reformulating its estimation as an inverse
problem whose functional is minimized by using non smooth proximal-based convex op-
timization; (2) inserting this approach in an extended multivariate framework, with appli-
cations to various, complementary datasets corresponding both to different incidence data
and to different geographical regions.

The data used here were collected from three different databases (Johns Hopkins Uni-
versity, European Centre for Disease Prevention and Control, and Santé-Publique-France).
While incidence data reported essentially consist of the number of infected, hospitalized,
dead and recovered persons, the three databases are very heterogenous with respect to
starting date of data availability, geographical granularity, and data quality (outliers, mis-
reporting,. . . ). This is detailed in Section 2.1. In the present work, it has been chosen
to work with the number of daily new infections as incidence data, thus labeled z(t) in
the remainder of the work. Data other than the number of confirmed cases are not stud-
ied here, for reasons further discussed in Section 5. The number of daily new infections
may however be directly read as reported in databases, or recomputed from other avail-
able data (such as hospitalization numbers). Further, the uneven quality of the data is such
that preprocessing has proved necessary. These issues are detailed in Section 2.2. Section
3 presents the semi-parametric model for R(t) (cf. Section 3.1) and how its estimation
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can be phrased within a non smooth proximal-based convex optimization framework, in-
tentionally designed to enforce piecewise linearity in the estimation of R(t) via temporal
regularization, as well as piecewise constancy in spatial variations of R(t) by graph-based
regularization (cf. Section 3.2). Proximal-operator based algorithms for the minimization
for the corresponding functionals are detailed in Section 3.3. These estimation tools have
been first illustrated at work on synthetic data, constructed from different models and sim-
ulating several scenarii (cf. Section 3.4). They were then applied to several real pandemic
datasets (cf. Section 4). First, the number of daily new infections for many different coun-
tries across the world were analyzed independently (cf. Section 4.3). Second, focusing
on France only, the number of daily new infections per continental France départements
(départements constitute usual entities organizing the administrative life in France) were
analyzed both independently and in a multivariate setting, illustrating the benefit of this
latter formulation (cf. Section 4.4). Discussions, perpectives and potential improvements
are discussed in Section 5.

2 Data

2.1 Datasets
To enable a relevant study of the pandemic, it is essential to have at disposal robust and
automated accesses to reliable databasets where pandemic-related data are made available
by relevant authorities, on a regular basis. In the present study, three sources of data were
systematically used.

Source1(JHU) Johns Hopkins University1 provides access to the cumulated daily re-
ports of the number of infected, deceased and recovered persons, on a per country basis,
for a large number of countries worldwide, essentially since inception of the COVID-19
crisis (January 1st, 2020).

Source2(ECDPC) The European Centre for Disease Prevention and Control2 provides
similar information.

Source3(SPF) Santé-Publique-France3 focuses on France only. It makes available on
a daily basis a rich variety of pandemic-documented data across the France territory on a
per département-basis, départements consisting of the usual granularity of geographical
units (of roughly comparable sizes), used in France to address most administrative issues

1https://coronavirus.jhu.edu/ and https://raw.githubusercontent.com/CSSEGISandData/COVID-
19/master/csse covid 19 time series/

2https://www.ecdc.europa.eu/ and https://www.ecdc.europa.eu/sites/default/files/documents/COVID-19-
geographic-disbtribution-worldwide.xlsx

3https://www.santepubliquefrance.fr/ and https://www.data.gouv.fr/fr/datasets/
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(an equivalent of counties for other countries). Source3(SPF) data are mostly based on
hospital records, such as the daily reports of the number of currently hospitalized persons,
together with the cumulated numbers of deceased and recovered persons with breakdowns
by age and gender. Elementary algebra enables us to derive the daily number of new hos-
pitalizations, used as a (delayed) proxy for daily new infections, assuming that a constant
fraction of infected people is hospitalized. Data are however available only after March
20th.

Data were (and still are) automatically downloaded on a daily basis, using MATLAB

routines, written by ourselves and available upon request.

2.2 Time series
The data available on the different data repositories used here are strongly affected by
outliers, which may stem from inaccuracy or misreporting in per country reporting proce-
dures, or from changes in the way counts are collected, aggregated, and reported. Outliers
are present for all countries and all datasets, and occur in related manners. Accounting for
outliers is per se an issue that can be handled in several different ways (this is further dis-
cussed in Section 5). In the present work, it has been chosen to preprocess data for outlier
removal by applying to the raw time series a nonlinear filtering, consisting of a sliding-
median over a 7-day window: outliers defined as ±2.5 standard deviation are replaced by
window median to yield the pre-processed time series z(t), from which the reproduction
number R(t) is estimated. Examples of raw and pre-processed time series are illustrated
in the figures throughout Section 4.

Countries are studied independently (cf. Section 4.3), and the estimation procedure is
thus applied independently to each time series z(t) of size T , the number of days available
for analysis.

To each continental France département is associated a time series zd(t) of size T ,
where 1 ≤ d ≤ D = 94 indexes the département. These time series are collected and
stacked in a matrix of size D × T , and are analyzed both independently and jointly (cf.
Section 4.4).

Estimation of R(t) is performed daily, with T thus increasing every day.
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3 Data model and estimation procedure

3.1 Data modeling
As mentioned in Introduction, epidemiological data are often modeled by SIR models and
variants, devised to account for the detailed mechanisms driving the epidemic outbreak.
Although they can be used for envisioning the impact of possible scenarii in the future
development of an on-going epidemic [13], such models, because they require the full es-
timation of numerous parameters, are often used a posteriori (e.g., long after the epidemic)
with consolidated and accurate datasets. During the spread phase and in order to account
for the on-line/on-the-fly need to monitor the pandemic and to offer some robustness to
partial/incomplete/noisy data, less detailed semi-parametric models focusing on the only
estimation of the time-dependent reproduction number can be preferred [26, 18, 11].

Let R(t) denote the instantaneous reproduction number to be estimated and z(t) be the
number of daily new infections. It has been proposed in [11, 25] that {z(t), t = 1, . . . , T}
can be modeled as a nonstationary time series consisting of a collection of random vari-
ables, each drawn from a Poisson distribution Ppt whose parameter pt depends on the past
observations of z(t), on the current value of R(t), and on the serial interval function Φ(·):

P(z(1), . . . , z(t)) =
t∏

s=1

Pps(z(s)), with ps = R(s)
∑
u≥1

Φ(u)z(s− u). (2)

The serial interval function Φ(·) constitutes a key ingredient of the model, whose
importance and role in pandemic evolution has been mentioned in Introduction. It is as-
sumed to be independent of calendar time (i.e., constant across the epidemic outbreak),
and, importantly, independent of R(t), whose role is to account for the time dependencies
in pandemic propagation mechanisms.

For the COVID-19 pandemic, several studies have empirically estimated the serial
interval function Φ(·) [16, 22]. For convenience, Φ(·) has been modeled as a Gamma
distribution, with shape and rate parameters 1.87 and 0.28, respectively (corresponding
to mean and standard deviations of 6.6 and 3.5 days, see [14] and references therein).
These choices and assumptions have been followed and used here, and the corresponding
function is illustrated in Fig. 1.

In essence, the model in Eq. (2) is univariate (only one time series is modeled at
a time), and based on a Poisson marginal distribution. It is also nonstationary, as the
Poisson rate evolves along time. The key ingredient of this model consists of the Poisson
rate evolving as a weighted moving average of past observations, which is qualitatively
based on the following rationale: when z(t)/

∑
s≥1 Φ(s)z(t− s) is above 1, the epidemic

is growing and, conversely, when this ratio is below 1, it decreases and eventually vanishes.
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Figure 1 – Serial interval function Φ modeled as a Gamma distribution with mean and
standard deviation of 6.6 and 3.5 days, following [16].

3.2 Estimation via non-smooth convex optimisation
In order to estimate R(t), and instead of using Bayesian frameworks that are considered
state-of-the-art tools for epidemic evolution analysis, we propose and promote here an
alternative approach based on an inverse problem formulation. Its main principle is to as-
sume some form of temporal regularity in the evolution ofR(t) (below we use a piecewise
linear model). In the case of a joint estimation of R(t) across several continental France
départements, we further assume some form of spatial regularity, i.e., that the values of
R(t) for neighboring départements are similar.

Univariate setting. For a single country, or a single département, the observed (possibly
pre-processed) data {z(t), 1 ≤ t ≤ T} is represented by a T -dimensional vector z ∈ RT .
Recalling that the Poisson law is P(Z = n|p) = pn

n!
e−p for each integer n ≥ 0, the negative

log-likelihood of observing z given a vector p ∈ RT of Poisson parameters pt is

− logP(z | p) =
T∑
t=1

− logP(Z(t) = z(t) | pt) =
T∑
t=1

(pt − z(t) log pt + log[z(t)!]) ,

(3)
where r ∈ RT is the (unknown) vector of values of R(t). Up to an additive term indepen-
dent of p, this is equal to the KL-divergence (cf. Section 5.4. in [21]):

DKL(z | p) =
T∑
t=1

(
z(t) log

z(t)

pt
+ pt − z(t)

)
. (4)

Given the vector of observed values z, the serial interval function Φ(·), and the number
of days T , the vector p given by (2) reads p = r�Φz, with � the entrywise product and
Φ ∈ RT×T the matrix with entries Φij = Φ(i− j).
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Maximum likelihood estimation of r (i.e., minimization of the negative log-likelihood)
leads to an optimization problem minrDKL(z | r � Φz) which does not ensure any reg-
ularity of R(t). To ensure temporal regularity, we propose a penalized approach using
r̂ = arg minrDKL(z | r�Φz) + Ω(r) where Ω denotes a penalty function.

Here we wish to promote a piecewise affine and continuous behavior, which may be
accomplished [7, 12] using Ω(r) = λtime‖D2r‖1, where D2 is the matrix associated with
a Laplacian filter (second order discrete temporal derivatives), ‖ · ‖1 denotes the `1-norm
(i.e., the sum of the absolute values of all entries), and λtime is a penalty factor to be tuned.
This leads to the following optimization problem:

r̂ = arg min
r
DKL(z | r�Φz) + λtime‖D2r‖1. (5)

Spatially regularized setting. In the case of multiple départements, we consider multiple
vectors (zd ∈ RT , 1 ≤ d ≤ D) associated to the D time series, and multiple vectors of
unknown (rd ∈ RT , 1 ≤ d ≤ D), which can be gathered into matrices: a data matrix
Z ∈ RT×D whose columns are zd and a matrix of unknown R ∈ RT×D whose columns
are the quantities to be estimated rd.

A first possibility is to proceed to independent estimation of the (rd ∈ RT , 1 ≤ d ≤ D)
by addressing the separate optimization problems

r̂d = arg min
r
DKL(zd | r�Φzd) + λtime‖D2r‖1,

which can be equivalently rewritten into a matrix form:

R̂indep = arg min
R

DKL(Z | R�ΦZ) + λtime‖D2R‖1, (6)

where DKL(Z | R�ΦZ) :=
∑D

d=1DKL(zd | rd�Φzd), and ‖D2R‖1 =
∑D

d=1 ‖D2rd‖1 is
the entrywise `1 norm of D2R, i.e., the sum of the absolute values of all its entries.

An alternative is to estimate jointly the (rd ∈ RT , 1 ≤ d ≤ D) using a penalty func-
tion promoting spatial regularity. To account for spatial regularity, we use a spatial ana-
logue of D2 promoting spatially piecewise constant solutions. The D continental France
départements can be considered as the vertices of a graph, where edges are present be-
tween adjacent départements. From the adjacency matrix A ∈ RD×D of this graph (Aij =
1 if there is an edge e = (i, j) in the graph, Aij = 0 otherwise), the global variation of the
function on the graphs can be computed as

∑
ij Aij(Rti −Rtj)

2 and it is known that this
can be accessed through the so-called (combinatorial) Laplacian of the graph: L = ∆−A
where ∆ is the diagonal matrix of the degrees (∆ii =

∑
j Aij) [24]. However, in order to

promote smoothness over the graphs while keeping some sparse discontinuities on some
edges, it is preferable to regularize using a Total Variation on the graph, which amounts to
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take the `1-norm of these gradients (Rti−Rtj) on all existing edges. For that, let us intro-
duce the incidence matrix B ∈ RE×D such that L = B>B whereE is the number of edges
and, on each line representing an existing edge e = (i, j), we set Be,i = 1 and Be,j = −1.
Then, the `1-norm ‖RB>‖1 = ‖BR>‖1 is the equal to

∑T
t=1

∑
(i,j):Aij=1 |Rti −Rtj|. Al-

ternatively, it can be computed as ‖RB>‖1 =
∑T

t=1 ‖Br(t)‖1 where r(t) ∈ RD is the t-th
row of R, which gathers the values across all départements at a given time t. From that,
we can define the regularized optimization problem:

R̂joint = arg min
R

DKL(Z | R�ΦZ) + λtime‖D2R‖1 + λspace‖RB>‖1. (7)

Optimization problems (6) and (7) involve convex, lower semi-continuous, proper and
non-negative functions, hence their set of minimizers is non-empty and convex [2]. We
will soon discuss how to compute these using proximal algorithms. By the known sparsity-
promoting properties of `1 regularizers and their variants, the corresponding solutions are
such that D2R and/or RB> are sparse matrices, in the sense that these matrices of (second
order temporal or first order spatial) derivatives have many zero entries. The higher the
penalty factors λtime and λspace, the more zeroes in these matrices. In particular, when
λspace = 0 no spatial regularization is performed, and (7) is equivalent to (6). When λspace

is large enough, RB> is exactly zero, which implies that r(t) is constant at each time since
the graph of départements is connected. How to tune such parameters is further discussed
in Section 4.1.

3.3 Optimization using a proximal algorithm
The considered optimization problems are of the form

minimizeRΨ(R) := F (R) +
M∑
m=1

Gm(Km(R)), (8)

where F and Gm are proper lower semi-continuous convex, and Km are bounded linear
operators. A classical case for m = 1 is typically addressed with the Chambolle-Pock
algorithm [5], which has been recently adapted for multiple regularization terms as in Eq.
8 of [10]. To handle the lack of smoothness of Lipschitz differentiability for the considered
functions F and Gm, these approaches rely on their proximity operators. We recall that
the proximity operator of a convex, lower semi-continuous function ϕ is defined as [17]

proxϕ(y) = arg min
x

1

2
‖y − x‖22 + ϕ(x).
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In our case, we consider a separable data fidelity term:

F (R) = DKL(Z | R�ΦZ) =
∑
td

[
Rtd · (ΦZ)td − Ztd + Ztd log

(
Ztd

Rtd · (ΦZ)td

)]
.

(9)
As this is a separable function of the entries of its input, its associated proximity oper-

ator can be computed component by component [8]:

(proxτF (X))td =
Xtd − τ · (ΦZ)td +

√
|Xtd − τ · (ΦZ)td |2 + 4τXtd

2
,

where τ > 0. We further consider Gm(·) = ‖.‖1, m = 1, 2, and K1(R) := λtimeD2R,
K2(R) := λspaceRB>. The proximity operators associated to Gm read:

(proxτ‖.‖1(X))td =

(
1− τ

|Xtd|

)
+

Xtd,

where (.)+ = max(0, .). In Algorithm 1, we express explicitly Algorithm (161) of [10]
for our setting, considering the Moreau identity that provides the relation between the
proximity operator of a function and the proximity operator of its conjugate (cf. Eq. (8)
of [10]). The choice of the parameters τ and σm impacts the convergence guarantees. In
this work, we adapt a standard choice provided by [5] to this extended framework. The
adjoint of Km, denoted K∗m, is given by K∗1(Y) := λtimeD

>
2 Y, K∗2(Y) := λspaceYB. The

sequence (R(k+1))k∈N converges to a minimizer of (7) (cf. Thm 8.2 of [10]).
Algorithm 1: Chambolle-Pock with multiple penalization terms

Input: data Z, tolerance ε > 0;

Initialization: , k = 0, τ = σm = 0.99/
√∑

m=1,2 ‖Km‖2;

R(0) = Z, Y
(0)
m = Km(R(0));

while |Ψ(R(k+1))−Ψ(R(k))|/Ψ(R(k)) > ε do
for m = 1, 2 do

Y
(k+1)
m = Y

(k)
m + σmKm(R(k))− σmprox 1

σm
Gm

(
1
σm

Y
(k)
m +Km(R(k))

)
;

R(k+1) = proxτF

(
R(k) − τ

∑
m

K∗m(2Y(k+1)
m −Y(k)

m )

)
;

k ← k + 1;

Result: R(end)
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3.4 Estimation on synthetic data
To assess the relevance and performance of the proposed estimation procedure detailed
above, it is first applied to two different synthetic time series z(t). The first one is synthe-
sized using directly the model in Eq. (2), with the same serial interval function Φ(t) as that
used for the estimation, and using an a priori prescribed function R(t). The second one
is produced from solving a compartmental (SIR type) model. For such models, R(t) can
be theoretically related to the time scale parameters entering their definition, as the ratio
between the infection time scale and the quitting infection (be it by death or recovery) time
scale. The theoretical serial function Φ associated to that model and to its parameters is
computed analytically (cf., e.g., [6]) and used in the estimation procedure.

For both cases, the same a priori prescribed function R(t), to be estimated, is chosen
as constant (R = 2.2) over the first 45 days to model the epidemic outbreak, followed
by a linear decrease (till below 1) over the next 45 days to model lockdown benefits, and
finally an abrupt linear increase for the last 10 days, modeling a possible outbreak at when
lockdown is lifted. Additive Gaussian noise is superimposed to the data produced by the
models to account for outliers and misreporting.
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Figure 2 – Estimated reproduction numbers R(t) on synthetic data, produced by the
Poisson model (2) (left) and by a SIR model (right). The true R(t) (blue line) is piecewise
linear: constant till day 45, decreasing till day 90 and increasing for the last 10 days. The
proposed estimate (red) performs better than the naive estimate (black) (cf. Eq. (1)) and
detects well the changes, notably it quickly reacts to the increase of the last 10 days.

For both cases, the proposed estimation procedure (obtained with λtime set to the same
values as those used to analyze real data in Section 4) outperforms the naive estimates (1),
which turn out to be very irregular (cf. Fig. 2). The proposed estimates notably capture

12



well the three different phases of R(t) (stable, decreasing and increasing, with notably a
rapid and accurate reaction to the increasing change in the 10 last days.

4 COVID-19 reproduction number time evolutions
The present section aims to apply the models and estimation tools proposed in Section 3
to the data described in Section 2. First, methodological issues are addressed related to
tuning the hyperparameter(s) λtime or (λtime, λspace) in univariate and multivariate settings,
and to comparing the consistency between different estimates ofR obtained from the same
incidence data yet downloaded from different repositories. Then, the estimation tools are
applied to the estimation of R(t) independently for numerous countries (cf. Section 4.3)
and jointly for the 94 continental France départements (cf. Section 4.4).

4.1 Regularization hyperparameter tuning
A critical issue associated with the practical use of the estimates based on the optimization
problems (5) and (7) lies in the tuning of the hyperparameters balancing data fidelity terms
and penalization terms. While automated and data-driven procedures can be devised, fol-
lowing works such as [20] and references therein, let us analyze the forms of the functional
to be minimized, so as to compute relevant orders of magnitude for these hyperparameters.

Let us start with the univariate estimation (5). Using λtime = 0 implies no regularization
and the achieved estimate turns out to be as noisy as the one obtained with a naive estimator
(cf. Eq. (1)). Conversely, for large enough λtime, the proposed estimate becomes exactly a
constant, missing any time evolution. Tuning λtime is thus critical but can become tedious,
especially because differences across countries (or across départements in France) are
likely to require different choices for λtime. However, a careful analysis of the functional
to minimize shows that the data fidelity term (9), based on a Kullback-Leibler divergence,
scales proportionally to the input incidence data z while the penalization term, based on
the regularization of R(t), is independent of the actual values of z. Therefore, the same
estimate for R(t) is obtained if we replace z with α × z and λ with α × λ. Because
orders of magnitude of z are different amongst countries (either because of differences
in population size, or of pandemic impact), this critical observation leads us to apply the
estimate not to the raw data z but to a normalized version z/std(z), alleviating the burden
of selecting one λtime per country, instead enabling to select one same λtime for all countries
and further permitting to compare the estimated R(t)’s across countries for equivalent
levels of regularization.

Considering now the graph-based spatially-regularized estimates (7) while keeping
fixed λtime, the different R(t) are analyzed independently for each département when
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λspace = 0. Conversely, choosing a large enough λspace yields exactly identical estimates
across départments that are, satisfactorily, very close to what is obtained from data aggre-
gated over France prior to estimation. Further, the connectivity graph amongst the 94 con-
tinental France départements leads to an adjacency matrix with 475 non-zero off-diagonal
entries (set to the value 1, associated to as many edges in the graph). Therefore, a care-
ful examination of (7) shows that the spatial and temporal regularizations have equivalent
weights when λtime and λtime are chosen such that

94× λtime = 2× 475× λspace. (10)

The use of z/std(z) and of (10) above gives a relevant first-order guess to the tuning
of λtime and of (λtime, λspace).

4.2 Estimate consistency using different repository sources
When undertaking such work dedicated to on-going events, to daily evolutions, and to a
real stake in forecasting future trends, a solid access to reliable data is critical. As men-
tioned in Section 2, three sources of data are used, each including data for France, which
are thus now used to assess the impact of data sources on estimated R(t). Source1(JHU)
and Source2(ECDPC) provide cumulated numbers of confirmed cases counted at national
levels and (in principle) including all reported cases from any source (hospital, death at
home or in care homes. . . ). Source3(SPF) does not report that same number, but a col-
lection of other figures related to hospital counts only, from which a daily number of
new hospitalizations can be reconstructed and used as a proxy for daily new infections.
The corresponding raw and (sliding-median) preprocessed data, illustrated in Fig. 3, show
overall comparable shapes and evolutions, yet with clearly visible discrepancies of two
kinds. First, Source1(JHU) and Source2(ECDPC), consisting of crude reports of number
of confirmed cases are prone to outliers. Those can result from miscounts, from pointwise
incorporations of new figures, such as the progressive inclusion of cases from EHPAD
(care homes) in France, or from corrections of previous erroneous reports. Conversely,
data from Source3(SPF), based on hospital reports, suffer from far less outliers, yet at the
cost of providing only partial figures. As discussed in Section 2.2, it has been chosen here
to preprocess outliers, on the basis of a sliding median procedure, prior to conducting the
estimation of R(t). Second, in France, as in numerous other countries worldwide, the
procedure on which confirmed case counts are based, changed several times during the
pandemic period, yielding possibly some artificial increase in the local average number
of daily new confirmed cases. This has notably been the case for France, prior to the
end of the lockdown period (mid-May), when the number of tests performed has regularly
increased for about two weeks, or more recently early June when the count procedures
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has been changed again, likely because of the massive use of serology tests. Because the
estimate of R(t) essentially relies on comparing a daily number against a past moving
average, these changes lead to significant biases that cannot be easily accounted for, but
vanishes after some duration controlled by the typical width of the serial distribution Φ (of
the order of ten days).

Fig. 3 further compares, for a relevant value of λtime selected as explicitly discussed
below in Section 4.3, estimates obtained from the three different sources of data. Overall
shapes in the time evolution of estimates are consistent, For instance, the three sources led
to estimates showing a mild yet clear increase of R(t) for the period ranging from early
May to May 20th, likely corresponding to a bias induced by the regular increase of tests
actually performed in France. These comparisons however also clearly show that estimates
are impacted by outliers and thus do depend on preprocessing. These considerations led to
the final choice, used hereafter, of a threshold of ±2.5 std, in the sliding median denoising
of Section 2.2.
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Figure 3 – Daily new confirmed cases for France, from three different sources. Top
row: raw data (symbols) and sliding median preprocessed data (connected lines) from
Source1(JHU) (blue) and Source2(ECDPC)(red) and Source3(SPF) (black). Bottom row:
corresponding estimates of R(t).
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4.3 Confirmed infection cases across the world
To report estimated R(t)’s for different countries, data from Source2(ECDPC) are used
as they are of better quality than data from Source1(JHU), and because hospital-based
data (as in Source3(SPF)) are not easily available for numerous different countries. Visual
inspection led us to choose, uniformly for all countries, two values of the temporal regu-
larization parameter: λtime = 50 to produce a strongly-regularized, hence slowly varying
estimate, and λtime = 3.5 for a milder regularization, and hence a more reactive estimate.
These estimates being by construction designed to favor piecewise linear behaviors, local
trends can be estimated by computing (robust) estimates of the derivatives β̂(t) of R̂(t).
The slow and less slow estimates of R̂(t) thus provide a slow and less slow estimate of the
local trends. Intuitively, these local trends can be seen as predictors for the forthcoming
value of R: R̂(t+ n) = R̂(t) + nβ̂(t).
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Figure 4 – Number of daily new confirmed cases and reproduction number and local
estimates for France, using data from Source2(ECDPC) (left) and Source3(SPF) (right)
(reconstructed proxy from hospital counts). Top: time series. Middle: fast (red) and slowly
evolving (blue) estimates of R(t). Bottom: fast (red) and slowly evolving (blue) estimates
of local trends β(t). The title of the plots report estimates for the current day.

Let us start by inspecting again data for France, further comparing estimates stemming
from data in Source2(ECDPC) or in Source3(SPF) (cf. Fig. 4). As discussed earlier, data
from Source2(ECDPC) show far more outliers that data from Source3(SPF), thus impact-
ing estimation ofR and β. As expected, the strongly regularized estimates (λtime = 50) are
less sensitive than the less regularized ones (λtime = 3.5), yet discrepancies in estimates
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are significant, as data from Source2(ECDPC) yields, for June 9th, estimates of R slightly
above 1, while that from Source3(SPF) remain steadily around 0.75, with no or mild local
trends. Again, this might be because late May, France has started massive serology test-
ing, mostly performed outside hospitals. This yielded an abrupt increase in the number of
new confirmed cases, biasing upward the estimates of R(t). However, the short-term local
trend for June 9th goes also downward, suggesting that the model is incorporating these
irregularities and that estimates will return to unbiased after an estimation time controlled
by the typical width of the serial distribution Φ (of the order of ten days). This recent
increase is not seen in Source3(SPF)-based estimates that remain very stable, potentially
suggesting that hospital-based data are much less sensitive to changes in the count policies.
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Figure 5 – Number of daily new confirmed cases and reproduction number and local
estimates for countries in Europe. Top: time series. Middle: fast (red) and slowly
evolving (blue) estimates of R(t). Bottom: fast (red) and slowly evolving (blue) estimates
of local trends β(t). The title of the plots report estimates for the current day. Data from
Source2(ECDPC).

Source2(ECDPC) provides data for several tens of countries. Figs. 5 to 8 report
R̂(t) and β̂(t) for several selected countries (more figures are available at perso.ens-
lyon.fr/patrice.abry). As of June 9th (time of writing), Fig. 5 shows that for most European
countries, the pandemic seems to remain under control despite lifting of the lockdown,
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with (slowly varying) estimates of R remaining stable below 1, ranging from 0.7 to 0.8
depending on countries, and (slowly varying) trends around 0. Sweden and Portugal (not
shown here) display less favorable patterns, as well as, to a lesser extent, The Netherlands,
raising the question of whether this might be a potential consequence of less stringent
lockdown rules compared to neighboring European countries. Fig. 6 shows that while R̂
for Canada is clearly below 1 since early May, with a negative local trend, the USA are
still bouncing back and forth around 1. South America is in the above 1 phase but starts to
show negative local trends. Fig. 7 indicates that Iran, India or Indonesia are in the critical
phase with R̂(t) > 1. Fig. 8 shows that data for African countries are uneasy to analyze,
and that several countries such as Egypt or South Africa are in pandemic growing phases.
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Figure 6 – Number of daily new confirmed cases and reproduction number and local
estimates for American countries. Top: time series. Middle: fast (red) and slowly
evolving (blue) estimates of R(t). Bottom: fast (red) and slowly evolving (blue) estimates
of local trends β(t). The title of the plots report estimates for the current day. Data from
Source2(ECDPC).
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Figure 7 – Number of daily new confirmed cases and reproduction number and local
estimates for Asian countries. Top: time series. Middle: fast (red) and slowly evolv-
ing (blue) estimates of R(t). Bottom: fast (red) and slowly evolving (blue) estimates of
local trends β(t). The title of the plots report estimates for the current day. Data from
Source2(ECDPC).

Phase-space representation To complement Figs. 5 to 8, Fig. 9 displays a phase-space
representation of the time evolution of the pandemic, constructed by plotting one against
the other local averages over a week of the slowly varying estimated reproduction num-
ber R̂(t) and local trend, (R̄(t), β̄(t)), for a period ranging from mid-April to June 9th.
Country names are written at the end (last day) of the trajectories. Interestingly, European
countries display a C-shape trajectory, starting with R > 1 with negative trends (lock-
down effects), thus reaching the safe zone (R < 1) but eventually performing a U-turn
with a slow increase of local trends till positive. This results in a mild but clear re-increase
of R, yet with most values below 1 today, except for France (see comments above) and
Sweden. The USA display a similar C-shape though almost concentrated on the edge
point R(t) = 1, β = 0, while Canada does return to the safe zone with a specific pattern.
South-American countries, obviously at an earlier stage of the pandemic, show an inverted
C-shape pattern, with trajectory evolving from the bad top right corner, to the controlling
phase (negative local trend, with decreasingR still above 1 though). Phase-spaces of Asian
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Figure 8 – Number of daily new confirmed cases and reproduction number and local
estimates for African countries. Top: time series. Middle: fast (red) and slowly evolv-
ing (blue) estimates of R(t). Bottom: fast (red) and slowly evolving (blue) estimates of
local trends β(t). The title of the plots report estimates for the current day. Data from
Source2(ECDPC).

and African countries essentially confirm these C-shaped trajectories. Envisioning these
phase-space plots as pertaining to different stages of the pandemic (rather than to different
countries), this suggests that COVID-19 pandemic trajectory ressembles a counter-clock
wise circle, starting from the bad top right corner (R above 1 and positive trends), evolving,
likely by lockdown impact, towards the bottom right corner (R still above 1 but negative
trends) and finally to the safe bottom left corner (R below1 and negative then null trend).
The lifting of the lockdown may explain the continuation of the trajectory in the still safe
but. . . corner (R below1 and again positive trend). As of June 9th, it can be only expected
that trajectories will not close the loop and reach back the bad top right corner and the
R = 1 limit.
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Figure 9 – Phase-space evolution reconstructed from averaged slowly varying estimates
of R and β, per continent. The name of the country is written at the last day of the
trajectory, also marked by larger size empty symbol. Data from Source2(ECDPC).
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4.4 Continental France départements: regularized joint estimates
There is further interest in focusing the analysis on the potential heterogeneity in the epi-
demic propagation across a given territory, governed by the same sanitary rules and health
care system. This can be achieved by estimating a set of local R̂(t)’s for different provinces
and regions [14]. Such a study is made possible by the data from Source3(SPF), that pro-
vides hospital-based data for each of the continental France départements. Fig. 4 (right)
already reported the slow and fast varying estimates of R and local trends computed from
data aggregated over the whole France. To further study the variability across the conti-
nental France territory, the graph-based, joint spatial and temporal regularization described
in Eq. 7 (cf. Section 3.2) is applied to the number of confirmed cases consisting of a ma-
trix of size K × T , with D = 94 continental France départements, and T the number
of available daily data (e.g., T = 78 on June 9th data being available only after March,
18th). The two choices for λtime leading to slow and less slow estimates were kept for this
joint study. Using (10) as a guideline, empirical analyses led to set λspace = 0.025, thus
selecting spatial regularization to weight one-fourth of the temporal regularization.

First, Fig. 10 (top row) maps and compares for June 9th (chosen arbitrarily as the day
of writing) per-département estimates, obtained when départements are analyzed either
independently (R̂Indep using Eq. 6, left plot) or jointly (R̂Joint using Eq. 7, right plot). While
the means of R̂Indep and R̂Joint are of the same order (' 0.58 and ' 0.63 respectively)
the standard deviations drop down from ' 0.40 to ' 0.14, thus indicating a significant
decrease in the variability across departments. This is further complemented by the visual
inspection of the maps which reveals reduced discrepancies across neighboring depart-
ments, as induced by the estimation procedure.

In a second step, short and long-term trends are automatically extracted from R̂Indep

and R̂Joint and short-term trends are displayed in the bottom row of Fig. 10 (left and right,
respectively). This evidences again a reduced variability across neighboring departments,
though much less than that observed for R̂Indep and R̂Joint, likely suggesting that trends on
R per se are more robust quantities to estimate than single R’s. For June 9th, Fig. 10 also
indicates globally mild decreasing trends (−0.007±0.010 per day, on average) everywhere
across France, thus confirming the trend estimated on data aggregated over all France (cf.
Fig. 4, right plot).

A video animation, available at perso.ens-lyon.fr/patrice.abry/DeptRegul.mp4 and up-
dated on a daily basis (see also barthes.enssib.fr/coronavirus/IXXI-SiSyPhe/), reports fur-
ther comparisons between R̂Indep and R̂Joint and their evolution along time for the whole
period of data availability. Maps for selected days are also displayed in Fig. 11 (with iden-
tical colormaps and colorbars across time). Fig. 11 shows that until late March (lockdown
took place in France on March, 17th), R̂Joint was uniformly above 1.5 (chosen as the upper
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limit of the colorbar to permit to see variations during the lockdown and post-lockdown
periods), indicating a rapid evolution of the epidemic across entire France. A slowdown of
the epidemic evolution is visible as early as the first days of April (with overall decreases
of R̂Joint, and a clear North vs. South gradient). During April, this gradient rotates slightly
and aligns on a North-East vs. South-West direction and globally decreases in amplitude.
Interestingly, in May, this gradient has reversed direction from South-West to North-East,
though with very mild amplitude.

As of today (June 9th), the pandemic, viewed Hospital-based data from Source3(SPF),
seems under control for the whole continental France.

Figure 10 – Reproduction numbers and trends for continental France départements.
Fast varying estimates of reproduction numbers R (top) and trends β (bottom) for inde-
pendent (left) and spatial graph-based regularized estimates (right). Hospital-based data
from Source3(SPF).
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Figure 11 – Graph-based spatially regularized estimates of the reproduction number
R for the 94 continental France départments, as a function of days. Movie animations
for the whole period are made available at perso.ens-lyon.fr/patrice.abry/DeptRegul.mp4
or barthes.enssib.fr/coronavirus/IXXI-SiSyPhe/, and updated on a regular basis. Hospital-
based data from Source3 (SPF).
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5 Conclusions and perspectives
The estimation of reproduction numbers constitutes a classical task in assessing the status
of a pandemic. Classically, this is done a posteriori (after the pandemic) and from consol-
idated data, often relying on detailed and accurate SIR-based models and making use of
Bayesian frameworks. However, on-the-fly monitoring of the reproduction number time
evolution constitutes a critical societal stake in situations such as that of COVID-19, when
decisions need to be taken and action need to be made under emergency. This calls for
a triplet of constraints: i) robust access to fast-collected data ; ii) semi-parametric mod-
els for such data that focus on a subset of critical parameters ; iii) estimation procedures
that are elaborated enough to yield robust estimates and versatile enough to be used in
quasi-real time (daily basis) and applied to (often-limited in quality and quantity) avail-
able data. In that spirit, making use of a robust nonstationary Poisson-distribution based
semi-parametric model proven robust in the literature for epidemic analysis, we developed
an original estimation procedure to favor piecewise regular estimation of the evolution of
the reproduction number, both along time and across space. This was constructed as an
inverse problem formulation designed to achieve robustness in the estimation by enforcing
time and space smoothness through regularization while permitting fast enough temporal
and spatial evolutions and solved using used proximal operators and nonsmooth convex
optimization. The proposed tools were applied to pandemic incidence data consisting of
daily counts of new infections, from several databases providing data either worldwide
on an aggregated per-country basis or, for France only, based on the sole hospital counts,
spread across the French territory. They permitted to reveal interesting patterns on the state
of the pandemic across the world as well as to assess variability across one single territory
governed by the same (health care and politics) rules.

At the practical level, this tool can be applied to time series of incidence data, reported,
e.g., for a given country. Whenever made possible from data, estimation can benefit from
a graph of spatial proximity between subdivisions of a given territory. Importantly, this
tool can be used everyday easily as an on-the-fly monitoring procedure for assessing the
current state of the pandemic and predict its short-term future evolution. Indeed, the tool
also provides local trends β, whose last value can be used to forecast short-term future
values of R and thus to detect a sudden increase of the pandemic.

The tools can be made available upon motivated request. Achieved estimations are up-
dated on a daily basis at perso.ens-lyon.fr/patrice.abry (see also barthes.enssib.fr/coronavirus/IXXI-
SiSyPhe/).
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At the methodological level, the tool can be further improved in several ways. Instead
of using Ω(R) := λtime‖D2R‖1 + λspace‖RB>‖1, for the joint time and space regulariza-
tion, another possible choice is to directly consider the matrix D2RB> of joint spatio-
temporal derivatives, and to promote sparsity with an `1-norm, or structured sparsity with
a mixed norm `1,2, e.g., ‖D2RB>‖1,2 =

∑
t ‖(D2RB>)(t)‖2. As previously discussed,

data collected in the process of a pandemic are prone to several causes for outliers. Here,
outlier preprocessing and reproduction number estimation were conducted in two inde-
pendent steps, which can turn suboptimal. They can be combined into a single step at the
cost of increasing the representation space permitting to split observation in true data and
outliers, by adding to the functional to minimize an extra regularization term and devising
the corresponding optimization procedure, which becomes nonconvex, and hence far more
complicated to address. Finally, when an epidemic model suggests a way to make use of
several time series (such as, e.g., infected and deceased) for one same territory, the tool can
straightforwardly be extended into a multivariate setting by a mild adaptation of optimiza-
tion problems (6) and (7), replacing the Kullback-Leibler divergenceDKL(Z | R�ΦZ) by∑I

i=1DKL(Z
i | R � ΦZi). Finally, automating a data-driven tuning of the regularization

hyperparameters constitutes another important research track.
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