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ABSTRACT
Spike train analysis generally focuses on two aims: (1) the
estimate of the neuronal information quantity, and (2) the
quantification of spikes or bursts synchronization. We in-
troduce here a new multivariate index based on Lempel-
Ziv complexity for spike train analysis. This index, called
mutual Lempel-Ziv complexity (MLZC), can both measure
spikes correlations and estimate the information carried in
spike trains (i.e. characterize the dynamic process). Using
simulated spike trains from a Poisson process, we show that
the MLZC is able to quantify spike correlations. In addi-
tion, using bursting activity generated by electrically cou-
pled Hindmarsh-Rose neurons, the MLZC is able to quan-
tify and characterize bursts synchronization, when classical
measures fail.
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1 Introduction

Information theory defines the entropy rate of a stochastic
process as the amount of novel information produced per
unit time. In sensory neuroscience, the entropy rate of a
neural spike train quantifies the maximum rate of new in-
formation produced about an animal’s environment that can
be transmitted to the brain. This quantity makes no particu-
lar assumption about what information is important for the
animal nor on the nature (i.e. determinis tic vs stochastic)
of the underlying dynamics generating spike trains.
In experimental situations, the computation of entropy rates
requires a statistical estimator that is unbiased and converg-
ing enough fast to be accurate on a finite data sample. Un-
fortunately, since the classical definition of entropy rate is
moreover based on an asymptotic limit, it does not easily
lead to an accurate estimator in the case of finite-size time
series.
The concept of complexity, in the sense of Kolmogorov,
can be used to obtain accurate estimates of the entropy

rate. In particular, using the implementation of Lempel-
Ziv complexity (LZC) [1], one gains the advantage on two
finite size issues : an accurate control of the statistical fluc-
tuations (sampling issue) [2] and a better estimation of an
asymptotic quantity (convergence issue) [3]. Several stud-
ies of neural spike trains have already used Lempel-Ziv
complexity [4, 5, 6]. Nevertheless, most of these studies
only used one-dimensional neural signals. In this paper we
focus on a natural extension of LZC to multidimensional
signals [7] to study the estimate of higher order correlations
between pairs of neural spike trains.
We first recall the definitions of entropy rate and LZC for
one-dimensional binary signals. Then, using the relation
between Shannon entropy and mutual information, we give
the extension of LZC for bivariate signals and deduce a new
criterion that we call the Mutual Lempel-Ziv Complexity
(MLZC). In the last part of this study, we use the MLZC
to quantify the correlations in neural responses using sim-
ulated spike trains.

2 Definitions

2.1 Entropy rate and Lempel-Ziv complexity

For a bitstring XN = [x1, ..., xN ] of length N with xi ∈
{0, 1}, a procedure that partitionsXN into non-overlapping
substrings is called a parsing. A substring starting at posi-
tion i and ending at position j of XN which is the result
of a parsing procedure is called a phrase XN (i, j). The
set of phrases generated by a parsing of XN is denoted
with PXN and the number of phrases |PXN | is denoted
by c(XN ).
Assume that a bitstring XN has been parsed up to position
i, so that PXN (1, i) is the set of phrases generated so far.
According to the original parsing procedure (LZ76) [1] the
next phrase XN (i + 1, j) will be the first substring which
is not yet an element of PXN (1, i). As an illustration, the
string 0011001010100111 will be parsed as 0 ·01 ·10 ·010 ·
10100 · 111 using LZ76 procedure.
For a bitstring XN , Lempel-Ziv complexity CLZ(XN ) is



defined as:

CLZ(XN ) =
c(XN )[logk c(XN ) + 1]

N
(1)

where k is the alphabet size (k = 2 in the binary case).
If the bitstring is generated by a source, assumed to
be stationary, the n-block entropy of the source is Hn

the Shannon entropy of the n-words wn: Hn :=
−

∑
wn
pn(wn) log pn(wn) (with natural logarithm ac-

cording to the dynamical system convention but at odds
with Shannon definition). Then the entropy rate of a sta-
tionary and ergodic source is defined as

h = lim
n→∞

Hn

n
= lim

n→∞
Hn+1 −Hn (2)

For a random sequence XN from an ergodic source, it can
be shown that h = limN→∞ CLZ(XN ) [8, 9]. This result
shows that LZC also quantifies average information quan-
tity in Shannon’s sense. Since the LZC is based on the
study of recurrence of patterns in a symbolic sequence, this
approach provides a tool for the analysis of complex se-
quences e.g. chaotic sequences [10].

2.2 Lempel-Ziv complexity for multidimen-
sional sequences

A natural extension of LZC for multidimensional data has
been proposed [7]. In the case of a set of l symbolic se-
quences {Xi

N} (i = 1, ..., l) , Lempel and Ziv’s definitions
remain valid if one extends the alphabet from scalar values
xk to l-tuples elements (x1

k, ..., x
l
k).

In the case l = 2, one can thus define the joint LZC
CLZ(XN , YN ) for two sequences XN and YN is thus de-
fined as

CLZ(XN , YN ) =
c(XN , YN )[logk2 c(XN , YN ) + 1]

N
(3)

The joint LZC has similar properties as Shannon joint en-
tropy H(XN , YN ).
Pushing forward the analogy with the Shannon information
theory [11] we define the mutual Lempel-Ziv complexity
MCLZ(XN ;YN ) between sequences XN and YN as:

MCLZ(XN ;YN ) = CLZ(XN )+CLZ(YN )−CLZ(XN , YN )
(4)

The mutual Lempel-Ziv complexity (MLZC) can be un-
derstood as a divergence measure between two sequences,
by contrast to the mutual information the MLZC can be
negative transiently for finite N , for N → ∞ the ”true”
asymptotic quantity MCLZ(XN ;YN ) is positive. In fact
the MLZC converges asymptotically to a dynamic exten-
sion of the mutual information : the mutual information
rate [12, 13].

I(X,Y ) = lim
n→∞

In(X,Y )
n

= lim
n→∞

In+1(X,Y )−In(X,Y )
(5)

As the rate of mutual information, quantifies all the corre-
lations between the temporal organization of the observed
sequences X and Y and reflects up to what point they give
independent (or related) information on the underlying dy-
namics of the system. Exactly as the entropy rate h(X)
takes a better account of the whole temporal structure of
the sequence X (compared to linear statistical indices like
the correlation function), the production of mutual infor-
mation per unit time provides a more complete quantifi-
cation of the interrelations between the two sequences X
and Y , more thorough than the covariance (like mutual in-
formation, MLZC accounts for all correlations, not only
the linear ones) and better taking into account the tempo-
ral structure of the sequences; indeed, these sequences are
more than joint random realizations of two random vari-
ables, but rather the joint realization of a random process
and MLZC is an integrated index far more meaningful in
this respect than a collection of pointwise quantities com-
puted at a given time.

3 Numerical simulations

For each simulation we compare the behavior of the linear
correlation coefficient (COR), the mutual information (MI)
and the mutual Lempel-Ziv complexity (MLZC).

3.1 Poisson spike trains

We simulated two correlated binary sequences XN and YN

representing the discharge of two correlated Poisson neu-
rons according to the following procedure:

1. Two independent Poisson processes are used to gen-
erate time series of spike occurrences t = t1, ..., tn
which were translated into bitstrings according to a
partition of the time interval [0, T ] into N bins of
equal width ∆t (N = T/∆t). The natural binary en-
coding (i.e. bi = 1 when one spike occurs in time
interval i) was then used leading to two independent
binary sequences B1

N and B2
N .

2. We then obtainedXN and YN fromB1
N andB2

N with:

XN = B1
N ⊕ αB2

N

YN = B2
N ⊕ αB1

N (6)

where Bj
N ⊕αBi

N means that bjk take the values of bik
with probability α.

Figure 1 shows the behaviour of the linear correlation
coefficient, the mutual information and the MLZC as
functions of the mixing parameter α. We generated here
100 pairs of spike trains with similar firing rate (r = 20
spikes/s, time window T = 10s and the time resolution
∆t = 1ms). For comparison purpose, we consider
here a simple normalization of the mutual Lempel-Ziv
complexity (MLZC) which takes value in the unit interval
[0, 1] (MC ′ = (MC −MCmin)/(MCmax −MCmin)).



0.0 0.2 0.4 0.6 0.8 1.0
Percent of shared spikes

0.0

0.2

0.4

0.6

0.8

1.0

D
e
p
e
n
d
a
n
c
e
 v

a
lu

e
MLZC

Correlation

Mutual information

Figure 1. Dependence between two Poisson spike trains
: measure of the dependence as a function of the mixing
parameter. Blue curve: COR; green curve: MI; red curve:
MLZC

3.2 Bursting activity

Second we simulated on a more realistic case two coupled
neurons, using two Hindmarsh-Rose (HR) models with an
electrical coupling [14]. The HR model can reproduce
most of the different activity regimes of biological neurons.
For different external input currents, the HR neuron may
spike and burst regular or chaotically. We consider here
the electrical coupling between two HR neurons. Electri-
cal synapses are binary couplings between neurons where
the current exchange is simply due to difference between
their membrane potential. The time evolution of two elec-
trically coupled HR neurons is described by a set of three
differential equations [15].

ẋi = yi + xi(3xi − x2
i )− zi + I + ε(xj − xi)

ẏi = 1− 5x2
i − yi

żi = −rzi + rS(xi + 1.6) (7)

where xi denotes the membrane potential of neuron i, yi

and zi are ”fast” and ”slow” ionic currents. We set the value
of the conductances parameters to r = 0.0021 and S = 4
and set the value of the external current to I = 3.38. The
electric coupling between neurons ε is a variable parameter
who plays the role of a conductivity.
Figure 2 shows the behavior of the linear correlation coef-
ficient, the mutual information and the MLZC as functions
of the electrical coupling ε. HR coupled neurons present a
rich and complex dynamical behaviour, so we detail here
only the dynamical states of interest in term of dependence
between neurons activity.
In the interval 0 ≤ ε ≤ 0.03 the system is uncoupled with
neurons following a chaotic uncorrelated evolution, every
dependence measures (COR, MI and MLZC) are near 0.
Reaching the interval 0.04 ≤ ε ≤ 0.22 chaotic evolution

0.0 0.1 0.2 0.3 0.4 0.5 0.6
ǫ

0.0

0.2

0.4

0.6

0.8

1.0

D
e
p
e
n
d
a
n
c
e
 v

a
lu

e

0.03 0..23 0.45 0.51

MLZC

Correlation

Mutual information

Figure 2. Relation beetween MLZC, correlation and mu-
tual information of coupled HR neurons
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Figure 3. Chaotic time evolution of two HR neurons for
ε = 0.21. Coexisting in phase and anti-phase burst syn-
chronization.

is again dominating, there is no spikes synchronization but
some bursts are alternatively synchronized as shown in fig-
ure 3. In this case the MLZC value increases faster than the
COR and MI values.

In the interval 0.23 ≤ ε ≤ 0.44 several periodic windows
of perfect bursts synchronization appear with few spikes
synchronization (see figure 4). The MLZC value is high
detecting efficiently bursts synchronization, but reaches a
plateau due to the periodic regime. The COR and MI values
are still weak, but increase slowly.

For ε ≥ 0.45 a periodic evolution dominates and the spikes
becomes perfectly synchronized for ε ≥ 0.51, behaving as
single neuron. Each dependence measure reaches a maxi-
mum.
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Figure 4. Time evolution of two HR neurons for ε = 0.38.
In-phase burst synchronization with periodic evolution.

4 Conclusion

We have introduced a novel spike train analysis method,
the MLZC based on a popular data compression algorithm,
for the characterization of neuronal correlations.
Considering Poisson spike trains, we find that this measure
is able to detect spike synchronization in a better way than
using the linear correlation coefficient or the Shannon mu-
tual information. In a more realistic case, considering cou-
pled Hindmarsh-Rose neurons, the MLZC is able to detect
bursts synchronization under chaotic and periodic dynam-
ical regimes when the other measures fail. From a theo-
retical point of view, the MLZC is able to quantify all the
correlations between the temporal organization of the ob-
served symbolic sequences and reflecting up to what point
they give independent (or related) information on the un-
derlying dynamics of the system.
Further theoretical work should concentrate to establish
and exploit mathematical properties of the MLZC measure,
in addition further applied work should concentrate on the
performance of the MLZC measure to detect spike and
burst synchronization, considering in vivo neuronal data.
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