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a b s t r a c t

The problem of filtering low-frequency trend from a given time series is considered.
In order to solve this problem, a nonparametric technique called empirical mode
decomposition trend filtering is developed. A key assumption is that the trend is
representable as the sum of intrinsic mode functions produced by the empirical mode
decomposition (EMD) of the time series. Based on an empirical analysis of the EMD, an
automatic procedure for selecting the requisite intrinsic mode functions is proposed. To
illustrate the effectiveness of the technique, it is applied to simulated time series containing
different types of trend, as well as real-world data collected from an environmental study
(atmospheric carbon dioxide levels at Mauna Loa Observatory) and from a bicycle rental
service (rental numbers of Grand Lyon Vélo’v).

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Many real-world time series exhibit a ‘‘composite’’ behavior, in the sense that such a time series can be decomposed
into a superposition of two ‘‘components’’. Typically one of these components can be classified as ‘‘trend’’, while the other
component is classified as ‘‘fluctuation’’. (The term ‘‘residual’’ is sometimes used instead of ‘‘fluctuation’’. In this paper,
however, the term residual has a precise meaning in the context of the empirical mode decomposition; see Section 2.)
The problem of effecting such a decomposition, and classifying the resulting components as trend or fluctuation, is called
the trend filtering problem (or trend estimation problem). Solving this problem is desirable, since an analysis of the trend
component of a time series can often yield valuable information which can be used, e.g., for prediction. An obvious initial
barrier to solving the trend filtering problem is that the term ‘‘trend’’ is highly context-dependent. In general, one must
adopt an ad hoc definition of trend.

A common ad hoc definition of trend is that of a ‘‘long-term change in the mean’’ (Chatfield, 1996; Alexandrov et al.,
2008). This leads to regression-based techniques, where the trend component is described, for example, by a low-degree
polynomial. Other techniques do not impose such a strict definition. Nonparametric trend filtering assumes that the
fluctuation possesses generic stationarity properties, and that the trend can be found by an ad hoc smoothing operation,
e.g., using the Henderson filter (Henderson, 1916) or Hodrick–Prescott filter (Hodrick and Prescott, 1997; Maravall and del
Río, 2007). One can also interpret the trend filtering problem in the frequency-domain sense—that is, one can assume the
trend is represented by a particular set of low-frequency oscillations. This turns the trend filtering problem into a bona
fide filtering problem. Viewed in this way, it may be profitable to use Wiener–Kolmogorov filtering (Pollock, 2006) to solve
the trend filtering problem. Yet more parametric and semiparametric approaches have been proposed for modeling trend
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(Beran and Feng, 2002). Finally, it is worthwhile to mention that generalized ‘‘trend cycles’’, defined as ‘‘short-term trend
[that] generally includes cyclical fluctuations’’, have also been studied (Alexandrov et al., 2008). Deciding if trend cycles
should be considered as trend depends on the application and, of course, the observation scale.

In this paper, we introduce a novel approach to solving the trend filtering problem. This approach, whichwe call empirical
mode decomposition trend filtering, is based on the following definition: The trend component of a time series is ‘‘slowly
varying’’ in the sense that it is represented by the ‘‘slowest’’ intrinsic mode functions produced by the empirical mode
decomposition (EMD) (Huang et al., 1998). By examining certain properties of the intrinsic mode functions’ energies and
zero crossing numbers, we will attempt to answer the question ‘‘Which of the intrinsic mode functions should be deemed
the slowest?’’ In particular,wewill provide evidence that certain changes in these properties characterize the ‘‘tipping point’’
between trend and fluctuation.

It must be mentioned that the use of the EMD to solve the trend filtering problem has already been proposed in the
literature. However, such work has either relied on an a priori model for the fluctuation (Flandrin et al., 2004a), or has
considered the trend as being the final residual time series produced by the EMD (Wu et al., 2007). In a sense, using the
EMD to solve the trend filtering problem shares common features with singular-spectrum analysis applied to the same
problem (Vautard and Ghil, 1989; Ghil and Vautard, 1992; Vautard et al., 1991). This is because the SSA also effects a
decomposition into oscillatory components. Like the EMD-based method proposed byWu et al. (2007), a possible approach
to solving the trend filtering problem using SSA is to identify the trend as the lowest frequency oscillatory component. Other
possibilities are to look for oscillatory components with prescribed smoothness or monotonicity properties; see Alexandrov
et al. (2008).

The rest of the paper is organized as follows. In Section 2, we briefly review some background material concerning the
EMD. In Section 3, we state what trend means in the context of this paper. In Section 4, we describe the details of EMD
trend filtering. The performance of EMD trend filtering is demonstrated in Sections 5–7 through analyses of simulated and
real-world time series. Finally, we make concluding remarks in Section 8.

Although this paper is intended to be self-contained, due to limited space, we have not included all the simulations
supporting the proposed trend filtering method. See Moghtaderi et al. (2011) for additional material.

2. The empirical mode decomposition

The empirical mode decomposition (EMD) is an algorithm which decomposes a time series into a finite additive
superposition of oscillatory components, each of which is called an intrinsic mode function (IMF); see Huang et al. (1998).
The EMD does not rely on any technical assumptions concerning the nature of the time series—this includes modeling
assumptions. The basic idea is that the IMFs are computed subject to two requirements: First, the number of local extrema
and number of zero crossings of each IMF vary by at most one. Second, the mean of the upper and lower envelopes of each
IMF should be identically equal to zero, the envelopes being computed by means of a fixed interpolation scheme. (In the
numerical results presented in this paper, we have confined ourselves to the use of cubic spline interpolation.) The IMFs are
computed by means of an iterative scheme. This scheme, however, depends on a stopping criterion which guarantees that
(i) the requirements above are satisfied within a given tolerance and (ii) that each IMF is meaningful in both its amplitude
and frequency modulations. We again refer to Huang et al. (1998) for details.

To make this description more precise, let X = {Xt}t≥0 be a (real, discrete-time, stochastic) process, and let X =
(X0, X1, . . . , XN−1) be a realization of X . (These assumptions illustrate a notational convention that is in force throughout
the rest of the paper, namely that time series of length N are written in bold typeface and are regarded as elements of the
Euclidean space RN .) As an initialization step, set i = 1 and ρ0 = X . The EMD computes the IMFs of X using the following
algorithm.

(1) Identify the local maxima and local minima of ρi−1.
(2) Together with the chosen interpolation scheme, use the maxima and minima from step (1) to compute the upper and

lower envelopes of ρi−1.
(3) Determine the local trend, denoted Q i, as the mean of the upper and lower envelopes from step (2).
(4) Compute the local fluctuation, denoted h = X − Q i.
(5) If h is not an IMF, in the sense that it does not satisfy the two requirements described in the beginning of this section,

then go to step (1) with ρi−1 = h. (Huang et al. (1998) call this the sifting process; it is this process which depends on
the stopping criterion.)

(6) If h is an IMF, in the sense that it satisfies the two requirements described at the beginning of this section, then the ith
intrinsic mode function of X is Mi = h, and the ith residual is ρi = X − Mi. Increment i, and then go to step (1).

The algorithm halts when the ith residual has no further oscillations, in the sense that it has no local maxima or local
minima. We denote by I the largest index for which Mi is defined. Then

X =
I∑

i=1

Mi + ρI. (1)
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In this decomposition, M1 through MI can be thought of as containing a ‘‘spectrum’’ of local oscillations in X , with the
shortest-period (highest frequency) oscillations represented in M1 and the longest-period (lowest frequency) oscillations
represented in MI. The computational complexity of the algorithm depends on X , the chosen interpolation scheme, and
the stopping criterion. However, the algorithm usually halts in a reasonably small number of steps. For example, it is
known (Flandrin et al., 2004a) that if X is a broadband process (i.e., if it includes a relatively wide range (or band) of
frequencies, with no dominant peaks), then the decomposition produced by the EMD has an almost dyadic filter-bank
structure, typicallywithI ≈ log2 N . Moreover, it is known that the sifting process typically halts after some tens of iterations
(Huang et al., 1998).

3. Trend in EMD

As discussed in Section 1, the term ‘‘trend’’ is context-dependent. In this section we state what we mean by trend in this
paper and in the context of EMD trend filtering. To begin with, let us introduce some notation. Let Y = (Y0, Y1, . . . , YN−1)
be a realization of a process Y = {Yt}t≥0, and let C = (C0, C1, . . . , CN−1) ∈ Rn be a trend component. Assume also that Y is
a broadband process with a continuous spectrum.

From Y and C we may form two new time series: The first is Y + C, the additive mix of Y and C; the second is CY, the
multiplicative mix of Y and C. (Here the multiplication is being performed componentwise.) In either case, we say that Y
is fluctuation of the mix. Now let X be the additive or multiplicative mix of Y and C. The question we wish to answer is:
‘‘Solely given X as data, under what conditions should it be possible to accurately estimate C from X ’’? To do so, we must
constrain the trend and fluctuation of the mix in some fashion. We take the following pragmatic approach that is based on
properties of EMD.

Recall that in EMD, the successive IMFs are oscillations going fromhigh frequency to low frequency, and that this property
is valid locally in time (there is not necessarily a global separation of spectrum of successive IMFs) (Huang et al., 1998). A
loose ‘‘definition’’ of an extractable trend in this paper is thatC is locally slowly varying as compared toY. Hence, a pragmatic
way of satisfying this is that the trend should be obtained as the sum of the last few IMFs and the residual extracted fromX .

Let us now turn the attention to some properties of fluctuation of the mix which can also define (in contrast) the
extractable trend. First, and in agreement with Flandrin et al. (2004b) and Wu and Huang (2004), the mean frequency of
the successive IMFs of broadband processes decrease, similarly to constant-Q filter-banks, with a factor near 2. This will be
the first criterion studied in Section 4.1 by estimating themean frequency from the number of zero crossings of IMFs. Second,
the finding of Rilling et al. (2005) is that the ‘‘energy’’ of the IMFs of fractional Gaussian noise (fGn) processes decreases as the
index of the IMFs increases. In Section 4.2, we will provide evidence that this property holds for broadband processes other
than fGn. An explicit assumption in our work is that the fluctuationY contaminating the trendC has such an energy profile.
This does not exclude situations with a substantial energy increase downwards low frequencies, as is the case for fGns with
Hurst exponentH > 1/2. Indeed the decreasing energy condition does not apply directly to the broadband processes, but to
their IMFs. In practice, given the previously mentioned dyadic structure for the IMF spectra, processes Y with power spectra
diverging as f −α at the zero frequency are admissible provided that α < 1.

In the presence of a trend, the prescription used in this paper is that the IMF index which shows a rupture in the two
properties described above separates the trend from the fluctuation. It follows from this prescription that a trend in the
present work is neither restricted to bemonotonic nor to be some polynomial functions. The trend in this work can however
contain oscillations while in Wu et al. (2007) only the residual of EMD was deemed a trend, hence constraining it to have
no oscillations at all.

In the following two sections, we will describe in detail the properties discussed above and their abilities in separating
trend and fluctuation.

4. EMD trend filtering

Let X be the additive mix of Y and C, where these entities are given as in the previous section. As described there, our
goal is to accurately estimateC fromX . This section is devoted to describing EMD trend filtering which can be used to obtain
such an estimate. The following notation and terminology will be employed throughout this section. Let Mi be the IMFs of
X , where 1 ≤ i ≤ I, and let i∗ be such that

C i∗ =
I∑

i=i∗
Mi + ρI (2)

is the best approximation to C in the Euclidean metric. We call i∗ the best index and C i∗ the best approximation of C.
Estimating C is equivalent to estimating the best index. If î∗ is an estimate of i∗, then we denote by Ĉ i∗ the corresponding
estimate of C. If the mix is multiplicative and the elements of C are positive, then the situation reduces to the additive case.
Indeed, one can take logarithms to obtain log |X| = logC + log |Y|, where the logarithm and absolute value functions are
being applied elementwise.

EMD trend filtering, described over the course of the next three subsections, actually consists of three approaches to
estimating i∗. These are called, respectively, the ratio, energy, and energy-ratio approaches. We note that the simulations
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Fig. 1. Empirical distribution of the elements of 'R for broadband data: computed for 10,000 realizations of 20 broadband processes in the collection.
Each line of different type associates with a broadband process in the collection.

provided in the next two subsections are for additive mixes only. However, we emphasize that the same outcome applies
to the multiplicative mixes but the appropriate simulations can be found in the Appendix in Moghtaderi et al. (2011).

4.1. Ratio approach

In this subsection we describe the first approach to estimate i∗, which is based on an empirical property of the zero
crossing numbers of IMFs.

Let us first establish some additional notation. For a given time series, the zero crossing number of its ith IMF is
denoted by Zi, and let us define Ri = Zi−1/Zi for i ≥ 2. (This is well-defined since Zi ≥ 1; see Section 2.) Of course, Ri

depends fundamentally on the given time series; since the particular time series is always clear from context, we suppress
this dependence. We call Ri the ith ratio of the zero crossing numbers (ith RZCN). It has been observed by Flandrin et al.
(2004b) and Wu and Huang (2004) that if the time series under study is a realization of a generic broadband process, the
approximation Ri ≈ 2 holds.

Let us first support this observation. We considered 20 broadband processes of the following types: 17 fGn processes
with H = 0.1, 0.15, 0.2, . . . , 0.9, two stationary AR(2) processes, and a nonstationary AR(2) process with time-dependent
coefficients. For each process in the collection, we simulated B = 10,000 realizations of length N = 2000, then computed
the IMFs of each realization along with their zero crossing numbers. Denoting the ith RZCN of its bth realization by Ri,b,
where 2 ≤ i ≤ Ib, and setting 'Rb = (R2,b R3,b · · · RIb,b), we then computed the empirical distribution of the elements
of 'R = ('R1 'R2 · · · 'RB). Fig. 1 displays this empirical distribution, and supports the contention that Ri ≈ 2. In fact, this
distribution is approximately Gaussian with mean 2.

Generically, the approximation Ri ≈ 2 fails for i near the best index i∗. This observation is supported by the following
data. For each broadband process in the collection and using its realizations, we constructed 10,000 additive mixes, using
C3 (displayed in Fig. 4) as a trend. We then computed the IMFs of each mix along with their RZCNs and set 'Rb and 'R as
described earlier. The left-hand plot in Fig. 2 displays the empirical distribution of the elements of 'R for additive mixes, and
supports the contention that Ri ≈ 2 fails. In fact this empirical distribution is non-Gaussian as its side peaks grow taller in
comparisonwith the distribution shown in Fig. 1. The problem however is that it is not yet clear whether Ri ≈ 2 fails around
i∗. To clarify this, we proceeded with further simulations. For each broadband process in the collection, we used the IMFs
obtained for eachmix and used the knowledge ofC3 to evaluate the best index i∗ (see Section 5 for details). For eachmix, we
then computed the best approximation of the fluctuation by eliminating those IMFs whose indices are greater than or equal
to i∗ (we call this detrending the mix). We set 'Rb and 'R for the remaining IMFs and computed the empirical distribution of
the elements of 'R. This distribution, shown in the right-hand plot in Fig. 2, is Gaussian with mean 2 as was the case in Fig. 1.
We therefore conclude that Ri ≈ 2 fails around i∗.

Based on what we have described above, we propose to estimate i∗ by choosing î∗ to be the smallest index i for which
Ri is ‘‘significantly different from 2’’. We refer to this as the ratio approach. The results of our simulations for broadband
processes suggest that in order to conclude whether or not Ri is ‘‘significantly different from 2’’, a common threshold test
can be used. For 0 ≤ p ≤ 100, we therefore compute p% and (100 − p)% significance level of the empirical distribution
shown in Fig. 1 as the left threshold and the right threshold respectively. At the end, any RZCN outside of the appropriate right
and left thresholds is considered significantly different from 2. A weakness of the ratio approach is that, since selection of
the left and right thresholds is based on empirical results, it is always possible that for a given p, the smallest i for which Ri

appears significantly different from 2 is a false detection. In Section 5, we will discuss how to select an ‘‘optimum’’ p.
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Fig. 2. Empirical distribution of the elements of 'R for additive mixes: left: computed for additive mixes obtained by adding C3 from Fig. 4 and
realizations of broadband processes in the collection. Right: computed for detrended additive mixes.

4.2. Energy approach

In this subsectionwedescribe the second approach to estimate i∗, which is based on an empirical property of the so-called
‘‘energy’’ of the IMFs. To describe this property, we need to establish some additional notation. Let {Zt}t≥0 be an arbitrary
process. For a given time series which is a realization of {Zt}, we define the energy of its ith IMF, denoted Gi, by

Gi !
N−1∑

t=0

|Mi
t |2, 1 ≤ i ≤ I.

Assume now that we have B different time series obtained from {Zt}. Given the bth time series, 1 ≤ b ≤ B, if Gi,b denotes
the energy of its ith IMF, the averaged energy of its ith IMF is defined by Gi ! 1

B

∑B
b=1 G

i,b. It is shown in Rilling et al. (2005)
that if the time series under study are realizations of a generic broadband process, then Gi is a decreasing sequence in i. This
results were obtained by studying fGn processes. For additional simulations, see Moghtaderi et al. (2011).

Our key observation is that, generically, Gi increases for i near the best index i∗. This observation is supported by the
following data. Recall the additive mixes obtained in Section 4.1. We computed the IMFs of each mix along with Gi,b and
for each broadband process in the collection, we computed Gi. The left-hand plot in Fig. 3 displays log2 Gi computed for
additive mixes. For each broadband process in the collection, we observe that Gi increases at some i but we cannot yet
determine whether or not it has occurred around i∗. To clarify this, we detrended each mix as described in Section 4.1 and
then recomputed Gi,b using the remaining IMFs. For each broadband process in the collection, we then computed Gi and
observed that Gi increases at the best index i∗. The right-hand plot in Fig. 3 displays log2 Gi computed for detrended additive
mixes only up to i = 5. This is because for some examples, i∗ > 5 but for themajority i∗ = 5. Based on the above discussion,
identifying the smallest index i ≥ 2 such that Gi > Gi−1 evaluates î∗. This approach is called the energy approach.

As for the ratio approach, one could think of looking for significant increases which would be based on some statistical
information about the dispersion of energy of each IMF. This viewpoint has been considered first for white Gaussian noise
in Huang et al. (2003) and further generalized in Flandrin and Gonçalves (2004) and Flandrin et al. (2004a), even in a
detrending perspective. The limitation however is that the associated confidence intervals depend strongly on some prior
knowledge about the spectra of broadband processes. This is themain reason that we do not follow such direction, as we are
interested in a procedure which is not model-dependent. A limitation with the energy approach is that one is often given a
single time series to use for trend filtering. Computation of energy based on only one time series may cause an increase in
Gi when i (= i∗.

4.3. Energy-ratio approach

To overcome limitations of the previous approaches, we introduce the last and most important approach to estimate i∗.
As described, the energy and ratio approaches are confrontedwith possible false detections of the smallest indexwhich does
not associate with the trend. Since the criteria proposed by the energy and ratio approaches to evaluate î∗ are independent,
the number of false detections can be reduced by combining these two approaches.

To bemore precise, for each 2 ≤ i ≤ I, we compute each index i such that Gi > Gi−1. For a fixed p, we also evaluate every
index iwhere Ri is significantly different from 2. We then evaluate î∗ to be the smallest common index in both approaches.
This approach is called the energy-ratio approach.
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Fig. 3. log2Gi: Left: computed for additive mixes. Right: computed for detrended additive mixes and displayed only up to i = 5.

5. Performance evaluation of the EMD trend filtering; evaluation of an ‘‘optimum’’ p

We follow two main goals in this section. The first goal is to evaluate the overall performance of the EMD trend filtering.
The second goal is to empirically evaluate an ‘‘optimum’’ pwhich can improve the performance of the energy-ratio approach
in comparison with the energy and ratio approaches. In order to do so, we use 6 simulated examples including 3 additive
and 3 multiplicative mixes such that

Xk =
{
Ck + Yk, 1 ≤ k ≤ 3
CkYk, 4 ≤ k ≤ 6.

(3)

In order to construct the above mixes, we use the following.
Let Y k = {Yk

t }t≥0, 1 ≤ k ≤ 6, be 6 generic broadband processes such that for 1 ≤ k ≤ 2, we have

Y 1
t = 0.8Y 1

t−1 − 0.4Y 1
t−2 + ζt , and

Y 2
t = 0.2Y 2

t−1 + 0.5Y 2
t−2 + ξt ,

where {ζt} and {ξt} are two independent white noise processes with variance 104, and for 3 ≤ k ≤ 6, we have 4 fGn
processes with Hurst exponents 0.7, 0.5, 0.15, and 0.75 respectively. Let Yk = (Yk

0 , Y
k
1 , . . . , Y

k
N−1) be a realization of Y k.

Now, let us assume that Ck = (Ck
0 , C

k
1 , . . . , C

k
N−1), 1 ≤ k ≤ 6, are 6 trends where for 1 ≤ k ≤ 4, we have 4 randomly

constructed trends using piecewise linear and cubic spline techniques and for 5 ≤ k ≤ 6, we have

C5
t = 2 − e

−(t−1000)2

2×4002 , and

C6
t = 1.5 + cos(2π fst), fs = 0.002.

Fig. 4 displays Ck for 1 ≤ k ≤ 6 when N = 2000. For each k, we created B = 10,000 realizations of length N = 2000 of Y k

and constructed the mixes for each realization following Eq. (3). We denote the bth realization of the kth example by bk.
In order to achieve the goals described earlier in this section, we started with the following computations. We applied

EMD to Xbk (or log |Xbk | for multiplicative mixes) in order to extract its IMFs. Denote I, Mi, and ρI by Ibk , Mibk , and ρIbk

respectively. For each iĎ ∈ {1, 2, . . . , Ibk}, we computed

C
bk
iĎ =

Ibk∑

i=iĎ

Mibk + ρIbk
, (4)

and the Euclidean distance (ED) between Ck and C
bk
iĎ , denoted Ebk

iĎ . The best index i∗ is that iĎ which results in minimum Ebk
iĎ ,

denoted Ebk
i∗ . Clearly, C

bk
i∗ is the best approximation of Ck. Let Y

bk
i∗ = Xbk − C

bk
i∗ . Here Y

bk
i∗ is the best approximation of the

fluctuation Ybk . We computed the Euclidean norm (EN) of Y
bk
i∗ and Ybk and denoted them by EYbk

i∗ and EYbk respectively.
We then estimatedCk using three different trend filteringmethods. Themethods we used are the Hodrick–Prescott (HP)

filter (Hodrick and Prescott, 1997), the singular-spectrum analysis (SSA) (Vautard et al., 1991) and the EMD trend filtering
using ratio, energy and energy-ratio approaches. We denoted the trend estimates obtained above by Ĉ

bk
m where the letter m

indicates the type of trend filtering. For simplicity, we selected m to be r, g, and gr to refer to the ratio, energy, and energy-
ratio approaches respectively. Since the ratio and energy-ratio approaches are dependent on p, we denoted the estimates
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Fig. 4. Trends used in simulated examples: Ck for 1 ≤ k ≤ 6.

Table 1
Performance evaluation of the EMD trend filtering: for 1 ≤ k ≤ 6, the
second to sixth columns report the average over B of the EDs between Ck and
respectively Cbk

i∗ , Cbk
hp with free parameter 105, Cbk

hp with free parameter 5× 105,
Cbk
ssa with window length 100, and finally Cbk

ssa with window length 200. The last
two columns are the average over B of the ENs of Y

bk
i∗ and Ybk respectively.

k E
k
i∗ E

k
hp E

k
hp E

k
ssa E

k
ssa E

Yk

i∗ E
Yk

1 0.822 0.840 0.697 0.818 0.627 5.475 5.493
2 0.887 0.930 0.785 0.920 0.729 2.854 2.922
3 0.642 0.655 0.581 0.652 0.542 2.334 2.398
4 4.808 6.014 4.898 3.924 3.070 49.73 49.63
5 4.803 6.396 5.212 4.144 2.863 49.75 49.65
6 8.513 7.315 6.123 6.265 13.75 49.45 49.61

for these methods by Ĉ
bk,p
m . After all, we computed the ED between Ck and each trend estimate and denoted them by Ebk

m

(or Ebk,p
m ).

For each k, we then averaged all the ENs and EDs computed above over B realizations and denoted them by E
k
m (or E

k,p
m ).

In this paper, in order to obtain E
k
hp, we used two free parameters of 105 and 5 × 105, for E

k
ssa, we used the window lengths

of 100 and 200, and for E
k,p
r and E

k,p
gr , we used 16 fixed p where 1 ≤ p ≤ 40. Tables 1–4 report all the averaged EDs and ENs

computed using these parameters.
To evaluate the performance of the EMD trend filteringwhichwas the first goal in this section,wemake two attempts. The

first attempt is to compare the best approximation ofCk obtained from the EMD trend filteringwith estimates obtained from
the HP filter and the SSA. In order to do so, for each k, we compared the reported EDs from the second column of Table 1with
those from the third to sixth columns. Since these EDs are comparable, we conclude that the EMD trend filtering performs
similarly to the HP filter and the SSA. Note that since bothHP filter and the SSA are dependent on free parameters, the quality
of their performance can vary in comparison with the EMD trend filtering. This is clear from the reported EDs in Table 1. The
second but also necessary attempt we make is to compare the fluctuation of each mix with the best approximation of the
fluctuation. This is done by comparing the averaged ENs reported in the last two columns of Table 1. The fact that these two
columns are comparable is an indication that the EMD trend filtering is a well-performed method in estimating the trend.

Recall the second goal in this section which is to empirically evaluate an ‘‘optimum’’ p which makes the energy-ratio
approach to perform better than the energy and ratio approaches. We should note that by using the term ‘‘optimum’’ in
this paper, we mean for the given examples. In order to obtain such p, we used the averaged EDs reported in Tables 2–4.



A. Moghtaderi et al. / Computational Statistics and Data Analysis 58 (2013) 114–126 121

Table 2
Averaged EDs for ratio approach: for each k and for 16 selected fixed 1 ≤ p ≤ 40,
this table reports the average over B of the EDs between Ck and Ĉ

bk,p
r .

p E
1,p
r E

2,p
r E

3,p
r E

4,p
r E

5,p
r E

6,p
r

1 5.3465 5.8195 3.4415 5.4210 6.3503 21.6160
3 2.9870 3.3997 1.8074 5.4574 5.8766 17.4428
5 1.7086 1.6177 0.9166 6.0374 6.1150 13.1966
9 1.3786 1.1369 0.7699 9.1423 8.8052 12.2892

11 1.3362 1.0648 0.7504 10.9357 10.6262 12.9937
15 1.5126 1.0907 0.7971 14.7207 14.5816 15.9449
16 1.5742 1.1121 0.8143 15.4459 15.3537 16.5434
18 1.7058 1.2109 0.8583 17.2418 17.1439 18.0800
22 2.0115 1.5804 0.9826 20.3119 20.4280 21.2469
24 2.1741 1.7626 1.0589 21.9070 22.0858 22.9679
26 2.3748 1.9432 1.1559 23.4831 23.6743 31.5412
28 2.5967 2.0763 1.2576 24.9817 25.3282 26.1462
30 2.8119 2.1778 1.3505 26.4992 26.9753 27.7565
32 3.0118 2.2456 1.4363 27.8978 28.4667 29.3045
35 3.2997 2.3148 1.5463 29.7126 30.4567 31.2734
40 3.6944 2.3840 1.6949 32.7339 33.7013 34.4058

Table 3
Averaged EDs for energy-ratio approach: for each k and for 16 selected fixed
1 ≤ p ≤ 40, this table reports the average over B of the EDs between Ck and
Ĉ

bk,p
gr . For each k, the bold averaged EDs associate with the smallest p where

E
k,p
gr < E

k
g and the averaged EDs marked with ∗ are the minimum EDs.

p E
1,p
gr E

2,p
gr E

3,p
gr E

4,p
gr E

5,p
gr E

6,p
gr

1 3.3775 4.3465 2.5001 5.4290 6.3591 21.5950
3 2.2746 3.1742 1.7289 5.3000 5.7286 17.4446
5 1.4834 1.5838 0.9207 5.2036 5.2293 12.9886
9 1.2092 1.1374 0.7512 5.2021∗ 5.1026∗ 10.1622

11 1.0713 1.0466 0.7022 5.2502 5.1730 9.5106
15 0.9756 1.0196∗ 0.6815 5.3481 5.2999 9.1719
16 0.9554 1.0260 0.6796 5.3695 5.3170 9.0538
18 0.9255 1.0850 0.6769∗ 5.4136 5.3889 8.9986
22 0.9063 1.3705 0.6814 5.4913 5.4842 8.9490
24 0.8989∗ 1.5157 0.6854 5.5227 5.5367 8.9196∗

26 0.9045 1.6683 0.6900 5.5499 5.5780 9.0128
28 0.9202 1.7897 0.6947 5.5840 5.6196 8.9218
30 0.9331 1.8801 0.6984 5.6165 5.6661 8.9366
32 0.9478 1.9572 0.7018 5.6320 5.6843 8.9438
35 0.9741 2.0357 0.7087 5.6720 5.7363 8.9476
40 1.0094 2.1245 0.7182 5.7155 5.7926 8.9678

Table 4
Averaged EDs for energy approach: for each k, this table reports the
average over B of the EDs between Ck and Ĉ

bk
g .

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

E
k
g 1.0724 2.2197 0.7345 5.8131 5.9060 9.5901

Comparing the values reported in Tables 2 and 3 shows that for majority of p and k, the averaged EDs associated with the
energy-ratio approach are smaller than those for the ratio approach. This means that the energy-ratio approach performs
better than the ratio approach regardless of p. As a result, selection of p should only dependonhow the energy-ratio approach
compares with the energy approach. We therefore compare the averaged EDs reported in Table 3 with those reported in

Table 4. For each k, we select the smallest p in Table 3 such that E
k,p
gr < E

k
g and denote it by pk1. We display E

k,pk1
gr in bold

in Table 3 and we have pk1 ∈ {11, 5, 11, 1, 3, 11}. For each k, we observe that for p > pk1, E
k,p
gr decreases until it reaches

its minimum (denoted pk2 and marked with a star in Table 3) and increases again but it does not exceed E
k
g (at least for

maximum p = 40). This observation indicates that first of all, an ‘‘optimum’’ p is not unique as it depends strongly on the
type of example. Second, there is a wide range of p values which make the energy-ratio approach to perform better that the
energy approach. We therefore select an ‘‘optimum’’ p, denoted p∗ to be such that p∗ > maxk pk1 and also p∗ < maxk pk2. We
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Table 5
Search for i∗ in examples 1 and 2: the first two rows are associated with X1, where 1 ≤ iĎ ≤ 10. The
last two rows are associated with X5, where 1 ≤ iĎ ≤ 11.

iĎ 1 2 3 4 5 6 7 8 9 10 11

E1
iĎ

5.49 4.38 3.21 2.19 1.57 1.2 0.69 0.63 3.80 9.75 –

EY1

iĎ
2.1e−15 3.32 4.64 5.17 5.32 5.38 5.48 5.50 6.61 11.2 –

E5
iĎ

47.4 36.6 27.9 19.7 14.2 10.4 8.25 5.05 3.68 2.49 10.4

EY5

iĎ
7.5e−14 34.8 40.3 43.9 45.5 46.4 46.9 47.2 47.2 47.2 48.7

Fig. 5. EMD trend filtering for simulated example 1: top left: the energy approach. The small circles are log2 Gi for 1 ≤ i ≤ 10 and the small triangles
mark those indices i ≥ 2 where Gi > Gi−1. Bottom left: the ratio approach. The small circles are log2 Ri for 2 ≤ i ≤ 10 and the small triangles mark those
indices i where Ri is significantly different from 2. The dashed lines are the averaged left and right thresholds of the empirical distribution shown in Fig. 1
when p∗ = 18. Top right: X1 vs. Ĉ

1
gr. Bottom right: C1 (dashed line) vs. Ĉ

1
gr (solid line).

therefore can select any 11 < p∗ < 24. In this paper, we have used p∗ = 18. For a larger number of simulated examples
and a larger selection of p values in achieving the goals described in this section see Moghtaderi et al. (2011).

6. Simulated examples

In this section, we demonstrate the performance of the energy-ratio approach in estimating i∗ via two simulated
examples. The examples we use here are the additive mix X1 and the multiplicative mix X5 introduced in Section 5 for
further analysis. The notation used in this section is exactly the same as in Section 5 except that since we only work with
one time series of eachmix, we replace bk in the notation with k. For the ratio and energy-ratio approaches, we use p∗ = 18.

6.1. Simulated example 1

Recall Y 1 and C1 from Section 5. Let Y1 = {Y 1
0 , Y 1

1 , . . . , Y 1
N−1} be a realization of Y 1. Set the additive mix X1 = Y1 +C1

for N = 2000. We apply EMD to X1 and extract its IMFs and obtain I = 10. Using the IMFs obtained for X1, we first
compute C1

iĎ for 1 ≤ iĎ ≤ 10 as in Eq. (4). We then compute the EDs between C1 and C1
iĎ , denoted E1

iĎ , and the EDs between

X1 and C1
iĎ , denoted EY1

iĎ . These are reported in the first two rows of Table 5. Based on these reported values, we can see

that since iĎ = 8 results in minimum E1
iĎ , we conclude that i∗ = 8. An additional support for this selection is that EY1

8 is the
closest value to the EN ofY1 which is 5.493.We nowwant to compare the performance of the ratio, energy and energy-ratio
approaches in estimating i∗.

Looking at the energy of the IMFs of X1, we observe that the IMF indices for which Gi > Gi−1 are i = {6, 8, 9, 10}. Based
on the energy approach, we evaluate î∗ = 6 which is the smallest observed index in this case. Looking at the RZCN of each
IMF on the other hand, we observe that the IMF indices forwhich Ri is significantly different from 2 are i = {4, 5, 7, 8, 9, 10}.
Based on the ratio approach, we evaluate î∗ = 4. Finally, the energy-ratio approach evaluates î∗ = 8 as the smallest common
IMF index between the energy and ratio approaches. It is clear from above that the energy-ratio approach has performed
excellently in estimating i∗ by eliminating the false detections in the ratio and energy approaches. Fig. 5 displays the energy
and ratio approaches together with the estimated trend using î∗.
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Fig. 6. EMD trend filtering for simulated example 2: top left: the energy approach. Bottom left: the ratio approach. The dashed lines are the averaged

left and right thresholds of the empirical distribution of the elements of 'R computed for the log-transformed broadband data when p∗ = 18. Top right:
log |X5| vs. log Ĉ

5
. Bottom right: logC5 (dashed line) vs. log Ĉ

5
(solid line).

6.2. Simulated example 2

Recall Y 5 and C5 from Section 5. Let Y5 = {Y 5
0 , Y 5

1 , . . . , Y 5
N−1} be a realization of Y 5. Set the multiplicative mix

X5 = C5Y5 for N = 2000. We apply EMD to log |X5| and extract its IMFs and obtain I = 11. Similarly to the previous
example, we use the IMFs obtained for log |X5| to first compute logC5

iĎ for 1 ≤ iĎ ≤ 11. We then compute the EDs between

logC5 and logC5
iĎ , denoted E5

iĎ , and the EDs between log |X5| and logC5
iĎ , denoted EY5

iĎ . These are reported in the last two
rows of Table 5. Based on these reported values, we can see that since iĎ = 10 results in minimum E5

iĎ , we conclude that

i∗ = 10. An additional support for this selection is that EY5

10 is the closest to the EN of log |Y5| which is 47.38. We now
compare the performance of the ratio, energy and energy-ratio approaches in obtaining î∗.

Looking at the energy of the IMFs of log |X5|, we observe that i = {7, 10, 11}. Based on the energy approach, we evaluate
î∗ = 7. Looking at the RZCN of each IMF on the other hand, we observe that i = {2, 3, 8, 9, 10, 11}. Based on the ratio
approach, we evaluate î∗ = 2. Finally, the energy-ratio approach evaluates î∗ = 10 as the smallest common IMF index
between the energy and ratio approaches. It is clear from above that the energy-ratio approach has performed excellently
in estimating i∗ by eliminating the false detections in the ratio and energy approaches. Fig. 6 displays the energy and ratio
approaches together with the estimated log-trend using î∗.

7. Real-world examples

In this section we demonstrate the performance of the energy-ratio approach via two real-world examples. The first
example is the monthly mean carbon dioxide (CO2) data fromMauna Loa and the second example is the Grand Lyon Vélo’v
bicycle rental data from the city of Lyon in France.

7.1. Monthly mean CO2 at Mauna Loa

In this section, we analyze the monthly mean CO2 data collected from March 1958 to March 2010 and measured at
Mauna Loa observatory in Hawaii (Available via FTP: ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt. The authors
have received permission from Dr. Pieter Tans in order to use this data.) The left-hand plot in Fig. 7 displays the monthly
mean CO2 data at Mauna Loa. After removing the averaged seasonal cycle expected in this data, a trend is obtained. This
trend is given at the URL together with the data, and it will serve as a reference for a comparison with the result from
EMD trend filtering. For more information on the known seasonal cycle and trend calculation see the URL provided above.
The right-hand plot in Fig. 7 displays the one year cycles of the monthly mean CO2 data after removing the expected trend
together with their average. We call this average the expected annual cycle.

We now use EMD trend filtering for monthly mean CO2 data in order to estimate its underlying trend. Applying EMD to
this data, we obtain I = 3 and following the energy-ratio approach, we evaluate î∗ = 3. The left-hand plot in Fig. 8 displays
the estimated trend plotted together with the expected trend obtained from removing the seasonal cycle. Since these two
trends look very similar, the smaller plot is made to display only a small portion of these trends. It is clear that the estimated
trend from the EMD trend filtering is only a smoother version of the expected trend.

ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
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Fig. 7. Monthly mean CO2 data and the expected annual cycle: left: monthly mean CO2 data from March 1958 to March 2010. Right: yearly cycles of
the detrended data using the expected trend together with their average (dark black line).

Fig. 8. Estimated trend and annual cycle for the monthly mean CO2 data: left: expected trend together with the estimated trend using EMD trend
filtering. Since these two trends look very similar, the smaller plot is made to display only a small portion of these trends. Right: yearly cycles of the
detrendedmonthlymean CO2 data using the estimated trend together with their average (dark black line). The dashed line displays the difference between
the expected and estimated annual cycles.

After subtracting the estimated trend from the data, we divide the detrended data into one year cycles and then average
over all cycles to obtain the estimated annual cycle. The right-hand plot in Fig. 8 displays all the one year cycles of themonthly
mean CO2 data after removing the estimated trend together with the estimated annual cycle. The dashed line in Fig. 8
displays the difference between the expected and estimated annual cycles. This difference confirms the strong similarities
between the two annual cycles.

7.2. Grand Lyon Vélo’v

In this section we analyze the data from Vélo’v, the community shared bicycle program that started in Lyon in May
2005 (for more information, see http://www.velov.grandlyon.com). The program Vélo’v is a major initiative in public
transportation, in which bicycles are proposed to rental by anyone at fully automated stations in many places all over the
city, to be returned at any other station. Such a community shared system offers both a new and versatile option of public
transportation, and a way to look into the movements of people across the city. In order to understand the dynamics of this
system, a question is to estimate andmodel the evolution in time of the number of rentalsmade throughout the city (Borgnat
et al., 2009). The left-hand plot in Fig. 9 displays the raw data which is the number of hourly rentals for two years of activity
of the Vélo’v system from December 2005 to December 2007. (The authors would like to thank JCDecaux for providing an
access to this data.)

The number of rentals contains cyclical patterns over the day (e.g., more activities during the day, mainly at specific
rush hours, than during the night) and the week (e.g., more activities during week-days than week-ends). It also contains

http://www.velov.grandlyon.com
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Fig. 9. Vélo’v raw and detrended data: left: the raw Vélo’v data together with the estimated trend using EMD trend filtering. Right: detrended Vélo’v
data.

superimposed fluctuation due to external contingencies (e.g., rain or holidays) and a general multiplicative trend over the
months (Borgnat et al., 2009). We apply EMD trend filtering to this data in order to estimate the underlying multiplicative
trend. We obtain I = 12 and using the energy-ratio approach we evaluate î∗ = 10 which we use to estimate the trend. The
estimated trend is displayed in the left-hand plot in Fig. 9 where superimposed over the data.

This trend is meaningful for the data, and can be related to, and explained by, two effects: (i) the system was expanded
in 2005 and 2006 at the same time it was already in exploitation, hence, there is a long-term increase of the hourly rentals
over the two years of data, (ii) because of seasonal effects, the use of Vélo’v is smaller during winter, and also during the
main summer holidays; this causes several drops of the trend, during winter and also summer holidays.

Using the estimated trend, detrended Vélo’v data are obtained by dividing the number of hourly locations by the
estimated trend. This is displayed in the right-hand plot in Fig. 9. The detrended data is, visually, more stationary than
the raw data. This allows a good estimation of the cyclic pattern over the week of the number of hourly rentals. Fig. 10
displays the weekly cycles of the Vélo’v data after removing the estimated trend, and the average over all the weeks. The
estimate of the average usage of the Vélo’v bicycles as a function of time in theweek, ismeaningful in that it reveals themain
features of the Vélo’v activity: during week-days, there are three sharp peaks of rentals in the morning, noon and the end of
the afternoon; during the week-ends, there are small peaks at noon, and smooth and large peaks during the afternoon.

Finally, let us note that here the multiplicative trend filtering procedure was applied to a case where the underlying
process that the trend multiplies to is not actually a broadband process: it is more specifically a periodic process (with
clear periods of one week and one day) with added fluctuation. Nevertheless, the procedure is able to find the relevant
multiplicative trend describing the evolutions at the scale of the seasons, and that is used to detrend the data. This is believed
to be due mostly to the fact that the fluctuation has typical periodic scales (one day or one week) which are much smaller
than the typical scale of evolution (several months) of the trend, making of this scale separation a prerequisite that might
be more important than the existence of a broadband spectrum in a stricter sense.

8. Conclusion

This paper proposed a new procedure, called EMD trend filtering, to solve the trend filtering problem. The essential
assumption is that the trend is described by a set of low-frequency IMFs. To decide which IMFs comprise the trend, we used
the observations that the trend causes (i) a change in ratios of zero crossing numbers and (ii) an increase in the IMFs’ energy
compared to the expected behavior of broadband processes. EMD trend filtering was shown to perform well on several
time series with additive or multiplicative trends. We emphasize that – being based on the EMD – the procedure is fully
data-driven and depends only on the choice of significance level.

The effectiveness of EMD trend filtering was demonstrated via its application to simulated and real-world time series.
The real-world studies examined CO2 data (where the trend entered additively) and bicycle rental data (where the trend
entered multiplicatively). In either case, trend filtering allowed us to estimate the periods of cyclical components in the
data. Interestingly, the fluctuation of the bicycle rental data did not seem tomeet the regularity assumptions imposed in the
paper. In particular, the fluctuation seemed to display greater oscillatory behavior than the broadband assumption would
permit. This indicates that EMD trend filtering may be robust to departures from the broadband assumption.

As future work, one may be able to go beyond trend filtering and use the same type of approach to group the IMFs
describing the trend, then the major cycles, and finally the fluctuation. This would permit automatic and model-free
decompositions of time series.
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Fig. 10. Weekly detrended Vélo’v data: the weekly cycles of the detrended Vélo’v data and their average (dark black line).
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