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ABSTRACT. Although the classical Fractional Brownian Motion is often used to describe poros-
ity, it is not adapted to anisotropic situations. In the present work, we study a class of Gaussian
fields with stationary increments and “spectral density” They present asymptotic self-similarity
properties and are good candidates to model a homogeneous anisotropic material, or its radio-
graphicimages. Unfortunately, the paths of all Gaussian fields with stationary increments have the
same apparent regularity in all directions (except at most one). Hence we propose here a procedure
to recover anisotropy from one realization: computing averages over all the hyperplanes which
are orthogonal to a fixed direction, we get a process whose Holder regularity depends explicitly on
the asymptotic behavior of the spectral density in this direction.

Motivation and Introduction

Thirty years ago, Mandelbrot and Van-Ness [17] have initiated the description of 1-
dimensional data through Fractional Brownian Motion (FBM). Since then, Fractal Analysis
is often used for the description of roughness or porosity of séwdignensional material.

The fundamental parameter of thedimensional FBM—the Hurst indeid —is the index

of regularity, while the fractal dimension of the graph is giveniby=d + 1 — H. This

model is well adapted when the material is homogeneous and isotropic. To take into account
non-homogeneity, a generalization of FBM with a “Hurst index depending on the point” has
been introduced simultaneously in [3] and [15]. Here we deal with homogeneous material
and focus on anisotropy.

The present work has found its origin in pluridisciplinary discussions on the diagnosis
of osteoporosis from X-ray pictures of bones (the use of radiographs being the simplest
way—financially and technically speaking—to get information). For isotropic bones, it
has been shown in [7] that, when modeling the level of grey along lines of the radiographs
by FBM, the Hurst parameter appears as a good indicator of the alterations of the micro-
architecture that are provoked by osteoporosis. But, in general, the assumption of isotropy
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is not valid. On the other hand, one may consider a bone as a homogeneous material, that
is, the mean variations of the bone density around one point do not depend of this one. As a
consequence, it is natural to model the bone density by a 3D-Gaussian field with stationary
increments. We show that a projection in one direction preserves the properties of such
models, so that the same assumptions can be made on bone radiographs: the level of grey at
each pointis modeled by a 2D-Gaussian field with stationary increments. Typical examples
for those anisotropic Gaussian fields ar¢fdnoises” in the terminology of signal theory,

with spectral densityg| =% where the powet (£) depends on the direction &f

For the material itself, as well as for the X-ray picture, it seems natural to consider
the regularity in different directions in order to measure the anisotropy (and it is done in
practice as in [16]). Indeed, it is easier to estimate the parameter of a one-dimensional
process. Unfortunately, a characteristic of random fields with stationary increments is
the following: they have the same regularity in all directions, except in at most one (this
phenomenon is described in [5] for stationary random fields). Hence, in some way, they
certainly look isotropic! The main idea of this work lies in getting another method to recover
anisotropy.

Let us describe precisely our method (Directional Average Method) when applied to
an X-ray picture. We assume that this one is modeled by a 2D-Gaussian field with spectral
representatiorfz. (¢"* — 1)|&|7"@~1 aW (&), whered W is a 2D-Brownian measure and
6 = Arg(¢) is the angle between theaxis and the direction of. Moreover,k is an-
periodic continuous map with values between 0 and 1 which depends on the anisotropy of
the X-ray picture. The function is then recovered as follows. For any fixed directign
the picture is averaged over all the lines orthogondl td new 1D-process is obtained and
its Holder regularity is proved to be equal i®) + % Hence an anisotropic analysis of
the picture can be elaborated.

Although the starting point of this article was the analysis of 2D-pictures, we deal
with a more general setting. We stugiparameter real-valued Gaussian fields with spectral

representation
L (e =1) rrerawe s s ere
R4

where{W (¢£); & € R?}isthe complex Lévy Brownian field, with adapted real and imaginary
parts such that the Wiener integral is real-valued. The fungtietthe spectral density—is
any positive even function with adapted integrability assumptions. Whinnot radial,

the Gaussian field is not isotropic. We refer to [11] and [14] for other anisotropic models
which have been proposed in the literature, but do not have stationary increments.

Then natural questions appear. Which properties of the FBM are preserved (self-
similarity, Holder regularity,...)? Is this class of Gaussian fields stable under projection?
How to mesh the anisotropy? How to recover information on the anisotropy from one
realization? Our answers give, in each case, sufficient conditions on the spectral density.
We should emphasize that, in most cases, we adapt well-known properties to our context.
The main originality of this article relies in the choice of the model itself, its invariance
through projections, and the fact that this invariance may be used to recover the parameters.

The article is organized as follows. In the first section, we introduce the model, that is
the class of Gaussian fields with spectral density, and give some examples. Such fields are
known to have a continuous version under some decay assumption for the spectral density.
The second section is devoted to self-similarity properties. We prove that the Gaussian field
associated with an asymptotically homogeneous spectral density is locally asymptotically
self-similar. Moreover, the tangent field belongs to the same class of Gaussian fields. In
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the third section we study Holder regularity. We come back to the result of “apparent
isotropy” which we already described, and observe the behavior of the Gaussian field in
each direction. The last section deals with projections and averages. The class of Gaussian
fields with spectral density is proved to be stable under projections. We then present our
method to recover anisotropy by analyzing one-parameter Gaussian processes. Our main
theorem (Theorem 1) describes the dependency between the Holder regularity of the process
obtained by averaging over all the hyperplanes orthogonal to a fixed direction on one hand,
and the asymptotic behavior of the spectral density in this direction on the other hand. A
particular attention is given to examples: four of them are followed all over the article and
confronted with the general results.

1. Gaussian Field with Stationary Increments

All over the article, we considai-parameter random fieldésee [1] or [22] for a
general presentation). By this terminology, we mean a mdmpm Q x R? into R such
that, for allz in R4, X (., r) := X (¢) is a random variable defined on a probability sp@ce
(equipped with ar-field and a probability measure). Whén= 1, we speak of @rocess
Atthis stage, no measurability with respect to the “space” variableequired. Letusrecall

basic definitions involving the finite dimensional distributionstofFor two random fields

. dd . . . .
X andY, we write X 14 Y when, forallz in N* and allz, . .. , , in R?, then-dimensional

random variablesX (1), ..., X(t,)) and(Y (t1), ..., Y (z,)) have the same distribution.

A d-parameter random field is said:
- to havestationary increments, for all 7o in R¢,

X(.+10) — X(10) & X () - X(0);

- to beself-similar of orderw if, for all A in R*, X (1.) T4 5a X();

- to beisotropicif, for all rotation R in R4, X o R fdd .
The finite dimensional distributions of a centered Gaussian random Xiedde totally
determined by the covariance functign¢) — Cov(X (s), X (¢)).

1.1 Fractional Brownian Field

Let H belong to(0, 1). We begin this study with the (unique) real-valued centered
random field, vanishing at the origin, which is simultaneously Gaussian, with stationary
increments,H -self similar and isotropic: the celebraté@ctional Brownian field with
HurstindexH, B? = {BH (1); t € R4}.

Its covariance function is given by

COV(BH(S), BH(t)> = cna (|s|2H Fe2H s — r|2H) Vst eRY

with |s| the Euclidean norm of andcy 4 a nonnegative constant depending@randd.
A spectral (or harmonizable) representation is available (see [22] Chapter 4 or [21]
Section 7), given by

et —1 . d
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whered W is a complex Brownian measure.

Any process obtained by restriction along a straight lnef R going through 0,
{B" (u); u € A}, is a one-parameter fractional Brownian motion with Hurst indeand
therefore the Hoélder critical exponent of its sample pathis &s. whatever the direction of
the line. Indeed the fractional Brownian fielf” is isotropic. In the next section we force

anisotropy by changing the map— |£]~2@#+4 in the spectral representation (1.1) into
a general (non-radial) map+— f% &).

1.2 Gaussian Fields with Prescribed Spectral Density

LetX = {X(r); r € R?} be a Gaussian field with mean zero and stationary increments.
The finite dimensional distributions ¢X (1) — X (0); t € R¢} are completely given bihe
variogramv of X

() = %E ((X(z) — X(O))Z) Vi e RY
since the covariance function satisfies
Cov(X (1) — X(0), X(s) — X(0)) = 2(v(t) + v(s) —v(t —s)), Vs,1 € R?.

Note that this identity characterizes the stationarity of the increments for centered Gaussian
fields.

We will now investigate the real Gaussian fields with mean zero and stationary incre-
ments whose variogram is continuous and may be written

v(t) = /dsinz(t.g/z)f(g)dg ,VteR? (1.2)
R

with f a positive function such tha, (1 A IE12) f (&) dE < oo.

Itis clear that the functiorf can be replaced in (1.2) by an even functiorjust take
g = %(.f(%') + f(=£)). Actually it is the only allowed transformation, as proved in the
next lemma. In the sequel, will denote the measure d&’ given by

due) = (1A 12) dt .

Lemma 1.
If f andg are even positive functionsin (RY, du; R) inducing the same variogram,
i. e,
/R [ Sif(1.£/2) 1 () dE = fR [ Sinf(1.6/2)g(8) d, Vi € R,
thenf = g a.e..

Proof.  Indeed, let us show that an evep-integrable functiorg, such thatfg, sir?
(t.£/2)g(&) d& vanishes for alt, is identically 0. Itis sufficient to prove that, fgran even
function in the Schwartz class, then

/ E120(£)g(E)dE = 0.
Rd

But, using Fourier inversion formula, we may write

Iélzfﬂ(é):/ COS(I-E)I/f(t)dt=/ (cogz.§) — Dy (1) dt
R4 R4
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for some other Schwartz functiop. The use of Fubini’'s theorem allows to conclude.
L]

Definition 1. Let X be a Gaussian field with mean zero, stationary increments and
variogram given by (1.2), withf an even positive function ib1(R9, di; R). Then we call
f the spectral density of and say thak is a Gaussian field with spectral densjty

Let us now list some properties of such Gaussian fields. fLié an even positive
map inLY(RY, dx; R) andX/ be a Gaussian field with spectral densjty
First, X/ — X/ (0) has the same finite dimensional distributions as

{/ (eiz.é _1)f%<s>dvv<s>; zeRd}
Rd

since they are both Gaussian fields with mean zero and stationary increments and have the
same variogram. A consequence of this representation is that any even positive function
in LY(RY, duu; R) is the spectral density of at least one centered Gaussian field with sta-
tionary increments. From now onstandard spectral densifg any even positive map in
LYRY, du; R).

Next, assuming thaX/ (0) = 0 a.s., Lemma 1 shows that/ is self-similar if and
only if f is a homogeneous magnd in the same veirX / is isotropic if and only iff is
a radial map A consequence is that there is only “one” Gaussian fiefdwhich is both
self-similar and isotropic: it is the fractional Brownian motion described in Section 1.1,
with spectral density — |£]7 for some adapted.

In most cases, we will content ourselves to consider properties of finite dimensional
distributions, which are given by the variogram, since our main object is to propose ad-
equate models as well as an analysis that allows to estimate their parameters. We will
nevertheless consider the possibility of having a continuous modificatiaf ofIn this
case, equality of finite dimensional distributions can be replaced by equality in law on the
space of continuous paths &9. Without any surprise (see [2] Corollary 2.2 for instance),

a continuous modification of / exists whenf decreases rapidly enough at infinity. More
precisely, form € (0, +00), we consider the following assumption on the standard spectral
density f: there exists constants, B in (0, +o0) such that

D(m): f(&) < Blg|~ @D | foralmostall |£] > A .
The assumptiol(m) is used in the next proposition.

Proposition 1.

Let f be a standard spectral density aidbe a Gaussian field with spectral density
f. If f satisfies assumptidB(m) for some positiven, then there exists a fieldl, defined
on the same probability space &s whose paths are a.s. continuous, and such that for all
reRY X(1) = X(1) a.s..

Whether there exists a continuous modification of a given random process, and which
Holder regularity can be expected for a modification, are quite old questions. In the 60's
several criteria for the existence of a continuous modification have been proposed in two
different contexts. One, due to Kolmogorov and Centsov, is concerned with Holder reg-
ular modifications of random fields defined BA (see [12] Section 2.2 for instance and
references therein). Another one, due to Dudley, Marcus and Shepp, Fernique, gives nec-
essary and sufficient conditions for the existence of continuous modifications of Gaussian
processes defined on a metric set (see [10] Chapter 15 or [1] Chapter 3 and references



220 Aline Bonami and Anne Estrade

therein). In both cases, the criteria rely on a control ofittie moment of the increments
of the processk(big enough in the first case,= 2 in the second case). In our context of
Gaussian fields defined @®f, they can both be applied and both consist in a control of the
variance of the increments. For the next proof, we chose the first one.

Proof. We use the Kolmogorov—Centsov criterion: for all positive
Vs,t € [-T,T1?, E(IX(t) — X(5)|*) < Clt —s|**F

for some positive constands g andC.
SinceX is Gaussian, then for atl € N*, there exists a constant such that

Vs, eRY, E (|X(r) - X(s)|2k) = ¢t (E (|X(t) - X(s)|2>>k .

With k large enough, the next lemma allows to conclude.

Lemma 2.
Under the assumptions of Proposition 1, for&ll> 0, there exists a positive constant
C such that

Vs, t € [T, T]d, E <|X(t) _ X(s)|2) <CJt _S|2(l/\m) )

Let us prove this inequality. Recall thB{(|X (1) — X (s)|%) = 4v(r — s) and use
AssumptionD (i) to get, for allz in R?,

1 .
v = Z|’|2/ &2 f (&) d& +B/ sin?(t.£/2)|g|~ @+ qg
<A €1>A
= P (5 / 127 ) ds)+|t|2'" (B / sin’(§/2)|g] ="+ ds). 0
4 Jig1<a R

Note that the inequality in Lemma 2 implies more smoothness than a.s. continuity.
Actually (see the above references)figatisfiedD(m) then the paths of the modificatidh
are a.s. Holder regular of ordék A m) — ¢, for alle > 0. This will in fact be fundamental
below.

Before ending this section, let us quote that the assumptions on the spectral rep-
resentation of the variogram that we consider seem relevant to describe a large class of
Gaussian fields with stationary increments. Indeed, as a consequence of Bochner theorem
(see [6] Proposition 3.1 or [22] Chapter 4), the variogram of any real centered process with
stationary increments, if continuous, is given by

t— / (1—costé)dG(E),
R4

whered G is a positive measure @&f such thay,_ 1€ 12 dG )+ [ dG(&)isfinite. So
the only restriction imposed by the representation (1.2) isdtyais absolutely continuous,
and later, with conditioD (), some behavior at infinity of the density.

1.3 Examples

We give hereafter some examples of spectral densities. They all behave like a power
of & — 1/]&| at infinity, and satisfy the assumpti@m) for some positiven.
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Example 1. In the spectral representation of the fractional Brownian motion (1.1), we
replace the constaiif by a function of the direction of. In other words, we consider an
even positive function which is homogeneous of degree zero,

h(M&) =h(€) VE A0eRY, VA #£0€eR,

which may be identified with an even function on the unit spt#re! of R? that we note
h as well. We assume moreover, thatakes its values inside the interyal, M] C (0, 1),
with m = essinf h andM = esssupi. The spectral density that we consider is given by

d -
EeRY — E@ETd -

It provides what can be called an “anisotropic fractional Brownian field with directional
Hurst indexk,” denoted byX . A spectral representation faf is given by

itk _ 1
/ S awE) s reRYY
R4 |g’:|§(2h($)+d)

Computing the variogram with “polar” coordinates gives

3 sinf(t.£/2) 2h)
v(t) = /]];d W d¢ = /Sd—l C(h(u)) |t.u] du (13)
sint(x/2)

—57 dx. This constant arises naturally when
+ x2H+1

with, for all & in (0, 1), C(H) = /
R

studying fractional Brownian motion, and is equald@gH) =

) (see [21]
(formula 7.2.13) for instance).

/8
HT (2H) sin(H~x
Example 2. Let & be as above, and take as spectral density
1
T .

SGR‘] —

In this example, we remark that integrability at the origin allows to separate the two terms
in the spectral representation, and write the associated Gaussian field as

pilé
/ awe) - [ W) .
3 1
R4 (1+ |%-|2)2(h(§)+d/2) R4 (1+ |%_|2)2(h(§)+d/2)

The first term itself gives rise to a stationary process. Moreover, we can now #ltov
be arbitrarily large.

Example 3. For a 2-parameter Gaussian field, let us chd@sand H- in (0, 1) and take
as spectral density

1 2
€R? > .
: (|$1|Hl+1 + ISzI”ZH)

Example 4. We borrow it from [3] p. 24. A spectral density is defined by

()
J €]
E eRY |§|2m+d

wherem € (0, 1) ands is an even square-integrable map definedén'.
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2. Asymptotic Self-Similarity

Self-similarity for a Gaussian field with stationary increments is clearly equivalent to
homogeneity of the variogram. In the case of a Gaussian field with spectral density, it is
equivalent to homogeneity of the standard spectral density, as already said. More precisely,
self-similarity of ordenn corresponds to homogeneity of ordex 2or the variogram and
of order—(2m + d) for the spectral density. Note that all such Gaussian fields are given by
Example 4.

We now consider asymptotic self-similarity of the Gaussian field. This one may be
considered either locally, or at infinity. We will see that it depends on the behavior of the
spectral density either at infinity, or at 0. Let us start with the local property.

The local asymptotic self-similarityl.&.s.s. property) will first be related to the
asymptotic homogeneity of the variogram of the Gaussian field, then to the asymptotic
homogeneity of the spectral density. One can find links between these notions in a more
general context in [3] (Theorem 1.4). Let us recall the l.a.s.s. definition.

Definition 2. Leta > 0. Afield X = {X(r);r € R?} is locally asymptotically self-
similar of ordera at the pointg € R¢ if the finite dimensional distributions of

{X(to+)\/\ti—X(to); teRd}

converge to the finite dimensional distributions of a non trivial field as 0™. The limit
field is called the tangent field at the poipt

Let us now define the asymptotic homogeneity of a function. We say tlagtositive
function onRR?, is asymptotically homogeneoo$ordera at oo if there exists a non zero
function gy, such that, for almost evetyin R?, g, (§) = A~*g(A£) has limitg., (£) when
A tends to+oo. In this case, the functiog is clearly homogeneous of degreewhich
fixes uniquely the parameter We define as well asymptotic homogeneity at 0, and use
the notationgg for the limit.

The next lemma provides a sufficient condition on the variogram ensuring local
asymptotic self-similarity.

Lemma 3.

Let X be a Gaussian field with mean zero and stationary increments. Assume that its
variogram is asymptotically homogeneous of or8er at 0, with limit functionvg. Then
X is, at any pointyp, locally asymptotically self-similar of ordex and the tangent field is
Gaussian has stationary increments, mean zero, and varioggam

Proof.  Since we deal with finite dimensional distributions of Gaussian fields with mean
zero, we only have to prove that

COV(X(to +30) = X(to) X(to+2s) = X (1)

A A ) — 2(vo(1) + vo(s) — vo(r — 5)) ,

whena tends to 0, which is a consequence of the stationarity of the incrementsanfl
the asymptotic homogeneity of the variogramXof L]

We consider now conditions ofi at co. In fact, we propose sufficient conditions
which imply also the convergence in law of the Gaussian fields.
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We first askf to be asymptotically homogeneoussat which is a natural condition,
but which is not enough as we will see on the examples. So we alsg tskatisfy the
additional assumptioB(m).

Proposition 2.

Letm € (0,1) and let f be a standard spectral density which satisfigg:) and is
asymptotically homogeneous of orde(2m + d) with limit function f.,. ThenX/ is, at
any pointrg, asymptotically self-similar of orden with tangent fieldx /.

Mordeover, denoting b/ and X/~ continuous versions of / and X />, then for
all 1o € R?,

. X (1o + rt) — X7 (1 -

lim (fo + A1) (0);teRd =[Xf°°(t);teRd},
A—0t A

where the convergence here is the convergence in distribution on the space of continuous

paths onR<.

Remark. Note thatf,, satisfies als®(m). Since it is homogeneous of orde(2m + d),

then the limit £, is a standard spectral density. The limit figdd> is self-similar of order

m, and so given by Example 4. Moreover, Proposition 1 applies to both spectral densities
f and f, and provides continuous modifications f6f and X /~.

Proof. The first point concerning the (usual) local asymptotic self-similarity is a conse-
quence of Lemma 3. As before, we decompase= A ~2"v(1.) into two parts,

v (t) = 272" /m ) SiP(At.£/2) f(€) dE + rz'"*d/ Sin?(t.£/2) £ (/) dE .

[E]>1A

The first term is bounded bgx~2"*2|¢|2, which tends to 0, while Lebesgue’s Theorem
may be applied to prove the convergence of the second one.
This proves the finite dimensional distributions convergence. Let us now prove the

tightness for the familyz® = wmaa, which allows to conclude for the
convergence in law on the space of continuous paths. We use the following tightness crite-
rion, valid for each family Z™), - o of fields onR? vanishing at the origin, (Kolmogorov
criterion, see [12] p. 64): for all’ > 0,

o
Vst € [-T, T1%, supE (‘ZW(;) - Z()‘)(s)‘ ) < C|t —s|4+F
>0

for some positive constants, « andp.
SinceX/ is Gaussian with variogram, for every positive intege,
) ) 2%k —2mk k
E ‘z -2z (s)‘ = Ce A2 (e — s)F
and the above inequality is satisfied thanks to Lemma 2, for which we already used the
assumptiorD(m). L]

Let us remark that the situation is particularly simple in dimension one, where the
asymptotic self-similarity follows from the behaviorat of the spectral density,

fE) = clg|72m 1, £ 400,
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Let us now test the examples of Section 1.3 with respect to asymptotic self-similarity.
Recall that we already dealt with Example 4.

Example 1. Takingm = essin{k), we get for limit function

Lin=m(§)

which is non zero if only if the seth = m} has positive measure (which is the case, for
instance, if the map takes only a finite number of values). By this, we mean that the
intersection of this set with the unit sphe§é~1 has a positive measure for the Lebesgue
measure o541,

The assumptio® (i) is clearly satisfied. So the Gaussian figlth is, at any point,
locally asymptotically self-similar of ordes if the set{h = m} has positive measure. The
tangent field is anisotropic if is not constant.

Conversely, iffe € $9=1; h(¢) = m} has measure 0, let us prove tH&t” is not
asymptotically self-similar, for ang. It is clearly not the case fazx < m since for any

point 1o the variance of the Gaussian proce&h%‘x(m(’o); ¢ € RY} tends to 0. On
the other hand, for = m + ¢ with e > 0, forA € (0, 1),

A2y (h) > A8 /g sin?(1.£/2) dé

EGE

whereE = {¢& € §971; h(¢) < m + £/2} has non-zero Lebesgue measure. So the above
guantity tends to infinity when tends to 0.

We have just proved the followingk " is locally asymptotically self-similar if and
only if {€ € 971, h(&) = m} has positive measure.

Note thatX ™ is also locally asymptotically self-similar at infinity if and only if
(€ € 91, h(£) = M = essuph)} has positive measure.

Example 2. If 1 is taken as in Example 1 above, then the assumptions of Proposition 2
are fulfilled withm = essinfk) and the same limit function as in the last example; the
associated field is then locally asymptotically self-similar of ordevhen the seth = m}

has non zero measure. No asymptotic self-similarity is observed at infinity.

Example 3.In the casdd1 < H>, the spectral density is asymptotically homogeneous
of degree—2(H, + 1), with limit function fu. (&) = |&|~2H2+D This function is not
integrable abo and hence is not a standard spectral density. Actually the spectral density
f does not fulfill the assumptioD(H>), but onlyD(H1). On the other hand, it is easy to
see thatx/ is not asymptotically self-similar.

This computation proves that the assumptin), with the rightm, cannot be
omitted in Proposition 2.

The first two examples lead to the less restrictive notiolasd critical indexwhich
we define now.

Definition 3. The lass critical index of the field = {X (r); t € R?} is the upper bound
of the set of positive numbetssuch that.=2*vy (1) tends to O for a.e. value ofwhenx
tends to O.

In the first two examples, the lass critical index is equaktavithout any additional
assumption. More generally, we have the following proposition.



Anisotropic Analysis of Some Gaussian Models 225

Proposition 3.

Letm € (0, 1) and let f be a standard spectral density. Assume that

(i) f satisfiedD(x) forall @ < m;

(i) for all « > m, there exists a constant > 0 and a setE ¢ $¢~1 of positive
measure such that for almost gllin R?,

&1 > A and = € £ = fE) > || @t

€]

thenX/ hasm as lass critical index.

The proof is analogous to the previous ones, and we shall see a generalization later.
One can prove with a direct proof that the Example 3 has also a lass critical index, equal to
Hi1 + 52" Itis not a consequence of the previous proposition, which is adapted to the

Exampﬁes 1land?2.

3. Héolder Regularity

The present section is dedicated to the smoothness of sample paths, which can also be
deduced from the variogram. From now on, we have the directional properties of a Gaussian
field X with stationary increments in mind. We will consider the Holder regularity of the
sample paths of each Gaussian process obtained by restriction, r € A}, whereA is
a straight line ifR¢. We will see that it does not depend, in general, on the directiax of
Let us first describe how to measure the regularity of one-parameter Gaussian processes.

3.1 Holder Critical Exponent for Gaussian Processes

Let X = {X(¢);t € R} be a Gaussian process with stationary increments. A well-
known result relates the Hdélder regularity of the sample paths with the behavior of the
variogram function at the origin (see [4, 1, 8] or [2]). We first introduce the required
assumption on the variogram.

Definition 4. Letg =n +swithn € N, s € (0, 1]. The variogram functiom satisfies
the conditionH(8) if v is 2rn-continuously differentiable, and

s = Sup{a > 0; ‘U(Z”)(t) — v(Z”)(O)‘ =o0 <|t|2°‘) ,t— 0]

inf {a >0 |t =o (’v(z")(t) — U(Z")(O)’) = 0} .

Remark that ifv satisfiesH(8) with g € (0, 1], then any Gaussian proceXswith
variogramv admits a continuous modification (see Lemma 2). Note also that in this case,
B is the lass critical index X (see Section 2). Such processes are catide8 Gaussian
fieldsin the terminology of [1].

We now give the definition of the Holder critical exponent of a random process.

Definition 5. Let B e (0,1). A processX = {X(t) ; ¢t € R} is said to have Holder
critical exponen whenever it satisfies the two following properties
- foranya € (0, B8), the sample paths of satisfy a.s. a uniform Holder condition of order
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a on any compact set, i. e., for any compact Kebf R, there exists a positive random
variableA such that.s.

IX () — X(s)| < Als —t|*, Vs, t € K ;

-foranya € (8, 1), a.s. the sample paths &ffail to satisfy any uniform Hélder condition
of ordera.

Let us now write how these two notions are related. The next proposition comes
precisely from [1] Theorem 8.3.2 and Theorem 2.2.2.

Proposition 4.

Let X = {X();t € R} be a Gaussian process with mean zero, and stationary
increments and assume that its variograrsatisfies the conditioH (8) for some positive
non-integerg.

(i) If B € (0, 1), then any continuous version Bfhas Holder critical exponerg;

(i) If 8 € (n,n + 1) withn € N* then X is n-times mean-square differentiable.
Moreover, the:-th mean-square derivativE™ of X is a Gaussian process with stationary
increments and variogram function— (—1)"(v?" (t) — v‘?Y(0)) and any continuous
version ofX ™ has Hélder critical exponent — n.

Remark that the last proposition does not allow to get fine estimates such as iterated
logarithmic laws for the modulus of continuity of the sample paths as in [18] or [3]. We
are only interested in critical Holder exponents, and do not describe the behavior for the
critical value. The proposition does not say anything about integer valygsasfd is in
fact less precise whef > 1.

3.2 Directional Regularity

We are now interested in the Holder regularity in each direction éfparameter
Gaussian field with stationary incremeftts= {X (r); r € R?}. More precisely, we consider
its restriction along a straight line, that is to say the pro¢&sg +ru); t € R} foru € §9-1
andrg € R4,

Definition 6. Let X be ad-parameter random field with stationary increments and let
be any direction irs?—1. If the proces$X (ru); t € R} has Holder critical exponet(u),
we say thatX admitsg(«) as directional regularity in direction

The stationarity of the increments &f implies thatg () is also the Holder critical
exponent of all processes obtained by restriciintp any straight line of direction.

In [5] the directional regularity of any 2-parameter stationary random field is proved
to be constant except in at most one direction where it can be larger (see also [19] for
more general results). We prove hereafter, in our context of Gaussian fields with stationary
increments, a similar result based on the “directional variogram.”

Proposition 5.

Let X be ad-parameter Gaussian field with mean zero, stationary increments and
variogramv. Suppose that for all in $¢~1, the map:r — v(ru) satisfies the assumption
H(B(u)) for someB(u) in (0, 1). Thenthe map : u — B(u) takes at most different
values. Moreover, it is constant except, perhaps, on the intersection of the sphere with a
subspace of dimension at mast 1 where it may take larger values.
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Proof. We denote also by its extension as a homogeneous function of degree 0 on
R?\ {0}.

We chooseus, ..., ux in RY \ {0} andu in the vector space generatediby . . ., uy.
Thenu = Z’;Zl aju; with someas, ..., a; in R and

k

j j-1
X(tu) = X©) =Y _ [ XDt | — x| D tau
i=1 i=1

j=1

By stationarity of the increments,

k
v(tu):E((X(tu)—X(O))2> < Y vitajuy) .

j=1

Then, foralle < min(B(u1), ..., B(uy)), the quantityr|~2*v(tu) tends to O with. Hence
the maps is such thag (u) > min(B(u1), ..., B(ux)) for all u in the vector space generated
byul, oo, Uk

Let us suppose now the existencedof- 1 vectors withd + 1 different values of
B. Then one of them—say—must be in the vector space generated bydtahers—

sayui, ..., uq-, and then8(u) > min(8(u1), ..., B(ur)). One can always assume that
Buy) < ... < Bug). If B(u) > B(u1) thenu must belong to the vector space generated
byus, ..., uy, because, otherwise, exchangingndu1 givesp(u1) > B(u). Then8(u) >
min(B(u2), ..., B(ug)). Iterating the procedure yields a contradiction. This proves the first

conclusion of the proposition.
Moreover, let us denote kg the smallest value gf onR? \ {0}, realized atg. The
set of values: for which B(u) > o clearly generates a proper subspac®bf L]

Example. An example of a 2-parameter Gaussian field with stationary increments and
non-constant directional regularity is given by Example 3 of Section 1.3 via the spectral
density:

-2
R o (lel™ 4 |gl™t)

forany O< Hi < H> < 1. Using Proposition 4, the directional regularity is proved to be
equal to%ﬁfﬁlf’? in all directions except in the direction of the vector 1), where it
is equal tofibl2 2

This example can be easily adapted to any dimension, to find examples where the
function 8 takes any number of values between 1 dnd

Actually, among all the examples presented in Section 1.3, the above example is the
only one with non-constant directional Hélder exponent. A general result is established in

the next subsection.

3.3 Anisotropic Gaussian Fields with Constant Directional Regularity

We prove now that, whenever the spectral density is bounded lay C|&|~(2f+d)
and equivalent to it inside some cone, then the directional regularity of the assatiated
parameter Gaussian field is constant and equal to
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Proposition 6.

Let f be a standard spectral density andl its associated variogram defined {iy2).
We assume that is a positive number such that

() f satisfiedD(x) forall « < B;

(i) for all @« > B, there exists a constamt > 0 and a setE ¢ $9~1 of positive
measure such that for aimost gllin R?,

€] > A and % € E= f(&) > |g|" @+,

then for allu € $91, the map:r € R — v/ (ru) satisfies conditiotd (8).

Remark. with Proposition 4, assumptions (i) and (ii) for a non-integer valug ohply
that X/ admitsg as directional regularity in any direction. Furthermore, wigeis less
than one, Proposition 3 states tifiais also the lass critical index of /.

Examples. Examples 1 and 2 of Section 1.3 satisfy the required assumptiongwith
essinfh), so does Example 4 with = m.

Proof. Sincev’ o R = v/ for any rotationR in R such thatr (0) = 0 and since the
assumptions are also satisfied py R, we only prove that

v:teR > v@) =0/ (D)
satisfies conditiotd (8) with 1 = (0, ..., 0,1) € $¢~1. Forallr € R,
v(t) = / fi(&) de,
R4
with £, () = sin?(t£4/2) f () = (1 — cost£y)) f (£) andg, the last coordinate df. Let

us denote by the integer such that lies in (n, n + 1].
First step: v is (2n)-differentiable. Indeed, from the identity

27 (it = (<1
az7<s'n (1x/ )>—(—)x cog(ix) ,

we get the inequality
82}’1
——, [1(§)

8l2"

The right hand side is integrable by the assumption (i)v 802n-differentiable, and

< 3|§ 1" £ (&)
=5 d .

" (20 0@ (@) = /R leal sirP(ta/2 £ (8) ds

Second step: for alla € (n, 8), the quantity (—1)"¢|2"=9 W@ (1) — v@) (0))
tends to0 whenr tends to0. Clearly, we might as well show that, for all suehthe
same quantity is uniformly bounded for0z < 1. We write

) /R JJeal™ sin(u54/2) £ §) d = I+ I
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with 11, I» the integrals on the sef&| < A} and{|&| > A}, respectively. In the first one,
|€41%" sin?(1£4/2) can be bounded by?|& |22, The fact that; is bounded follows at once
from the fact thatf is in LY(RY, dit; R). In the second one, we change variables and use
the conditionD(«) (assumption (i)) to obtain the bound

hSC/ Sin(6a/2) €242 g |
[&]>Alt]

which is clearly finite.

Third step: for all « > 8, the quantity (—1)"|¢]2*=*) (v (r) — v@)(0)) tends to
oo Whent tends to0. Clearly, as before, we might as well show that, for all sucthe
same quantity is uniformly bounded below for small enough. By assumption (i), take
A > 0andE c 591 of positive measure such that

|H>Am¢ieE$f@>EF@”%

€]
and takeg?| < A~L. Then
. i (t&4/2)
2 i 2 > d / 2SI (t8a/2)
/|E|>A |€a17" sIN®(t84/2) f(§) d§ = A ek 1€al E[atd 3
2(a—n) Zzsinz(éd/z)d
> /|§|>l;§eE €al el £,

which allows to conclude. ]

It is interesting to note that, although the Hdélder critical exponent is the same in
all directions, the Lipschitz constant can strongly depend on the direction. For instance in
Example 1, ifthe seth = m} has positive measure, then, for each direciigihe variogram
function deduced from (1.3) will be

v(tu) = (C(m)/ e 2" da> 112" + o (|z|2"’) ,
hL((m))

and the constant befotg?” clearly depends om. The same phenomenon can be observed
in Example 4. This type of analysis of anisotropy is studied in [5] where the directional
Lipschitz constant is called “the topothesy function.”

4. Projections and Averages
4.1 Projection of a Gaussian Field with Spectral Density

We investigate here the effect of a weighted projection on the Gaussian fields with
stationary increments under consideration.

Let X be ad-parameter random field with continuous covariance, with 2. Let
k be an integer between 1 add- 1. Let us choose a functign (the weight function) in
the se®V,;_; of continuous maps fro¢~* to R with compact support and integral equal
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to 1. WhenX is continuous, we want to defirtee projection ofX with weighte as the
average, with weighp, in the firstd — k coordinates,

X(s,t)p(s)ds , Vt € R .
k

p(X. @)(1) = /
]R‘]

We will see that the choice of the weight functiprmdoes not play any role in the results, as
soon as itis sufficiently smooth. Fbi= d —1, p(X, ¢) isthed — 1-parameter random field
obtained by projection ok onto an hyperplane. Wheh= 3, p(X, ¢) can be interpreted

as the X-ray picture of a piece (determined by the windgwof a material modeled by

a 3D random fieldX. In all cases, we recognize a weighted Radon transform or X-ray
transform. One may consult [13] for more general models which arise in tomography. For
d = 2, the random fiel&X can model the grey-level of an X-ray picture, gn@X, ¢) can

be interpreted as the average, with weighof X over all “horizontal” straight lines.

The definition of the projection as an integral is hot convenient in our context and asks
for strong assumptions, while we are mainly interested in second order statistics. Moreover,
we keep in mind that integrals will be replaced by finite sums in order to be able to compute
them on real data. This leads us to define the weighted projectianbyf the following
formula, which is inspired by [22] Chapter 1.4, and which coincides with the previous one
on continuous trajectories,

N H —n(d—k) —n . —n . k
p(X.@)(1) = lim 2 Y e@mj)x (")) vieR. (A1)

jeZd*k

The existence of the limit, and the fact that it defines a random field of the same class, is
given in the following proposition.

Proposition 7.
Letp € W, andX be ad-parameter Gaussian field which vanishe®dtas mean
zero, stationary increments, with continuous variogram For n € N, let

V) =270 3T o)X (). Vi e RE
yez—nzd—k

() Then, forally, 7o, . . . , 1;, the sequenc@, (r1), Y, (2), . .., Y, (1)) hasalimitinL2($2, R)).
Moreover, the limit defines a Gaussian figld= p(X, ¢) which has mean zero and sta-
tionary increments.

(ii) If X is a Gaussian field with spectral densify thenp(X, ¢) is a Gaussian field with
spectral density ( f) given by

T(f) : £ eRF > /Rd_k }@(x)|2f(x,s) dx . (4.2)

Moreover, if f satisfies the assumptidi(m) for somem in (0, 1), thenT (f) does also
(with the samen).

Recall that conditioD(m) is sufficient to ensure the existence of a continuous mod-
ification (see Proposition 1).

Note that the second point proves that the class of Gaussian fields with spectral density
is stable under projections. Therefore, when a material is modeled by a (3-parameter)
Gaussian field with spectral density, then X-ray pictures of this material can be modeled in
the same way.
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Proof. The proof of the convergence is elementary but tedious. We will sketch it when
[ = 1. Its generalization does not present any difficulty. To prove that the seqligintis a
Cauchy sequence Ii?(Q), itis sufficient to prove that the covariance By (), Y, (1)) has

a limit whenm andn tend toco. Using the variogram aoX, we can write CogY,, (¢), Y, (1))

as
2 mmd=h %" Y. ee(y)CouX (v, 0, X (v, 1) .
yez—mzd—k y/ez—nzd—k
This last covariance may be written using the variogram,

Cov(X(y,0), X (y'.1)) =2wx(y. 1) +vx (¥, 1) —vx (y =¥/, 0) .

We recognize Riemann sums of the integral of a continuous function, which converge to
the corresponding integral.

Once we have proved the convergencéds2), it follows immediately that the limit
Y is also Gaussian with mean zero. Let us prove that it has stationary increments, and
compute its variogram. As before, for atind:” in R¥, E(|Y (t) — Y (#)|%) may be written

as
2

lim 272"@=RE [ 3" (x (27"j.1) = X (27").1")) 0 (27"])

n—oo
jeZ‘l*k

Sincevy is continuous ang is continuous, the limit is again an integral:
2/ (vx (s —s". ' —t)+ox (s —s' .t —1') = 2vx (s — 5", 0)) @(s)p (s) dsds’.
R2(d—k)

This shows thaE((Y (t)—Y (¢'))?) depends only on—1", which proves that has stationary
increments, and gives an explicit formula for the variogrgm

(ii) Suppose now thak has a spectral density. The previous computation of the
variance of the increments #fgives, for allz in R,

vy (t) = 1 / (vx (s —s',—t) +ox (s —s'.1) —2vx (s — 5", 0)) () (s') ds ds’.
2 Jr2d—k

Let us use Fubini's theorem and denotegbys — ¢(—s) to get

vy(t) = 1- / (v(s, 1) + v(s, —t) — 2v(s,0) ¢ x @(s) ds
2 JRd—k

1

2 /(sl,sz>edeka

X </ cog(s.£1) ¢ * ¢(s) dS> d&1dé
RAd—k
1

2 /(sl,sz>eR“xR"
_ fR SI(162/2)T () (&) déz

ThenT (f), given by (4.2), is the required spectral density ¥or
In order to prove thal () inherits from f the assumptiol(m), just note that, for
almost alle € R* such thaté| > A, we have

~3@n+d)
T(f)€) < (||go||§of (1+12) dy> « [E[~@nH0) | 0
RAd—k

(1 —cog1.82)) f(£1. &2)

(1 - cosr.£2)) f (51, 62) |9 (61) |2 dé1dé2
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4.2 Regularity of the Averages

We have in mind possible applications to the analysis of some material (or X-ray
pictures) through the analysis of one-parameter processes. So, from now on, we will only
deal with averages over hyperplanesdeparameter Gaussian fields, that is to say with
projections where the weight functignbelongs toWW;_1 (with the notations of previous
subsection). One moment of reflection allows to see the possibility of generalizations to
other situations.

We prove now that if the spectral densifyof X behaves liket > |g|~(@f+d)
asymptotically in the “vertical” directioft = (O, . . ., 0, 1), then the process of “horizontal”
averagep (X, ¢) has Holder critical exponeit+ %(d —1). Using Proposition 4, this will
be the case if the variogram pi X, ) satisfiesH (8 + 3(d — 1)).

Proposition 8.
Let f be a standard spectral density and assume the existence of positive constants
m and g such that
(i) f satisfiedD(m);
(i) for all @ < B, there exists a constamt > 0 and a neighborhoodz ¢ $9-1 of
(0, ..., 0, 1) such that for almost alf in R?,

] > A and~- ¢ E = f&) < |g|7@FD

&1

(iii) for all @ > B, there exists a constamt > 0 and a neighborhoodZ c §¢-1 of
(0, ..., 0, 1) such that for almost alf in R?,

61> Aand- ¢ E = f(&) > g @)

1€

Lety belongs toV,_; such that¢|? satisfiesD(8), then, the variogram of the projection
p(X, ¢) satisfies conditiot (8 + 3(d — 1)).

Proof.  Recall that the projectiop (X, ¢) is defined by (4.1) witht = 1 and has a
spectral density’ (1) given by (4.2). Using Proposition 6 in one dimension, it is sufficient
to prove the next lemma.

Lemma 4.
Under the assumptions of Proposition 8, the spectral deri&jtf) is such that

e foralla < B+ 3(d - 1), T(f) satisfieD(@);
e foralla > B+ %(d — 1), there exists a constart > 0 such that

] > A= T(f)(E) > |g]7@FD .

Proof of the lemma. Leta < 8+ %(d —1). By assumptions (i) and (ii) there exists a

constantd > 0 and a neighborhooi ¢ $?~1 of (0, ..., 0, 1) such that for almost al
in R4,

E]>A = f(&) <|g|"@tD

El>Aand S cE o f) < 6| 20U _ jgmGd

€1
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We can assume thdt is of the form{(x, &) € R~1 x R; |x| < n|&|} for some positive
constang). For& inR suchthaté| > A, wewriteT (f)(€) = T1(f) (&) +T2(f) (&), where

T(f)(E) = / 167 £ (x. &) dx
xeRI-L; (x,8)/|(x,8)|€E

— ~ 2 —
= g7 % /R L P dx = clgm®eD,

and

To(f) (&) 6 f£(x, &) dx

/xew—l; (x.6)/|(xr B)IEE
<c / | BB (g @) g
xeRI-L;|x|>nl¢]

S C|$|—(2ﬁ+2m+2d—2) S C|§|—(20l+1) .

The constan€ may change from one line to another. The assumptiop bas been used
for the second inequality. Both inequalities fBr( f) andT>(f) prove the first part of the
lemma.

Fora > B+ 3(d — 1), by assumption (i),

HEX andé—| €E= f(€) > |§I7* .

As before, we may assume that= {(x, &) € Rt x R; |x| < n|&|} for some positive
constanty. Then, for¢ in R such thaté| > A,

T(f)E)

v

/ 60)|% f(x, &) dx
xeRI-L: |x|<p|&]

</| i 6(0)[? dx) g~ @D
x|<n

This finishes the proof of the lemma, as well as the proof of the proposition[ ]

v

Remark that we can similarly describe the asymptotic self-similarity for the average-
processp(X, ¢). Sufficient conditions to get a lass critical index (see Proposition 3) are
provided by Lemma4, at Ieastwhﬁpr%(d—l) belongstdO, 1). Inthe cas¢3+%(d—1) >
1, alass property could certainly be observed, not for the prqooEessy) itself, but for the
process ofith-order increments (see [20]) withthe integer part o + %(d -1.

4.3 The Directional Average Method

We now describe theirectional average methgavhich allows to recover the asymp-
totic properties of the functioif in each direction.

Let f be a standard spectral density akid be d-parameter Gaussian field with
spectral densityf. For any directioru in S9~1, we average the fiel&/ over all the
hyperplanes orthogonal io

More precisely, we first choose a weight function in theldgt 1. For any direction
u in $9~1, we obtain theaverage-process in the directianby the following prescription:
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- first composeX / with a rotationR,, of center 0 which maps the directiar= (0, ..., 0, 1)
ontou,
- then compute the projection with weightthat is, consider

Y1) = p(X o Rus ) (1) 43)

which is defined a.s. for atlin R.
We state now our main theorem.

Theorem 1.
Let f be a standard spectral density and assume the existence of positive constants
m and M such that
(i) f satisfiedD(m);
(ii) for all u in $9—1, there existg(u) € (0, M] such that

« forall @ < B(u), there exists a constart > 0 and a neighborhood c $¢-1 of
u such that for almost a§ in R?,

|ﬂ>Am%%€E$f®SEF@”%

« forall @ > B(u), there exists a constart > 0 and a neighborhood c $¢~1 of
u such that for almost a§ in R?,

|H>AM%%GE:f@>EF@”X

Lety € W,_1 be such thatg|? satisfiesD(M). Then, for allu in $¢~1, the variogram
of the average-process in the directiony /#:* defined by4.3), satisfies the assumption
H(Bw) + 3(d — 1).
Proof.  Since all the conditions are invariant by rotations of center 0, it is sufficient to
prove that the variogram af/-#-1 satisfies the assumptid(s + %(d — 1)) with 8 = B(1)
andl=(0,...,0,1).

But this is claimed in Proposition 8. Just note thalgf? satisfies the assumption
D(M) with 8 < M then it also satisfieB(8). L]

Let us come back to the examples of the Section 1.3 and see how the previous theorem
does apply to obtain non trivial results.

Examples 1 and 2.If & is an even continuous map fras—* into [m, M] c (0, 1), the
spectral density

1
1
(1 tE |2) 5(2h(&)+d)

1
§eR > fO) = g | O

satisfies the assumption (i) of the theorem with:) = h(u) for all u € $?~1. Then
any weighty in Wy_1 such that@(€)| = 0(|&|-23+9) at infinity, provides directional
averages which have Hdélder critical expongat) + %(d — 1) for all directionsu.

With a slight refinement, one can prove that the result continues to hold when
has only right and left limits at each point; in this case the Holder exponent is given by
B(u) = min(h(u™), h(u™)).
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In the Example 2, there is no reason to limit ourselves to valudg b&low 1.

Example 3. In the case; < Hp, assumptions (i) and (ii) are satisfied with= Hi,
M = H» and

pO)=H1 it 0£7: p(3)=He.

So, again, we get a directional analysis which is constant except for one value.

Example 4.Just taken = M = B(u) for all u € $9~1 and the theorem applies, but gives
again apparent isotropy.

Conclusion

Our starting point was the fact that, basically, there does not exist a stationary random
field which presents different directional Holder critical exponents in different directions.
So, if we are dealing with a material or with an image which presents anisotropy, then one
has to choose a model which has the same property, and the measurement of anisotropy has
to be done with other tools. The present work provides an analysis method for anisotropic
2D- or 3D-data which is based on Hoélder critical exponents of directional averages. We
have proved that there does exist random fields for which this analysis allows to recover the
information on the anisotropy of the model. Clearly Examples 1 and 2 are good candidates
for Gaussian fields with anisotropic regularity.

It remains to see whether they are good candidates for real data. To test different
tools, classical methods for fractional Brownian motion simulations may be adapted to pro-
duce simulations. Estimation of the directional regularity, using by now standard methods
(see [8]), will require to replace the integral averages by discrete ones, which has to be done
carefully if one does not want to loose the smoothing effect that we have exploited here.
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