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ABSTRACT. Although the classical Fractional Brownian Motion is often used to describe poros-
ity, it is not adapted to anisotropic situations. In the present work, we study a class of Gaussian
fields with stationary increments and “spectral density.” They present asymptotic self-similarity
properties and are good candidates to model a homogeneous anisotropic material, or its radio-
graphic images. Unfortunately, the paths of all Gaussian fields with stationary increments have the
same apparent regularity in all directions (except at most one). Hence we propose here a procedure
to recover anisotropy from one realization: computing averages over all the hyperplanes which
are orthogonal to a fixed direction, we get a process whose Hölder regularity depends explicitly on
the asymptotic behavior of the spectral density in this direction.

Motivation and Introduction

Thirty years ago, Mandelbrot and Van-Ness [17] have initiated the description of 1-
dimensional data through Fractional Brownian Motion (FBM). Since then, Fractal Analysis
is often used for the description of roughness or porosity of somed-dimensional material.
The fundamental parameter of thed-dimensional FBM—the Hurst indexH—is the index
of regularity, while the fractal dimension of the graph is given byD = d + 1 − H . This
model is well adapted when the material is homogeneous and isotropic. To take into account
non-homogeneity, a generalization of FBM with a “Hurst index depending on the point” has
been introduced simultaneously in [3] and [15]. Here we deal with homogeneous material
and focus on anisotropy.

The present work has found its origin in pluridisciplinary discussions on the diagnosis
of osteoporosis from X-ray pictures of bones (the use of radiographs being the simplest
way—financially and technically speaking—to get information). For isotropic bones, it
has been shown in [7] that, when modeling the level of grey along lines of the radiographs
by FBM, the Hurst parameter appears as a good indicator of the alterations of the micro-
architecture that are provoked by osteoporosis. But, in general, the assumption of isotropy
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is not valid. On the other hand, one may consider a bone as a homogeneous material, that
is, the mean variations of the bone density around one point do not depend of this one. As a
consequence, it is natural to model the bone density by a 3D-Gaussian field with stationary
increments. We show that a projection in one direction preserves the properties of such
models, so that the same assumptions can be made on bone radiographs: the level of grey at
each point is modeled by a 2D-Gaussian field with stationary increments. Typical examples
for those anisotropic Gaussian fields are “1/f -noises” in the terminology of signal theory,
with spectral density|ξ |−α(ξ) where the powerα(ξ) depends on the direction ofξ .

For the material itself, as well as for the X-ray picture, it seems natural to consider
the regularity in different directions in order to measure the anisotropy (and it is done in
practice as in [16]). Indeed, it is easier to estimate the parameter of a one-dimensional
process. Unfortunately, a characteristic of random fields with stationary increments is
the following: they have the same regularity in all directions, except in at most one (this
phenomenon is described in [5] for stationary random fields). Hence, in some way, they
certainly look isotropic! The main idea of this work lies in getting another method to recover
anisotropy.

Let us describe precisely our method (Directional Average Method) when applied to
an X-ray picture. We assume that this one is modeled by a 2D-Gaussian field with spectral
representation

∫
R2(e

it.ξ − 1)|ξ |−h(θ)−1 dW(ξ), wheredW is a 2D-Brownian measure and
θ = Arg(ξ) is the angle between thex-axis and the direction ofξ . Moreover,h is aπ -
periodic continuous map with values between 0 and 1 which depends on the anisotropy of
the X-ray picture. The functionh is then recovered as follows. For any fixed directionθ ,
the picture is averaged over all the lines orthogonal toθ . A new 1D-process is obtained and
its Hölder regularity is proved to be equal toh(θ) + 1

2. Hence an anisotropic analysis of
the picture can be elaborated.

Although the starting point of this article was the analysis of 2D-pictures, we deal
with a more general setting. We studyd-parameter real-valued Gaussian fields with spectral
representation {∫

Rd

(
eit.ξ − 1

)
f

1
2 (ξ) dW(ξ) ; t ∈ R

d

}

where{W(ξ); ξ ∈ R
d} is the complex Lévy Brownian field, with adapted real and imaginary

parts such that the Wiener integral is real-valued. The functionf—the spectral density—is
any positive even function with adapted integrability assumptions. Whenf is not radial,
the Gaussian field is not isotropic. We refer to [11] and [14] for other anisotropic models
which have been proposed in the literature, but do not have stationary increments.

Then natural questions appear. Which properties of the FBM are preserved (self-
similarity, Hölder regularity,...)? Is this class of Gaussian fields stable under projection?
How to mesh the anisotropy? How to recover information on the anisotropy from one
realization? Our answers give, in each case, sufficient conditions on the spectral density.
We should emphasize that, in most cases, we adapt well-known properties to our context.
The main originality of this article relies in the choice of the model itself, its invariance
through projections, and the fact that this invariance may be used to recover the parameters.

The article is organized as follows. In the first section, we introduce the model, that is
the class of Gaussian fields with spectral density, and give some examples. Such fields are
known to have a continuous version under some decay assumption for the spectral density.
The second section is devoted to self-similarity properties. We prove that the Gaussian field
associated with an asymptotically homogeneous spectral density is locally asymptotically
self-similar. Moreover, the tangent field belongs to the same class of Gaussian fields. In
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the third section we study Hölder regularity. We come back to the result of “apparent
isotropy” which we already described, and observe the behavior of the Gaussian field in
each direction. The last section deals with projections and averages. The class of Gaussian
fields with spectral density is proved to be stable under projections. We then present our
method to recover anisotropy by analyzing one-parameter Gaussian processes. Our main
theorem (Theorem 1) describes the dependency between the Hölder regularity of the process
obtained by averaging over all the hyperplanes orthogonal to a fixed direction on one hand,
and the asymptotic behavior of the spectral density in this direction on the other hand. A
particular attention is given to examples: four of them are followed all over the article and
confronted with the general results.

1. Gaussian Field with Stationary Increments

All over the article, we considerd-parameter random fields(see [1] or [22] for a
general presentation). By this terminology, we mean a mapX from � × R

d into R such
that, for allt in R

d , X(., t) := X(t) is a random variable defined on a probability space�

(equipped with aσ -field and a probability measure). Whend = 1, we speak of aprocess.
At this stage, no measurability with respect to the “space” variablet is required. Let us recall
basic definitions involving the finite dimensional distributions ofX. For two random fields

X andY , we writeX
fdd= Y when, for alln in N

∗ and allt1, . . . , tn in R
d , then-dimensional

random variables(X(t1), . . . , X(tn)) and(Y (t1), . . . , Y (tn)) have the same distribution.

A d-parameter random fieldX is said:
- to havestationary incrementsif, for all t0 in R

d ,

X(.+ t0)−X(t0)
f dd= X(.)−X(0) ;

- to beself-similar of orderα if, for all λ in R
∗, X(λ.)

f dd= λα X(.);

- to beisotropic if, for all rotationR in R
d ,X ◦ R fdd= X.

The finite dimensional distributions of a centered Gaussian random fieldX are totally
determined by the covariance function(s, t) 7→ Cov(X(s),X(t)).

1.1 Fractional Brownian Field

Let H belong to(0,1). We begin this study with the (unique) real-valued centered
random field, vanishing at the origin, which is simultaneously Gaussian, with stationary
increments,H -self similar and isotropic: the celebratedfractional Brownian field with
Hurst indexH , BH = {BH(t); t ∈ R

d}.
Its covariance function is given by

Cov
(
BH(s), BH (t)

)
= cH,d

(
|s|2H + |t |2H − |s − t |2H

)
, ∀s, t ∈ R

d

with |s| the Euclidean norm ofs andcH,d a nonnegative constant depending onH andd.
A spectral (or harmonizable) representation is available (see [22] Chapter 4 or [21]

Section 7), given by {∫
Rd

eit.ξ − 1

|ξ | 1
2 (2H+d) dW(ξ) ; t ∈ R

d

}
(1.1)
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wheredW is a complex Brownian measure.
Any process obtained by restriction along a straight line1 of R

d going through 0,
{BH(u); u ∈ 1}, is a one-parameter fractional Brownian motion with Hurst indexH and
therefore the Hölder critical exponent of its sample paths isH a.s. whatever the direction of
the line. Indeed the fractional Brownian fieldBH is isotropic. In the next section we force

anisotropy by changing the mapξ 7→ |ξ |− 1
2 (2H+d) in the spectral representation (1.1) into

a general (non-radial) mapξ 7→ f
1
2 (ξ).

1.2 Gaussian Fields with Prescribed Spectral Density

LetX = {X(t); t ∈ R
d}be a Gaussian field with mean zero and stationary increments.

The finite dimensional distributions of{X(t)−X(0); t ∈ R
d} are completely given bythe

variogramv ofX

v(t) = 1

4
E

(
(X(t)−X(0))2

)
, ∀t ∈ R

d

since the covariance function satisfies

Cov(X(t)−X(0), X(s)−X(0)) = 2(v(t)+ v(s)− v(t − s)) , ∀s, t ∈ R
d .

Note that this identity characterizes the stationarity of the increments for centered Gaussian
fields.

We will now investigate the real Gaussian fields with mean zero and stationary incre-
ments whose variogram is continuous and may be written

v(t) =
∫

Rd

sin2(t.ξ/2)f (ξ) dξ , ∀t ∈ R
d (1.2)

with f a positive function such that
∫

Rd
(1 ∧ |ξ |2)f (ξ) dξ < ∞.

It is clear that the functionf can be replaced in (1.2) by an even functiong: just take
g(ξ) = 1

2(f (ξ)+ f (−ξ)). Actually it is the only allowed transformation, as proved in the
next lemma. In the sequel,µ will denote the measure onRd given by

dµ(ξ) =
(
1 ∧ |ξ |2

)
dξ .

Lemma 1.
If f andg are even positive functions inL1(Rd,dµ; R) inducing the same variogram,

i. e., ∫
Rd

sin2(t.ξ/2)f (ξ) dξ =
∫

Rd

sin2(t.ξ/2)g(ξ) dξ , ∀t ∈ R
d ,

thenf = g a.e..

Proof. Indeed, let us show that an evendµ-integrable functiong, such that
∫

Rd
sin2

(t.ξ/2)g(ξ) dξ vanishes for allt , is identically 0. It is sufficient to prove that, forϕ an even
function in the Schwartz class, then∫

Rd

|ξ |2ϕ(ξ)g(ξ) dξ = 0 .

But, using Fourier inversion formula, we may write

|ξ |2ϕ(ξ) =
∫

Rd

cos(t.ξ)ψ(t) dt =
∫

Rd

(cos(t.ξ)− 1)ψ(t) dt
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for some other Schwartz functionψ . The use of Fubini’s theorem allows to conclude.

Definition 1. Let X be a Gaussian field with mean zero, stationary increments and
variogram given by (1.2), withf an even positive function inL1(Rd,dµ; R). Then we call
f the spectral density ofX and say thatX is a Gaussian field with spectral densityf .

Let us now list some properties of such Gaussian fields. Letf be an even positive
map inL1(Rd,dµ; R) andXf be a Gaussian field with spectral densityf .

First,Xf −Xf (0) has the same finite dimensional distributions as{∫
Rd

(
eit.ξ − 1

)
f

1
2 (ξ) dW(ξ) ; t ∈ R

d

}

since they are both Gaussian fields with mean zero and stationary increments and have the
same variogram. A consequence of this representation is that any even positive function
in L1(Rd,dµ; R) is the spectral density of at least one centered Gaussian field with sta-
tionary increments. From now on, astandard spectral densityis any even positive map in
L1(Rd,dµ; R).

Next, assuming thatXf (0) = 0 a.s., Lemma 1 shows thatXf is self-similar if and
only if f is a homogeneous map, and in the same vein,Xf is isotropic if and only iff is
a radial map. A consequence is that there is only “one” Gaussian fieldXf which is both
self-similar and isotropic: it is the fractional Brownian motion described in Section 1.1,
with spectral densityξ 7→ |ξ |−α for some adaptedα.

In most cases, we will content ourselves to consider properties of finite dimensional
distributions, which are given by the variogram, since our main object is to propose ad-
equate models as well as an analysis that allows to estimate their parameters. We will
nevertheless consider the possibility of having a continuous modification ofXf . In this
case, equality of finite dimensional distributions can be replaced by equality in law on the
space of continuous paths onR

d . Without any surprise (see [2] Corollary 2.2 for instance),
a continuous modification ofXf exists whenf decreases rapidly enough at infinity. More
precisely, form ∈ (0,+∞), we consider the following assumption on the standard spectral
densityf : there exists constantsA,B in (0,+∞) such that

D(m): f (ξ) ≤ B|ξ |−(2m+d) , for almost all |ξ | > A .

The assumptionD(m) is used in the next proposition.

Proposition 1.
Letf be a standard spectral density andX be a Gaussian field with spectral density

f . If f satisfies assumptionD(m) for some positivem, then there exists a field̃X, defined
on the same probability space asX, whose paths are a.s. continuous, and such that for all
t ∈ R

d ,X(t) = X̃(t) a.s..

Whether there exists a continuous modification of a given random process, and which
Hölder regularity can be expected for a modification, are quite old questions. In the 60’s
several criteria for the existence of a continuous modification have been proposed in two
different contexts. One, due to Kolmogorov and Centsov, is concerned with Hölder reg-
ular modifications of random fields defined onR

d (see [12] Section 2.2 for instance and
references therein). Another one, due to Dudley, Marcus and Shepp, Fernique, gives nec-
essary and sufficient conditions for the existence of continuous modifications of Gaussian
processes defined on a metric set (see [10] Chapter 15 or [1] Chapter 3 and references
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therein). In both cases, the criteria rely on a control of thek-th moment of the increments
of the process (k big enough in the first case,k = 2 in the second case). In our context of
Gaussian fields defined onRd , they can both be applied and both consist in a control of the
variance of the increments. For the next proof, we chose the first one.

Proof. We use the Kolmogorov–Centsov criterion: for all positiveT ,

∀s, t ∈ [−T , T ]d , E
(|X(t)−X(s)|α) ≤ C|t − s|d+β

for some positive constantsα, β andC.
SinceX is Gaussian, then for allk ∈ N

∗, there exists a constantck such that

∀s, t ∈ R
d , E

(
|X(t)−X(s)|2k

)
= ck

(
E

(
|X(t)−X(s)|2

))k
.

With k large enough, the next lemma allows to conclude.

Lemma 2.
Under the assumptions of Proposition 1, for allT > 0, there exists a positive constant

C such that

∀s, t ∈ [−T , T ]d , E
(
|X(t)−X(s)|2

)
≤ C|t − s|2(1∧m) .

Let us prove this inequality. Recall thatE(|X(t) − X(s)|2) = 4v(t − s) and use
AssumptionD(m) to get, for allt in R

d ,

v(t) ≤ 1

4
|t |2

∫
|ξ |≤A

|ξ |2f (ξ) dξ + B

∫
|ξ |>A

sin2(t.ξ/2)|ξ |−(2m+d) dξ

≤ |t |2
(

1

4

∫
|ξ |≤A

|ξ |2f (ξ) dξ
)

+ |t |2m
(
B

∫
Rd

sin2(ξ/2)|ξ |−(2m+d) dξ
)
.

Note that the inequality in Lemma 2 implies more smoothness than a.s. continuity.
Actually (see the above references), iff satisfiesD(m) then the paths of the modificatioñX
are a.s. Hölder regular of order(1∧m)− ε, for all ε > 0. This will in fact be fundamental
below.

Before ending this section, let us quote that the assumptions on the spectral rep-
resentation of the variogram that we consider seem relevant to describe a large class of
Gaussian fields with stationary increments. Indeed, as a consequence of Bochner theorem
(see [6] Proposition 3.1 or [22] Chapter 4), the variogram of any real centered process with
stationary increments, if continuous, is given by

t 7→
∫

Rd

(1 − costξ ) dG(ξ) ,

wheredG is a positive measure onRd such that
∫
|ξ |<1 |ξ |2 dG(ξ)+∫

|ξ |>1 dG(ξ) is finite. So
the only restriction imposed by the representation (1.2) is thatdG is absolutely continuous,
and later, with conditionD(m), some behavior at infinity of the density.

1.3 Examples

We give hereafter some examples of spectral densities. They all behave like a power
of ξ 7→ 1/|ξ | at infinity, and satisfy the assumptionD(m) for some positivem.
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Example 1. In the spectral representation of the fractional Brownian motion (1.1), we
replace the constantH by a function of the direction ofξ . In other words, we consider an
even positive function which is homogeneous of degree zero,

h(λξ) = h(ξ) ∀ξ 6= 0 ∈ R
d , ∀λ 6= 0 ∈ R ,

which may be identified with an even function on the unit sphereSd−1 of R
d that we note

h as well. We assume moreover, thath takes its values inside the interval[m,M] ⊂ (0,1),
with m = essinf h andM = esssuph. The spectral density that we consider is given by

ξ ∈ R
d 7→ 1

|ξ |2h(ξ)+d .

It provides what can be called an “anisotropic fractional Brownian field with directional
Hurst indexh,” denoted byX(h). A spectral representation forX(h) is given by{∫

Rd

eit.ξ − 1

|ξ | 1
2 (2h(ξ)+d)

dW(ξ) ; t ∈ R
d

}
.

Computing the variogram with “polar” coordinates gives

v(t) =
∫

Rd

sin2(t.ξ/2)

|ξ |2h(ξ)+d dξ =
∫
Sd−1

C(h(u)) |t.u|2h(u) du (1.3)

with, for all H in (0,1), C(H) =
∫

R+
sin2(x/2)

x2H+1
dx. This constant arises naturally when

studying fractional Brownian motion, and is equal toC(H) = π/8
H0(2H) sin(Hπ) (see [21]

(formula 7.2.13) for instance).

Example 2.Let h be as above, and take as spectral density

ξ ∈ R
d 7→ 1(

1 + |ξ |2) 1
2 (2h(ξ)+d)

.

In this example, we remark that integrability at the origin allows to separate the two terms
in the spectral representation, and write the associated Gaussian field as∫

Rd

eit.ξ(
1 + |ξ |2) 1

2 (h(ξ)+d/2)
dW(ξ)−

∫
Rd

1(
1 + |ξ |2) 1

2 (h(ξ)+d/2)
dW(ξ) .

The first term itself gives rise to a stationary process. Moreover, we can now allowM to
be arbitrarily large.

Example 3.For a 2-parameter Gaussian field, let us chooseH1 andH2 in (0,1) and take
as spectral density

ξ ∈ R
2 7→

(
1

|ξ1|H1+1 + |ξ2|H2+1

)2

.

Example 4.We borrow it from [3] p. 24. A spectral density is defined by

ξ ∈ R
d 7→

s2
(
ξ
|ξ |

)
|ξ |2m+d

wherem ∈ (0,1) ands is an even square-integrable map defined onSd−1.
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2. Asymptotic Self-Similarity

Self-similarity for a Gaussian field with stationary increments is clearly equivalent to
homogeneity of the variogram. In the case of a Gaussian field with spectral density, it is
equivalent to homogeneity of the standard spectral density, as already said. More precisely,
self-similarity of orderm corresponds to homogeneity of order 2m for the variogram and
of order−(2m+ d) for the spectral density. Note that all such Gaussian fields are given by
Example 4.

We now consider asymptotic self-similarity of the Gaussian field. This one may be
considered either locally, or at infinity. We will see that it depends on the behavior of the
spectral density either at infinity, or at 0. Let us start with the local property.

The local asymptotic self-similarity (l.a.s.s. property) will first be related to the
asymptotic homogeneity of the variogram of the Gaussian field, then to the asymptotic
homogeneity of the spectral density. One can find links between these notions in a more
general context in [3] (Theorem 1.4). Let us recall the l.a.s.s. definition.

Definition 2. Let α > 0. A field X = {X(t); t ∈ R
d} is locally asymptotically self-

similar of orderα at the pointt0 ∈ R
d if the finite dimensional distributions of{

X(t0 + λt)−X(t0)

λα
; t ∈ R

d

}

converge to the finite dimensional distributions of a non trivial field asλ → 0+. The limit
field is called the tangent field at the pointt0.

Let us now define the asymptotic homogeneity of a function. We say thatg, a positive
function onR

d , is asymptotically homogeneousof orderα at ∞ if there exists a non zero
functiong∞ such that, for almost everyξ in R

d , gλ(ξ) = λ−αg(λξ) has limitg∞(ξ) when
λ tends to+∞. In this case, the functiong∞ is clearly homogeneous of degreeα, which
fixes uniquely the parameterα. We define as well asymptotic homogeneity at 0, and use
the notationg0 for the limit.

The next lemma provides a sufficient condition on the variogram ensuring local
asymptotic self-similarity.

Lemma 3.
LetX be a Gaussian field with mean zero and stationary increments. Assume that its

variogram is asymptotically homogeneous of order2m at 0, with limit functionv0. Then
X is, at any pointt0, locally asymptotically self-similar of orderm and the tangent field is
Gaussian has stationary increments, mean zero, and variogramv0.

Proof. Since we deal with finite dimensional distributions of Gaussian fields with mean
zero, we only have to prove that

Cov

(
X(t0 + λt)−X(t0)

λm
,
X(t0 + λs)−X(t0)

λm

)
→ 2(v0(t)+ v0(s)− v0(t − s)) ,

whenλ tends to 0, which is a consequence of the stationarity of the increments ofX and
the asymptotic homogeneity of the variogram ofX.

We consider now conditions onf at ∞. In fact, we propose sufficient conditions
which imply also the convergence in law of the Gaussian fields.
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We first askf to be asymptotically homogeneous at∞, which is a natural condition,
but which is not enough as we will see on the examples. So we also askf to satisfy the
additional assumptionD(m).

Proposition 2.
Letm ∈ (0,1) and letf be a standard spectral density which satisfiesD(m) and is

asymptotically homogeneous of order−(2m + d) with limit functionf∞. ThenXf is, at
any pointt0, asymptotically self-similar of orderm with tangent fieldXf∞ .

Moreover, denoting bỹXf and X̃f∞ continuous versions ofXf andXf∞ , then for
all t0 ∈ R

d ,

lim
λ→0+

{
X̃f (t0 + λt)− X̃f (t0)

λm
; t ∈ R

d

}
=

{
X̃f∞(t); t ∈ R

d
}
,

where the convergence here is the convergence in distribution on the space of continuous
paths onRd .

Remark. Note thatf∞ satisfies alsoD(m). Since it is homogeneous of order−(2m+ d),
then the limitf∞ is a standard spectral density. The limit fieldXf∞ is self-similar of order
m, and so given by Example 4. Moreover, Proposition 1 applies to both spectral densities
f andf∞, and provides continuous modifications forXf andXf∞ .

Proof. The first point concerning the (usual) local asymptotic self-similarity is a conse-
quence of Lemma 3. As before, we decomposevλ = λ−2mv(λ.) into two parts,

vλ(t) = λ−2m
∫

|ξ |<A
sin2(λt.ξ/2)f (ξ) dξ + λ−2m−d

∫
|ξ |>λA

sin2(t.ξ/2)f (ξ/λ) dξ .

The first term is bounded byCλ−2m+2|t |2, which tends to 0, while Lebesgue’s Theorem
may be applied to prove the convergence of the second one.

This proves the finite dimensional distributions convergence. Let us now prove the

tightness for the family(Z(λ) = X̃f (t0+λ·)−X̃f (t0)
λm

)0<λ<1, which allows to conclude for the
convergence in law on the space of continuous paths. We use the following tightness crite-
rion, valid for each family(Z(λ))λ>0 of fields onR

d vanishing at the origin, (Kolmogorov
criterion, see [12] p. 64): for allT > 0,

∀s, t ∈ [−T , T ]d , sup
λ>0

E
(∣∣∣Z(λ)(t)− Z(λ)(s)

∣∣∣α) ≤ C|t − s|d+β

for some positive constantsC, α andβ.
SinceX̃f is Gaussian with variogramv, for every positive integerk,

E
(∣∣∣Z(λ)(t)− Z(λ)(s)

∣∣∣2k) = Ck λ
−2mk v(λ(t − s))k ,

and the above inequality is satisfied thanks to Lemma 2, for which we already used the
assumptionD(m).

Let us remark that the situation is particularly simple in dimension one, where the
asymptotic self-similarity follows from the behavior at∞ of the spectral density,

f (ξ) ' c|ξ |−2m−1, ξ → ±∞ .
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Let us now test the examples of Section 1.3 with respect to asymptotic self-similarity.
Recall that we already dealt with Example 4.

Example 1.Takingm = essinf(h), we get for limit function

f∞(ξ) = 1{h=m}(ξ)
|ξ |2m+d ,

which is non zero if only if the set{h = m} has positive measure (which is the case, for
instance, if the maph takes only a finite number of values). By this, we mean that the
intersection of this set with the unit sphereSd−1 has a positive measure for the Lebesgue
measure onSd−1.

The assumptionD(m) is clearly satisfied. So the Gaussian fieldX(h) is, at any point,
locally asymptotically self-similar of orderm if the set{h = m} has positive measure. The
tangent field is anisotropic ifh is not constant.

Conversely, if{ξ ∈ Sd−1; h(ξ) = m} has measure 0, let us prove thatX(h) is not
asymptotically self-similar, for anyα. It is clearly not the case forα ≤ m since for any

point t0 the variance of the Gaussian process{X(h)(t0+λt)−X(h)(t0)
λα

; t ∈ R
d} tends to 0. On

the other hand, forα = m+ ε with ε > 0, for λ ∈ (0,1),

λ−2αv(λt) ≥ λ−ε
∫
ξ
|ξ | ∈E

sin2(t.ξ/2) dξ ,

whereE = {ξ ∈ Sd−1; h(ξ) < m + ε/2} has non-zero Lebesgue measure. So the above
quantity tends to infinity whenλ tends to 0+.

We have just proved the following:X(h) is locally asymptotically self-similar if and
only if {ξ ∈ Sd−1; h(ξ) = m} has positive measure.

Note thatX(h) is also locally asymptotically self-similar at infinity if and only if
{ξ ∈ Sd−1; h(ξ) = M = essup(h)} has positive measure.

Example 2. If h is taken as in Example 1 above, then the assumptions of Proposition 2
are fulfilled withm = essinf(h) and the same limit function as in the last example; the
associated field is then locally asymptotically self-similar of orderm when the set{h = m}
has non zero measure. No asymptotic self-similarity is observed at infinity.

Example 3. In the caseH1 < H2, the spectral densityf is asymptotically homogeneous
of degree−2(H2 + 1), with limit function f∞(ξ) = |ξ2|−2(H2+1). This function is not
integrable at∞ and hence is not a standard spectral density. Actually the spectral density
f does not fulfill the assumptionD(H2), but onlyD(H1). On the other hand, it is easy to
see thatXf is not asymptotically self-similar.

This computation proves that the assumptionD(m), with the rightm, cannot be
omitted in Proposition 2.

The first two examples lead to the less restrictive notion oflass critical index, which
we define now.

Definition 3. The lass critical index of the fieldX = {X(t); t ∈ R
d} is the upper bound

of the set of positive numbersα such thatλ−2αvX(λt) tends to 0 for a.e. value oft whenλ
tends to 0.

In the first two examples, the lass critical index is equal tom, without any additional
assumption. More generally, we have the following proposition.
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Proposition 3.
Letm ∈ (0,1) and letf be a standard spectral density. Assume that
(i) f satisfiesD(α) for all α < m;
(ii) for all α > m, there exists a constantA > 0 and a setE ⊂ Sd−1 of positive

measure such that for almost allξ in R
d ,

|ξ | > A and
ξ

|ξ | ∈ E ⇒ f (ξ) > |ξ |−(2α+d) ;

thenXf hasm as lass critical index.

The proof is analogous to the previous ones, and we shall see a generalization later.
One can prove with a direct proof that the Example 3 has also a lass critical index, equal to
H1 + H2−H1

2(H2+1) . It is not a consequence of the previous proposition, which is adapted to the
Examples 1 and 2.

3. Hölder Regularity

The present section is dedicated to the smoothness of sample paths, which can also be
deduced from the variogram. From now on, we have the directional properties of a Gaussian
fieldX with stationary increments in mind. We will consider the Hölder regularity of the
sample paths of each Gaussian process obtained by restriction,{X(t) ; t ∈ 1}, where1 is
a straight line inRd . We will see that it does not depend, in general, on the direction of1.
Let us first describe how to measure the regularity of one-parameter Gaussian processes.

3.1 Hölder Critical Exponent for Gaussian Processes

Let X = {X(t); t ∈ R} be a Gaussian process with stationary increments. A well-
known result relates the Hölder regularity of the sample paths with the behavior of the
variogram function at the origin (see [4, 1, 8] or [2]). We first introduce the required
assumption on the variogram.

Definition 4. Let β = n+ s with n ∈ N, s ∈ (0,1]. The variogram functionv satisfies
the conditionH(β) if v is 2n-continuously differentiable, and

s = sup
{
α > 0;

∣∣∣v(2n)(t)− v(2n)(0)
∣∣∣ = ◦

(
|t |2α

)
, t → 0

}
= inf

{
α > 0; |t |2α = ◦

(∣∣∣v(2n)(t)− v(2n)(0)
∣∣∣) , t → 0

}
.

Remark that ifv satisfiesH(β) with β ∈ (0,1], then any Gaussian processX with
variogramv admits a continuous modification (see Lemma 2). Note also that in this case,
β is the lass critical index ofX (see Section 2). Such processes are calledindex-β Gaussian
fieldsin the terminology of [1].

We now give the definition of the Hölder critical exponent of a random process.

Definition 5. Let β ∈ (0,1). A processX = {X(t) ; t ∈ R} is said to have Hölder
critical exponentβ whenever it satisfies the two following properties
- for anyα ∈ (0, β), the sample paths ofX satisfy a.s. a uniform Hölder condition of order
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α on any compact set, i. e., for any compact setK of R, there exists a positive random
variableA such thata.s.

|X(t)−X(s)| ≤ A|s − t |α , ∀s, t ∈ K ;

- for anyα ∈ (β,1), a.s. the sample paths ofX fail to satisfy any uniform Hölder condition
of orderα.

Let us now write how these two notions are related. The next proposition comes
precisely from [1] Theorem 8.3.2 and Theorem 2.2.2.

Proposition 4.
Let X = {X(t); t ∈ R} be a Gaussian process with mean zero, and stationary

increments and assume that its variogramv satisfies the conditionH(β) for some positive
non-integerβ.

(i) If β ∈ (0,1), then any continuous version ofX has Hölder critical exponentβ;
(ii) If β ∈ (n, n + 1) with n ∈ N

∗ thenX is n-times mean-square differentiable.
Moreover, then-th mean-square derivativeX(n) ofX is a Gaussian process with stationary
increments and variogram functiont 7→ (−1)n(v(2n)(t) − v(2n)(0)) and any continuous
version ofX(n) has Hölder critical exponentβ − n.

Remark that the last proposition does not allow to get fine estimates such as iterated
logarithmic laws for the modulus of continuity of the sample paths as in [18] or [3]. We
are only interested in critical Hölder exponents, and do not describe the behavior for the
critical value. The proposition does not say anything about integer values ofβ, and is in
fact less precise whenβ ≥ 1.

3.2 Directional Regularity

We are now interested in the Hölder regularity in each direction of ad-parameter
Gaussian field with stationary incrementsX = {X(t); t ∈ R

d}. More precisely, we consider
its restriction along a straight line, that is to say the process{X(t0+tu); t ∈ R} for u ∈ Sd−1

andt0 ∈ R
d .

Definition 6. LetX be ad-parameter random field with stationary increments and letu

be any direction inSd−1. If the process{X(tu); t ∈ R} has Hölder critical exponentβ(u),
we say thatX admitsβ(u) as directional regularity in directionu.

The stationarity of the increments ofX implies thatβ(u) is also the Hölder critical
exponent of all processes obtained by restrictingX to any straight line of directionu.

In [5] the directional regularity of any 2-parameter stationary random field is proved
to be constant except in at most one direction where it can be larger (see also [19] for
more general results). We prove hereafter, in our context of Gaussian fields with stationary
increments, a similar result based on the “directional variogram.”

Proposition 5.
LetX be ad-parameter Gaussian field with mean zero, stationary increments and

variogramv. Suppose that for allu in Sd−1, the map:t 7→ v(tu) satisfies the assumption
H(β(u)) for someβ(u) in (0,1). Then the mapβ : u 7→ β(u) takes at mostd different
values. Moreover, it is constant except, perhaps, on the intersection of the sphere with a
subspace of dimension at mostd − 1 where it may take larger values.
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Proof. We denote also byβ its extension as a homogeneous function of degree 0 on
R
d \ {0}.

We chooseu1, . . . , uk in R
d \ {0} andu in the vector space generated byu1, . . . , uk.

Thenu = ∑k
j=1 ajuj with somea1, . . . , ak in R and

X(tu)−X(0) =
k∑
j=1


X


 j∑
i=1

taiui


 −X


j−1∑
i=1

taiui





 .

By stationarity of the increments,

v(tu) = E
(
(X(tu)−X(0))2

)
≤ C

k∑
j=1

v(tajuj ) .

Then, for allα < min(β(u1), . . . , β(uk)), the quantity|t |−2αv(tu) tends to 0 witht . Hence
the mapβ is such thatβ(u) ≥ min(β(u1), . . . , β(uk)) for all u in the vector space generated
by u1, . . . , uk.

Let us suppose now the existence ofd + 1 vectors withd + 1 different values of
β. Then one of them—sayu—must be in the vector space generated by thed others—
sayu1, . . . , ud -, and thenβ(u) > min(β(u1), . . . , β(uk)). One can always assume that
β(u1) < . . . < β(ud). If β(u) > β(u1) thenu must belong to the vector space generated
byu2, . . . , ud , because, otherwise, exchangingu andu1 givesβ(u1) ≥ β(u). Thenβ(u) >
min(β(u2), . . . , β(ud)). Iterating the procedure yields a contradiction. This proves the first
conclusion of the proposition.

Moreover, let us denote byβ0 the smallest value ofβ onR
d \ {0}, realized atu0. The

set of valuesu for whichβ(u) > β0 clearly generates a proper subspace ofR
d .

Example. An example of a 2-parameter Gaussian field with stationary increments and
non-constant directional regularity is given by Example 3 of Section 1.3 via the spectral
density:

ξ ∈ R
2 7→

(
|ξ1|H1+1 + |ξ2|H2+1

)−2
,

for any 0< H1 < H2 < 1. Using Proposition 4, the directional regularity is proved to be
equal toH1+H2+2H1H2

2(H2+1) in all directions except in the direction of the vector(0,1), where it

is equal toH1+H2+2H1H2
2(H1+1) .

This example can be easily adapted to any dimension, to find examples where the
functionβ takes any number of values between 1 andd.

Actually, among all the examples presented in Section 1.3, the above example is the
only one with non-constant directional Hölder exponent. A general result is established in
the next subsection.

3.3 Anisotropic Gaussian Fields with Constant Directional Regularity

We prove now that, whenever the spectral density is bounded at∞ by C|ξ |−(2β+d)
and equivalent to it inside some cone, then the directional regularity of the associatedd-
parameter Gaussian field is constant and equal toβ.
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Proposition 6.
Letf be a standard spectral density andvf its associated variogram defined by(1.2).

We assume thatβ is a positive number such that
(i) f satisfiesD(α) for all α < β;
(ii) for all α > β, there exists a constantA > 0 and a setE ⊂ Sd−1 of positive

measure such that for almost allξ in R
d ,

|ξ | > A and
ξ

|ξ | ∈ E ⇒ f (ξ) > |ξ |−(2α+d) ;

then for allu ∈ Sd−1, the map:t ∈ R 7→ vf (tu) satisfies conditionH(β).

Remark. With Proposition 4, assumptions (i) and (ii) for a non-integer value ofβ imply
thatXf admitsβ as directional regularity in any direction. Furthermore, whenβ is less
than one, Proposition 3 states thatβ is also the lass critical index ofXf .

Examples. Examples 1 and 2 of Section 1.3 satisfy the required assumption withβ =
essinf(h), so does Example 4 withβ = m.

Proof. Sincevf ◦R = vf ◦R for any rotationR in R
d such thatR(0) = 0 and since the

assumptions are also satisfied byf ◦ R, we only prove that

v : t ∈ R 7→ v(t) = vf (t1)

satisfies conditionH(β) with 1 = (0, . . . ,0,1) ∈ Sd−1. For all t ∈ R,

v(t) =
∫

Rd

ft (ξ) dξ ,

with ft (ξ) = sin2(tξd/2)f (ξ) = 1
2(1− cos(tξd))f (ξ) andξd the last coordinate ofξ . Let

us denote byn the integer such thatβ lies in (n, n+ 1].
First step: v is (2n)-differentiable. Indeed, from the identity

2
∂2n

∂t2n

(
sin2(tx/2)

)
= (−1)nx2n cos(tx) ,

we get the inequality ∣∣∣∣ ∂2n

∂t2n
ft (ξ)

∣∣∣∣ ≤ 1

2
|ξd |2nf (ξ) .

The right hand side is integrable by the assumption (i). Sov is 2n-differentiable, and

(−1)n
(
v(2n)(t)− v(2n)(0)

)
=

∫
Rd

|ξd |2n sin2(tξd/2)f (ξ) dξ .

Second step: for allα ∈ (n, β), the quantity (−1)n|t |2(n−α)(v(2n)(t) − v(2n) (0))
tends to0 when t tends to0. Clearly, we might as well show that, for all suchα, the
same quantity is uniformly bounded for 0< t < 1. We write

|t |2(n−α)
∫

Rd

|ξd |2n sin2(tξd/2)f (ξ) dξ = I1 + I2
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with I1, I2 the integrals on the sets{|ξ | < A} and{|ξ | > A}, respectively. In the first one,
|ξd |2n sin2(tξd/2) can be bounded byt2|ξ |2n+2. The fact thatI1 is bounded follows at once
from the fact thatf is in L1(Rd,dµ; R). In the second one, we change variables and use
the conditionD(α) (assumption (i)) to obtain the bound

I2 ≤ C

∫
|ξ |>A|t |

sin2(ξd/2)|ξ |2n−d−2α dξ ,

which is clearly finite.

Third step: for all α > β, the quantity (−1)n|t |2(n−α)(v(2n)(t)− v(2n)(0)) tends to
∞ when t tends to0. Clearly, as before, we might as well show that, for all suchα, the
same quantity is uniformly bounded below for|t | small enough. By assumption (ii), take
A > 0 andE ⊂ Sd−1 of positive measure such that

|ξ | > A and
ξ

|ξ | ∈ E ⇒ f (ξ) > |ξ |−(2α+d) ,

and take|t | < A−1. Then

∫
|ξ |>A

|ξd |2n sin2(tξd/2)f (ξ) dξ ≥
∫

|ξ |>A ; ξ
|ξ | ∈E

|ξd |2n sin2(tξd/2)

|ξ |2α+d dξ

≥ |t |2(α−n)
∫

|ξ |>1; ξ|ξ | ∈E
|ξd |2n sin2(ξd/2)

|ξ |2α+d dξ ,

which allows to conclude.

It is interesting to note that, although the Hölder critical exponent is the same in
all directions, the Lipschitz constant can strongly depend on the direction. For instance in
Example 1, if the set{h = m} has positive measure, then, for each directionu, the variogram
function deduced from (1.3) will be

v(tu) =
(
C(m)

∫
h−1({m})

|u.α|2m dα
)

|t |2m + o
(
|t |2m

)
,

and the constant before|t |2m clearly depends onu. The same phenomenon can be observed
in Example 4. This type of analysis of anisotropy is studied in [5] where the directional
Lipschitz constant is called “the topothesy function.”

4. Projections and Averages

4.1 Projection of a Gaussian Field with Spectral Density

We investigate here the effect of a weighted projection on the Gaussian fields with
stationary increments under consideration.

Let X be ad-parameter random field with continuous covariance, withd ≥ 2. Let
k be an integer between 1 andd − 1. Let us choose a functionϕ (the weight function) in
the setWd−k of continuous maps fromRd−k to R with compact support and integral equal
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to 1. WhenX is continuous, we want to definethe projection ofX with weightϕ as the
average, with weightϕ, in the firstd − k coordinates,

p(X, ϕ)(t) =
∫

Rd−k
X(s, t)ϕ(s) ds , ∀t ∈ R

k .

We will see that the choice of the weight functionϕ does not play any role in the results, as
soon as it is sufficiently smooth. Fork = d−1,p(X, ϕ) is thed−1-parameter random field
obtained by projection ofX onto an hyperplane. Whend = 3,p(X, ϕ) can be interpreted
as the X-ray picture of a piece (determined by the windowϕ) of a material modeled by
a 3D random fieldX. In all cases, we recognize a weighted Radon transform or X-ray
transform. One may consult [13] for more general models which arise in tomography. For
d = 2, the random fieldX can model the grey-level of an X-ray picture, andp(X, ϕ) can
be interpreted as the average, with weightϕ, ofX over all “horizontal” straight lines.

The definition of the projection as an integral is not convenient in our context and asks
for strong assumptions, while we are mainly interested in second order statistics. Moreover,
we keep in mind that integrals will be replaced by finite sums in order to be able to compute
them on real data. This leads us to define the weighted projection ofX by the following
formula, which is inspired by [22] Chapter 1.4, and which coincides with the previous one
on continuous trajectories,

p(X, ϕ)(t) = lim
n→∞ 2−n(d−k) ∑

j∈Zd−k
ϕ

(
2−nj

)
X

(
2−nj, t

)
, ∀t ∈ R

k . (4.1)

The existence of the limit, and the fact that it defines a random field of the same class, is
given in the following proposition.

Proposition 7.
Letϕ ∈ Wd−k andX be ad-parameter Gaussian field which vanishes at0, has mean

zero, stationary increments, with continuous variogramvX. For n ∈ N, let

Yn(t) = 2−n(d−k) ∑
γ∈2−nZd−k

ϕ(γ )X(γ, t) , ∀t ∈ R
k .

(i) Then, for allt1, t2, . . . , tl , the sequence(Yn(t1), Yn(t2), . . . , Yn(tl))has a limit inL2(�,Rl ).
Moreover, the limit defines a Gaussian fieldY = p(X, ϕ) which has mean zero and sta-
tionary increments.
(ii) If X is a Gaussian field with spectral densityf , thenp(X, ϕ) is a Gaussian field with
spectral densityT (f ) given by

T (f ) : ξ ∈ R
k 7→

∫
Rd−k

∣∣ϕ̂(x)∣∣2 f (x, ξ) dx . (4.2)

Moreover, iff satisfies the assumptionD(m) for somem in (0,1), thenT (f ) does also
(with the samem).

Recall that conditionD(m) is sufficient to ensure the existence of a continuous mod-
ification (see Proposition 1).

Note that the second point proves that the class of Gaussian fields with spectral density
is stable under projections. Therefore, when a material is modeled by a (3-parameter)
Gaussian field with spectral density, then X-ray pictures of this material can be modeled in
the same way.
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Proof. The proof of the convergence is elementary but tedious. We will sketch it when
l = 1. Its generalization does not present any difficulty. To prove that the sequenceYn(t) is a
Cauchy sequence inL2(�), it is sufficient to prove that the covariance Cov(Ym(t), Yn(t))has
a limit whenm andn tend to∞. Using the variogram ofX, we can write Cov(Ym(t), Yn(t))
as

2−(m+n)(d−k) ∑
γ∈2−mZd−k

∑
γ ′∈2−nZd−k

ϕ(γ )ϕ
(
γ ′) Cov(X(γ, t), X

(
γ ′, t

)
.

This last covariance may be written using the variogram,

Cov
(
X(γ, t), X

(
γ ′, t

)) = 2 (vX(γ, t) + vX
(
γ ′, t

) − vX
(
γ − γ ′,0

)
.

We recognize Riemann sums of the integral of a continuous function, which converge to
the corresponding integral.

Once we have proved the convergence inL2(�), it follows immediately that the limit
Y is also Gaussian with mean zero. Let us prove that it has stationary increments, and
compute its variogram. As before, for allt andt ′ in R

k, E(|Y (t)− Y (t ′)|2)may be written
as

lim
n→∞ 2−2n(d−k)E




∣∣∣∣∣∣
∑

j∈Zd−k

(
X

(
2−nj, t

) −X
(
2−nj, t ′

))
ϕ

(
2−nj

)∣∣∣∣∣∣
2

 .

SincevX is continuous andϕ is continuous, the limit is again an integral:

2
∫

R2(d−k)

(
vX

(
s − s′, t ′ − t

) + vX
(
s − s′, t − t ′

) − 2vX
(
s − s′,0

))
ϕ(s)ϕ

(
s′

)
ds ds′.

This shows thatE((Y (t)−Y (t ′))2)depends only ont−t ′ , which proves thatY has stationary
increments, and gives an explicit formula for the variogramvY .

(ii) Suppose now thatX has a spectral densityf . The previous computation of the
variance of the increments ofY gives, for allt in R

k,

vY (t) = 1

2

∫
R2(d−k)

(
vX

(
s − s′,−t) + vX

(
s − s′, t

) − 2vX
(
s − s′,0

))
ϕ(s)ϕ

(
s′

)
ds ds′.

Let us use Fubini’s theorem and denote byϕ̌ : s 7→ ϕ(−s) to get

vY (t) = 1

2

∫
Rd−k

(v(s, t)+ v(s,−t)− 2v(s,0)) ϕ ∗ ϕ̌(s) ds

= 1

2

∫
(ξ1,ξ2)∈Rd−k×Rk

(1 − cos(t.ξ2))f (ξ1, ξ2)

×
(∫

Rd−k
cos(s.ξ1) ϕ ∗ ϕ̌(s) ds

)
dξ1 dξ2

= 1

2

∫
(ξ1,ξ2)∈Rd−k×Rk

(1 − cos(t.ξ2))f (ξ1, ξ2)
∣∣ϕ̂(ξ1)∣∣2 dξ1 dξ2

=
∫

Rk

sin2(t.ξ2/2)T (f )(ξ2) dξ2 .

ThenT (f ), given by (4.2), is the required spectral density forY .
In order to prove thatT (f ) inherits fromf the assumptionD(m), just note that, for

almost allξ ∈ R
k such that|ξ | > A, we have

T (f )(ξ) ≤
(

||ϕ||2∞
∫

Rd−k

(
1 + |y|2

)− 1
2 (2m+d)

dy

)
× |ξ |−(2m+k) .
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4.2 Regularity of the Averages

We have in mind possible applications to the analysis of some material (or X-ray
pictures) through the analysis of one-parameter processes. So, from now on, we will only
deal with averages over hyperplanes ofd-parameter Gaussian fields, that is to say with
projections where the weight functionϕ belongs toWd−1 (with the notations of previous
subsection). One moment of reflection allows to see the possibility of generalizations to
other situations.

We prove now that if the spectral densityf of X behaves likeξ 7→ |ξ |−(2β+d)
asymptotically in the “vertical” direction1 = (0, . . . ,0,1), then the process of “horizontal”
averagesp(X, ϕ) has Hölder critical exponentβ+ 1

2(d−1). Using Proposition 4, this will
be the case if the variogram ofp(X, ϕ) satisfiesH(β + 1

2(d − 1)).

Proposition 8.
Let f be a standard spectral density and assume the existence of positive constants

m andβ such that
(i) f satisfiesD(m);
(ii) for all α < β, there exists a constantA > 0 and a neighborhoodE ⊂ Sd−1 of
(0, . . . ,0,1) such that for almost allξ in R

d ,

|ξ | > A and
ξ

|ξ | ∈ E ⇒ f (ξ) ≤ |ξ |−(2α+d) .

(iii) for all α > β, there exists a constantA > 0 and a neighborhoodE ⊂ Sd−1 of
(0, . . . ,0,1) such that for almost allξ in R

d ,

|ξ | > A and
ξ

|ξ | ∈ E ⇒ f (ξ) > |ξ |−(2α+d) .

Letϕ belongs toWd−1 such that|ϕ̂|2 satisfiesD(β), then, the variogram of the projection
p(X, ϕ) satisfies conditionH(β + 1

2(d − 1)).

Proof. Recall that the projectionp(X, ϕ) is defined by (4.1) withk = 1 and has a
spectral densityT (f ) given by (4.2). Using Proposition 6 in one dimension, it is sufficient
to prove the next lemma.

Lemma 4.
Under the assumptions of Proposition 8, the spectral densityT (f ) is such that

• for all α < β + 1
2(d − 1), T (f ) satisfiesD(α);

• for all α > β + 1
2(d − 1), there exists a constantA > 0 such that

|ξ | > A ⇒ T (f )(ξ) > |ξ |−(2α+1) .

Proof of the lemma. Let α < β + 1
2(d − 1). By assumptions (i) and (ii) there exists a

constantA > 0 and a neighborhoodE ⊂ Sd−1 of (0, . . . ,0,1) such that for almost allξ
in R

d ,

|ξ | > A ⇒ f (ξ) ≤ |ξ |−(2m+d) ,

|ξ | > A and
ξ

|ξ | ∈ E ⇒ f (ξ) ≤ |ξ |−[2(α− 1
2 (d−1))+d] = |ξ |−(2α+1) .
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We can assume thatE is of the form{(x, ξ) ∈ R
d−1 × R ; |x| < η|ξ |} for some positive

constantη. Forξ in R such that|ξ | > A, we writeT (f )(ξ) = T1(f )(ξ)+T2(f )(ξ), where

T1(f )(ξ) =
∫
x∈Rd−1; (x,ξ)/|(x,ξ)|∈E

∣∣ϕ̂(x)∣∣2 f (x, ξ) dx
≤ |ξ |−(2α+1) ×

∫
Rd−1

∣∣ϕ̂(x)∣∣2 dx = C|ξ |−(2α+1) ,

and

T2(f )(ξ) =
∫
x∈Rd−1; (x,ξ)/|(x,ξ)|/∈E

∣∣ϕ̂(x)∣∣2 f (x, ξ) dx
≤ C

∫
x∈Rd−1;|x|≥η|ξ |

|x|−(2β+d−1) |x|−(2m+d) dx

≤ C|ξ |−(2β+2m+2d−2) ≤ C|ξ |−(2α+1) .

The constantC may change from one line to another. The assumption onϕ has been used
for the second inequality. Both inequalities forT1(f ) andT2(f ) prove the first part of the
lemma.

Forα > β + 1
2(d − 1), by assumption (iii),

|ξ | > A and
ξ

|ξ | ∈ E ⇒ f (ξ) > |ξ |−(2α+1) .

As before, we may assume thatE = {(x, ξ) ∈ R
d−1 × R ; |x| < η|ξ |} for some positive

constantη. Then, forξ in R such that|ξ | > A,

T (f )(ξ) ≥
∫
x∈Rd−1; |x|<η|ξ |

∣∣ϕ̂(x)∣∣2 f (x, ξ) dx
≥

(∫
|x|<ηA

∣∣ϕ̂(x)∣∣2 dx) |ξ |−(2α+1) .

This finishes the proof of the lemma, as well as the proof of the proposition.

Remark that we can similarly describe the asymptotic self-similarity for the average-
processp(X, ϕ). Sufficient conditions to get a lass critical index (see Proposition 3) are
provided by Lemma 4, at least whenβ+ 1

2(d−1)belongs to(0,1). In the caseβ+ 1
2(d−1) >

1, a lass property could certainly be observed, not for the processp(X, ϕ) itself, but for the
process ofnth-order increments (see [20]) withn the integer part ofβ + 1

2(d − 1).

4.3 The Directional Average Method

We now describe thedirectional average method, which allows to recover the asymp-
totic properties of the functionf in each direction.

Let f be a standard spectral density andXf be d-parameter Gaussian field with
spectral densityf . For any directionu in Sd−1, we average the fieldXf over all the
hyperplanes orthogonal tou.

More precisely, we first choose a weight function in the setWd−1. For any direction
u in Sd−1, we obtain theaverage-process in the directionu by the following prescription:
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- first composeXf with a rotationRu of center 0 which maps the direction1 = (0, . . . ,0,1)
ontou,
- then compute the projection with weightϕ, that is, consider

Yf,ϕ,u(t) = p(X ◦ Ru, ϕ)(t) , (4.3)

which is defined a.s. for allt in R.
We state now our main theorem.

Theorem 1.
Let f be a standard spectral density and assume the existence of positive constants

m andM such that
(i) f satisfiesD(m);
(ii) for all u in Sd−1, there existsβ(u) ∈ (0,M] such that

• for all α < β(u), there exists a constantA > 0 and a neighborhoodE ⊂ Sd−1 of
u such that for almost allξ in R

d ,

|ξ | > A and
ξ

|ξ | ∈ E ⇒ f (ξ) ≤ |ξ |−(2α+d) .

• for all α > β(u), there exists a constantA > 0 and a neighborhoodE ⊂ Sd−1 of
u such that for almost allξ in R

d ,

|ξ | > A and
ξ

|ξ | ∈ E ⇒ f (ξ) > |ξ |−(2α+d) .

Let ϕ ∈ Wd−1 be such that|ϕ̂|2 satisfiesD(M). Then, for allu in Sd−1, the variogram
of the average-process in the directionu, Yf,ϕ,u defined by(4.3), satisfies the assumption
H(β(u)+ 1

2(d − 1)).

Proof. Since all the conditions are invariant by rotations of center 0, it is sufficient to
prove that the variogram ofYf,ϕ,1 satisfies the assumptionH(β+ 1

2(d−1)) with β = β(1)
and1 = (0, . . . ,0,1).

But this is claimed in Proposition 8. Just note that if|ϕ̂|2 satisfies the assumption
D(M) with β ≤ M then it also satisfiesD(β).

Let us come back to the examples of the Section 1.3 and see how the previous theorem
does apply to obtain non trivial results.

Examples 1 and 2.If h is an even continuous map fromSd−1 into [m,M] ⊂ (0,1), the
spectral density

ξ ∈ R
d 7→ f (ξ) = 1

|ξ |2h(ξ)+d


 or

1(
1 + |ξ |2) 1

2 (2h(ξ)+d)




satisfies the assumption (ii) of the theorem withβ(u) = h(u) for all u ∈ Sd−1. Then

any weightϕ in Wd−1 such that|ϕ̂(ξ)| = O(|ξ |− 1
2 (1+d)) at infinity, provides directional

averages which have Hölder critical exponenth(u)+ 1
2(d − 1) for all directionsu.

With a slight refinement, one can prove that the result continues to hold whenh

has only right and left limits at each point; in this case the Hölder exponent is given by
β(u) = min(h(u+), h(u−)).



Anisotropic Analysis of Some Gaussian Models 235

In the Example 2, there is no reason to limit ourselves to values ofM below 1.

Example 3. In the caseH1 < H2, assumptions (i) and (ii) are satisfied withm = H1,
M = H2 and

β(θ) = H1 if θ 6= π

2
; β

(π
2

)
= H2 .

So, again, we get a directional analysis which is constant except for one value.

Example 4.Just takem = M = β(u) for all u ∈ Sd−1 and the theorem applies, but gives
again apparent isotropy.

Conclusion

Our starting point was the fact that, basically, there does not exist a stationary random
field which presents different directional Hölder critical exponents in different directions.
So, if we are dealing with a material or with an image which presents anisotropy, then one
has to choose a model which has the same property, and the measurement of anisotropy has
to be done with other tools. The present work provides an analysis method for anisotropic
2D- or 3D-data which is based on Hölder critical exponents of directional averages. We
have proved that there does exist random fields for which this analysis allows to recover the
information on the anisotropy of the model. Clearly Examples 1 and 2 are good candidates
for Gaussian fields with anisotropic regularity.

It remains to see whether they are good candidates for real data. To test different
tools, classical methods for fractional Brownian motion simulations may be adapted to pro-
duce simulations. Estimation of the directional regularity, using by now standard methods
(see [8]), will require to replace the integral averages by discrete ones, which has to be done
carefully if one does not want to loose the smoothing effect that we have exploited here.
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