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Summary. Community shared bicycle systems are an instance of public trans-
portation systems that provide digital footprints of all the movements made using
this system. The completeness of such dataset allows for their study using a complex
system point of view. We discuss in this chapter how Lyon’s shared bicycle system,
called Vélo’v, can be seen as a dynamical complex network, and how using commu-
nity detection methods gives interesting results thanks to the aggregation in space
and/or time that communities propose.

1 Introduction

A current challenge in the study of complex networks is to devise and vali-
date methods that are not limited to static or growing complex networks, but
that are adaptable to dynamical aspects of complex networks. Among all the
complex networks offered by human activities, the transportation networks
raise some challenge by themselves. The classical methods in transportation
research rely on household surveys of movements, or on the direct observation
of movements by sampling some places in the city. However, thanks to the
developments of Information Technologies, more and more systems of trans-
portation offer digital footprints of population movements and enable their
study as complex systems: public transportations in subway (thanks to indi-
vidual digital subscription cards) [1, 2], railways [3, 4], or air transportation
thanks to database of flights [5], with applications ranging from urban plan-
ning to epidemiology [6]. The issues we now face are to understand how to
cope with these new, large-scale datasets, and which methods are useful so as
to obtain some insight on the dynamics of people’s moves.
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We will review in this chapter the progresses made in this direction in
the particular case of shared bicycle systems. As modern cities are more and
more overcrowded by cars in their centers, alternative means of transportation
have been developed. Among them, shared bicycle programs have gained a
renewal in interest in the past 10 years, thanks to the possibility of using fully
automated rental systems that are available 24 hours a day, 7 days a week.
This innovation led to the growth of different systems in many of the major
cities in Europe, e.g., Vélib’ in Paris [7, 8] and Vélo’v in Lyon [9, 10], Bicing
in Barcelona [11, 12], OYBike in London [13], Bicikelj in Ljubljana [14] to
cite only a few that have attracted quantitive analyses of their data. Indeed,
the full automation of the systems creates digital footprints which provide a
complete view of all the trips made with these bicycles. Such datasets would
have been impossible to obtain before, although it gives, by definition, only a
partial view of all the movements done in a city. Despite that, these data are
interesting to test ideas related to the study of dynamical networks.

The contribution of this chapter will be first to review previous studies on
shared bicycle systems from the point-of-view of information sciences. We dis-
cuss some of the general features that are displayed by these systems. Then, we
focus on Vélo’v – the shared bicycle system that is deployed in the city center
of Lyon, France’s second largest urban community, and that was the largest
scale system of this type when launched in May, 2005. Our main purpose is
to discuss an adaptation to the case of dynamical networks, of the methods
of aggregation in complex networks that rely on the notion of communities.
Here, the Vélo’v network is inherently dynamical, in that the network appears
only because there are bicycle trips connecting the stations.

The chapter is organized as follows. Section 2 recalls general facts about
shared bicycle systems, about their global dynamics (cycle over the week and
nonstationarity over several months). Section 3 shows how such a system
can be seen as an instance of a dynamical complex network. In Section 4
is discussed how a spatial aggregation of the Vélo’v complex network can
be obtained by adapting methods for community detection. Then, Section 5
proposes a typology of the dynamics in the Vélo’v network by estimating a
similarity graph and detecting communities. We conclude in Section 6.

2 General dynamics of Vélo’v system

The Vélo’v system is basically a bicycle rental system consisting of 343 auto-
mated stations each composed of several stands from where a Vélo’v bicycle
can be taken or put back at the end of the trip. The stations are spread out
in the city with the objective that, in the center, the distance to a station is
no more than 300m. There are around 4000 Vélo’v bicycles available at these
stands, and, as the system is automated, a bicycle can be returned at any
free stand, usually in a different station that the one it was taken from. The
functioning is all automated and works 24 hours a day, all year long. People
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use long-term or short-term (obtained with a credit card) subscription card
to rent a bicycle. This made possible the collection of all the data pertaining
to the trips made with these bicycles, without sampling as was the rule pre-
viously in transportation studies. This also made possible the display of the
state of each station through the web [15].

Thanks to JCDecaux – Cyclocity and the Grand Lyon, we had access to
the anonymized version of the trips made with Vélo’v. The dataset consists
of a log of all the rentals, with the station and the time of departure, and the
destination station and the time of arrival. For privacy concerns, there is no
information about users. Nevertheless, about the trips, the data is complete.

This dataset of the trips was instrumental in studying the general dynamics
of the system. A first point was to understand how the size of the Vélo’v system
and its popularity increased along the first years of the program. As shown
in [10], there has been a clear nonstationary growth of its popularity, in term
of long-term subscribers and in term of number of trips made (currently the
average is more than 20 000 trips per day). Moreover the system is still planned
to grow [16]. Also, the number of rentals reveal a general multiplicative trend
at the scale of several months that can be estimated using recent data-driven
statistical methods [17].

A basic feature of transportation system studies is to discover its time
pattern of use: When is it really used? What are the peak hours? Is it a
means of transportation for the ordinary week-days or the week-ends? Using
periodic averaging over the week combined to detrending of the nonstationary
behavior, we were able to estimate the mean pattern of total rentals along the
week, as shown in Figure 1 [10, 18, 19]. It reveals that Vélo’v is used first for
ordinary transport on working days. Its activity peaks are during the morning,
the lunch time and the evening and this is characteristic of a system used to
go to work and then to come back, with the lunch break in the middle. In a
French city such as Lyon, usual schedule for work is to begin around 9am, and
finish between 5pm to 7pm. The lunch break is spread out between 11:30am
and 2pm. Students at universities take classes between (at most) 8am and 6pm
with a lunch break at the same time as workers. Finally, shops are usually
open from 9am or 10am to around 7pm. All the peaks of activity detected are
thus compatible with this lifestyle. Also all the week-days are similar in that
respect, as shown on Figure 1(b). However, a second type of use exists during
the week-ends, as seen on this second plot. The peaks are less sharp and more
spread out around noon and during the afternoon. This is compatible with
leisure activities. Finally, one can see that just after midnight each day, a
small bump that can be related to the closure of the public transports right
after midnight (this even causes local maxima on Friday and Saturday nights).
This type of pattern is reminiscent to uses of ordinary public transports. An
exception is the nocturnal activity when public transports are closed. Also, it
is compatible with similar patterns for shared bicycle systems in other cities:
Paris [7, 13], Barcelona [11, 12], Ljubljana [14].
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Fig. 1. Weekly pattern of the number of rentals made per hour, summed over all
the Vélo’v stations: (a) pattern for the whole week; (b) superposition of individual
day patterns in the week. The average over the 5 ordinary week-days from Monday
to Friday is the thick black curve with circles. The five curves in thin lines that look
alike are each for one week-day: Monday in blue; Tuesday in dark green; Wednesday
in red; Thursday in cyan; Friday in purple. Saturday (thick blue curve with circles)
and Sunday (thick cyan curve with circles) reveal a different structure, especially for
the peak hours. The average over all days is the thick red curves and is dominated
by the week-days. That is a reason to study separately week-days and week-ends.

The prediction of the number of rentals at a given day and time was ad-
dressed in [10, 18, 19] using statistical time-series analysis. The global number
of rentals, summed over the city, can be predicted on an hourly basis if one
takes into account several important factors: the weather (temperature and
rain), the holiday periods, and the existence of a correlation over one hour.
The first two features (temperature and rain) account for most of the non-
stationary evolution over the year of the average rentals. When zooming in
at finer time scales, the one-hour correlation reflects that one decides to use
a bicycle depending on the conditions seen during the previous minutes, and
a rain condition affects the decision on this hourly scale – as it could be
expected.

Finally, several empirical studies of data of community shared bicycles
revealed various features such as the most frequent paths taken by these bi-
cycles or the advantages of using a bicycle as compared to a car [14, 20], the
distribution of durations and lengths of the trips [10], or the usual speed of
the bikers depending on the time of the day [10, 20]. All these features could
help to design an agent-based model of shared bicycle systems. Note that
their properties should be heterogeneous because the distributions found are
usually with long tails. For instance, though the median duration of a trip
with Vélo’v is 11 minutes and the average is little bit less than 30 minutes,
there are rentals lasting more than 2 hours, and the distribution has a tail
that is roughly a power-law [10].
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All these studies give a good empirical description of the global features of
these systems along time, or along space. However, the challenge is to design
a joint analysis in space and time.

3 Vélo’v as a complex network

From individual trips to a network of stations.

As already proposed in [10, 21], it is worthwhile to study the Vélo’v system
from a complex network perspective. Complex networks are usually employed
when studying real-world dataset including some relational properties. In the
context of shared bicycle systems, a network arises when looking at stations
as nodes of a complex network. Let us define N the set of stations. Each node
n ∈ N is at a specific geographical place in the city. Going from one station to
any other is theoretically possible and around half of all theoretically possible
trips have been done at least once. However some preferred trips appear in
the data, and the they are not necessarily local in space. That is the reason
why a representation of the Vélo’v system as a weighted network makes sense.

Our proposition is that the relation between the nodes of the Vélo’v net-
work –the stations– is created by the trips made from one station to another.
The greater the number of trips made, the more linked the stations are. Let us
define D = {(n, m, τ)} as the set of individual trips going from station n ∈ N
to station m ∈ N at time τ . The Vélo’v network is defined as G = (N , E , T )
where the set of possible edges is E ⊆ N ×N and T is a function defining a
weighted adjacency matrix varying in time. Let us define T as a set contain-
ing the times t of interest, and S a set of timescales ∆ for aggregation. The
function T : E × T × S → N is obtained by the following equation

T [n, m](t, ∆) = # {(n, m, τ) ∈ D | t ≤ τ < t + ∆} (1)

where # is the cardinal of the set. The result T [n, m](t, ∆) can be seen as an
adjacency matrix of the weighted, directed graph, that represents a snapshot
of the Vélo’v network. On each edge, the weight is then the number of bicycles
going from the station n to station m between times t and t + ∆. More
generally, the network G is a dynamical network and issues arise when we
need to deal both with its spatial nature (the nodes and the edges) and with
its time evolution as obtained when varying t or the timescale ∆.

In the following of the article, we follow the same ideas as in [10, 21], but
we propose a more unified and streamlined approach to study both space and
time aggregation for the Vélo’v complex network. Other general ideas on how
to cope with time evolving networks can be found in other chapters of this
book, and in the review [22].
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Timescales and aggregation in time of Vélo’v networks.

First we take into account the cyclic nature of the network: the same pattern
repeats itself each week and we estimate T using periodical averaging. For
that, let us decide on a timescale ∆ and then define a period P = p∆, p ∈ N.
Let us set TP = {k∆ mod P ; k ∈ {0, ..., p − 1}} so that when applying
eq. (1), the first interval in which the trips are counted is: [0 ∆] mod P . The
periodical estimation of the Vélo’v network is obtained by dividing T applied
on this choice of E × TP × S, by the number of periods P in the data. As the
main period in the data is the week [19], we let P be equal to 1 week in the
following.

Usually, a specific value for time aggregation ∆ is used. However, varying
the timescales ∆ for the analysis would be of potential interest, e.g. as it was
done for computer networks analysis [23]. For complex networks, the impor-
tance of considering different time window lengths for aggregating networks,
or the simpler idea that the analyses depend on the observation time, have
already been put forward in various contexts: to study cattle mobility [24],
communication network [25], or for information spreading in such network [26]
to cite a few relevant references. For Vélo’v, given that the average duration of
a rental is less than half an hour, aggregating in time over duration ∆ larger
than that smooths out most of the fluctuations due to individual trips. We
classically use ∆ = 1h (as in Fig. 1) or 2h. For simplicity, P = 1 week and
∆=2h for all the results displayed hereafter.

First, it is possible to reduce the dimension in time of this evolving network
by using a Principle Component Analysis in time, as in [10, 21]. It turns
out that the principal components display peaks in their time evolution that
correspond exactly to the different peaks already commented for the global
number of rentals, as shown in Fig. 1. In the following, we will keep in the
the dynamical adjacency matrix T [n, m](t, ∆), only the 19 peaks of activity in
time, as given by the global behavior as well as the principle components: every
ordinary days around 8am, 12am and 5pm, and each of the two week-end days
around 12am and 4pm. We note T ∗P this set of peak moments and #T ∗P = 19.
The representation of the series of snaphots of the Vélo’v network at peak
activity is then T [n, m](t, ∆) with t ∈ T ∗P . Another reason for keeping these 19
peaks is that classical approaches in transportation research are often focusing
on the activity peaks and doing the same way will help future comparison of
resuls.

Second, at large time scales, there are several manners to aggregate the
network. Classical aggregation is to sum over time the different snapshots
and this focuses on the strong exchanges between stations at the scale of the
aggregation time (typically the week here). In a sense, it can be viewed as
going from one timescale to a larger one (hence giving a crude version of
multiresolution analysis). Using the 19 peak activity times T ∗P , an aggregated
view over the whole week is obtained as

∑
t∈T ∗P

T [n, m](t, ∆) ∧=< T [n, m] >T ∗P
where < · · · >T ∗P stands for this particular aggregation in time. A question in
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Fig. 2. Map of the cities of Lyon and Villeurbanne with the Vélo’v stations and their
Voronoi diagram [27]. Each dot is a Vél’ov station surrounded by its own Voronoi cell.
One sees that the city is well covered, with a higher density of stations in the center.
Major roads are in white; main public transport lines are in red (subways) and grey
(tramways). Parks are in green and the two rivers are in blue (the Saône on the west
side, the Rhône on the east side). Names of the different parts of the city are given,
as well as names of main hubs of transportations: Part-Dieu, Perrache for the main
train stations; Vaise and Jean Macé for secondary train stations; Bellecour, Hôtel
de Ville, Brotteaux (including Charpennes), Saxe-Gambetta for other important
hubs of the public transport system. Gerland, Croix-Rousse and Villeurbanne are
other parts of the city that will be discussed afterwards. Finally, the locations of the
downtown university campuses are shown.

the following is how the different snapshots are similar to, or different from
the aggregated network over the week.

4 Aggregation in space for the Vélo’v network

The series of snapshots of graphs convey detailed information, yet this is too
much information for modeling. However, aggregating over all the nodes as
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done in Section 2 does not give enough details. We would like to aggregate on
intermediate scales for the nodes in the network. There are two classical ap-
proaches to aggregation in a network: find clusters of nodes that are strongly
linked together, also called communities [28], or use multiscale harmonic de-
composition over a graph (e.g., [29]). Here, we explore the spatial aggregation
that is obtained by looking at communities of stations. So as to compare with
the urban organization of the city, a map of the city is in Fig. 2 that shows
the main lines of transportations and provides the places and names of the
most important hubs for public transportation. By referring to this map, the
reader will follow with greater ease the comments about the spatial aggrega-
tion proposed by community aggregation in this section.

Aggregation of network by communities.

At a given timescale and instant, we propose to aggregate the network in space
over its communities of nodes. A community is often defined as a subset of
nodes that are strongly linked together inside the network (see the review in
[28]). We adopt the modularity as a metrics to find communities. Modularity
was first proposed in [30] and extended in [31] to the case of directed networks.
Assume that t and ∆ are set to specific values and use the adjacency matrix
T [n, m](t, ∆) obtained that way. Modularity is defined as:

Q =
1

2W

∑

{n,m}∈N×N

[
T [n, m]−

∑
j %=n T [j, n] ·

∑
k %=m T [m, k]

2W

]
δcn,cm (2)

where W =
∑

n,m T [n, m] is the total weight of the network and cn is the par-
tition index of the group in which n is. Modularity is a number between −1
and +1. If there is a community structure in the graph and the index cn re-
flects this structure (by taking a different value for each community), Q should
be large, typically larger than 0.4. Conversely, if one finds a partition index cn

for which Q is large enough, it tells that there are communities of nodes. As
a consequence, finding communities is possible by maximizing Q over the set
of {cn, n ∈ N} of possible partitions of nodes. However, this task is hard: the
complete maximization is NP-complete [32] and many approximations such as
the one in [33], have a tendency to propose too big communities. In this work,
we use the fast, hierarchical and greedy algorithm proposed in [34] (called
the Louvain algorithm), as a simple way to find relevant communities. It is
reviewed in [28] that modularity is a good metrics to find communities and
that this algorithm works correctly as compared to other methods. Neverthe-
less, the results shown hereafter are not specific of this choice of algorithm to
find communities in a network, and for instance the infomap algorithm of [35]
would work as well.

Communities in Vélo’v networks.

First, the method is applied to the time-aggregated network < T [n, m] >T ∗P .
Figure 3 shows the community structure obtained by approximate maximiza-
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Fig. 3. Aggregation in space and time of the Vélo’v network: Communities of the
average network < T [n, m] >T ∗P are shown on top of a simplified map of Lyon. Each
community has its own color. The size of one node is proportional to the number of
trips made to and from this station; the width of each edge is proportional to the
number of trips made between two stations. For the sake of clarity, the undirected
version of the graph is shown and stations with small connectivity (degree at most
2) and edges with low activity (at most one trip per week) are not shown.

tion of the modularity Q by the Louvain algorithm. Four communities appear
in this network and they are displayed on the Figure. The main feature is that
the obtained communities, when shown on a map using the GPS coordinates
of each Vélo’v station, are easily grouped on a geographical basis. This can
be surprising as the partitioning in communities is blind to any geographical
consideration. Anyway, one recognizes in the proposed communities a parti-
tion of Lyon city that reflects its general organization. The center of the city
is spread out between the Presqu’̂ıle (between the two rivers, the Saône on
the west, the Rhône on the east) and Part-Dieu (transport hub comprising
the main railway station and a subway station) (blue community); the north-
east part contains the 6th district and Villeurbanne which are well connected
together with a major science university campus in the north (red commu-
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nity); the south and south-east parts are organized along two major roads
(one from Gerland to Saxe-Gambetta and then Part-Dieu, a second along the
limit between the 3rd and the 8th district to Saxe-Gambetta) (black commu-
nity on the map). Finally, the north (Croix-Rousse) and north-west (Vaise,
9th district) are separate from other parts because Croix-Rousse is on the
top of a high hill, and Vaise accessible only along the Saône river between
Croix-Rousse hill and Fourvière hill (5th district); this creates a fourth sep-
arate community. This good matching of communities found by modularity
and of the geographical partition of the city in large zones was first discussed
in [10]. It even holds if one uses a smaller scale for communities, by keeping
the hierarchical structure that is obtained thanks to the Louvain algorithm.

Communities in Vélo’v networks during the week-days.

Communities can also be looked at for individual snapshots T [n, m](t, ∆),
with t ∈ T ∗P , of the Vélo’v network. Figure 4 displays the community structure
obtained by the Louvain algorithm for two snapshots taken during ordinary
job days (here, on Mondays). The community structure at a given time in
the week still matches a geographical partitioning of the city. Because the
timescale is finer, with less aggregation in time, more details are apparent
and some specific Vélo’v stations are not in the same community as their
surrounding stations. For instance, the northern community (Villeurbanne)
which includes a major university campus, includes also a station on the banks
of the Rhône where there is also a university. Also, there are more communities
(6 here) than in the average network. One new community groups together the
Croix-Rousse hill with the Hôtel de Ville and the 6th district which contain the
closest downhill subway stations. The comparison of the maps in the morning
(on the left) and at the end of the afternoon (on the right) is interesting: it
shows that most of the communities are left unchanged. This indicates that
Vélo’v, like other ordinary transportation means, is used for commuting (from
home to work in the morning, and back in the late afternoon). However, the
community grouping the Croix-Rousse hill and the 6th district is not present
anymore: it is not hard to figure out that people living on the Croix-Rousse
will not use Vélo’v bicycles (which are heavy bicycles) to go up the hill back
to their home. Apart from that, more than 90% of the remaining nodes did
not change of community. Note that the same results are obtained for other
ordinary week-days.

Communities in Vélo’v networks during the week-ends.

When turning to the analysis of the week-end uses of Vélo’v, the features
change a little bit as shown in Figure 5. A first point is that the most active
stations during the week-ends are not always the same than during the or-
dinary days. Major transportation hubs are unchanged (Part-Dieu, down-hill
of Fourvière, Hôtel de Ville,...) yet new active stations appear near places for
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Fig. 4. Aggregation in space of snapshots of the Vélo’v network. Left: Monday am
(7am-9am); Right: Monday pm (4pm-6pm). Each community has an arbitrary color.
The size of each node is proportional to its incoming flow added to its outgoing flow.
Note that the number of trips is usually larger during the afternoon (as was already
seen on Fig.1, the peak for two hours in the afternoon is 1.5 times higher than the
one in the morning).

Fig. 5. Aggregation in space of snapshots of the Vélo’v network. Left: Saturday pm
(3pm-5pm); Right: Sunday pm (3pm-5pm). Each community has an arbitrary color.

shopping (in the Presqu’̂ıle) and all around the large and green city park of
la Tête d’Or in the north.

On Sunday (on the right), the communities could be reminiscent of the
time-averaged ones excepted on two points. First, Vaise (9th district) is
grouped with the Presqu’̂ıle community, possibly because the paths along
the river are a pleasant leisure trip. Second, the community ranging from
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Part-Dieu to the 3rd and 8th districts contains a station which is the most
active during the week-ends: the station at the entrance of the city park of la
Tête d’Or. Also some stations along the Rhône river are grouped in the same
community. Here again, this is not a great surprise as the park of la Tête
d’Or is a main destination for Sunday’s outdoor activities. This community
connects this park to other places that are either hubs of transportation (like
Part-Dieu and Saxe-Gambetta) or other subway stations.

For Saturdays (on the left), the situation is more complex and does not re-
flect easily a simple geographical partition of the city. A community organized
around the park of la Tête d’Or and grouping many stations around the park
and on the river banks (having an easy access to the park thanks to bicycle
paths on the river banks) is clearly visible. A surprising feature is that the
periphery (Vaise, Croix-Rousse but also the most eastern parts of the city) is
grouped in the community of the city center (in blue). This is a clue showing
that some people uses Vélo’v for longer distance trips on Saturdays than on
ordinary days.

This last aspect is one example of the fine scale analyses that are made
possible by aggregating the network in a meaningful manner. It helps finding
some unexpected structure that could be probed with more details in the
complete dataset.

5 Typology of dynamics of the Vélo’v network

Another method for aggregation of nodes is possible: we now want to group
two nodes if they have the same usage pattern, whereas in the previous sec-
tion we grouped nodes exchanging many bicycles. Such an aggregated view
is different from summing up the individual snapshots. With the objective
of proposing a streamlined methodology for aggregating networks in space
and/or time, we will show how the notion of communities can be tailored to
group nodes with similar behaviors. For that, the idea is to first build a new
similarity network from the dynamical network, before finding communities
of similar nodes.

Similarity graph for the dynamics.

The principle is to quantify the resemblance over time of the different flows
between stations. For that, one considers each snapshot to be one observation
of the network, and then builds a similarity matrix between stations based on
these observations. Given a station n ∈ N , two feature vectors characterize
its activity: the incoming flows F in[n](t) =

∑

i∈N
T [i, n](t, ∆) and the outgoing

flows F out[n](t) =
∑

j∈N
T [n, j](t, ∆) where t ∈ TP and ∆ is constant. For a

given pair of stations [n, m], quantities can be computed to quantify if these
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activity patterns look alike or not. A general approach relies on the choice of a
distance d between features (see for instance [36] for many possible distances,
or [28] for application on graphs), leading to distances between activities of
stations n and m:

Din[n, m] = d(F in[n], F in[m]) and Dout[n, m] = d(F out[n], F out[m]). (3)

For dealing with observations at different times t ∈ TP , it is natural to use a
correlation distance over the various observations. The empirical estimator of
correlations reads as

Din[n, m] =
1

#TP

∑

t∈TP

F̃ in[n](t)F̃ in[m](t) (4)

where F̃ in[n] is the centered and normalized version for each n of F in[n] (and
respectively for F̃ out[n]), and TP is a set of times of interest.

When looking at individual snapshots of the Vélo’v network, we have com-
mented that the behaviors during the week-days are roughly unchanged from
one day to another. It makes sense to take as the set of relevant times TP

the 15 peaks of activity of the week-days that were already used previously:
8am, 12am and 5pm, with ∆ = 2h. We obtain two correlation matrices of
size #N ×#N , that we note ρin

week and ρout
week. For the week-ends, the behav-

ior of the stations is different and we compute separately a correlation for
the features during the week-ends. Using for TP the times 12am and 4pm of
Saturday and Sunday and a timescale ∆ = 2h, two other correlations matri-
ces are obtained: ρin

w.−end and ρout
w.−end. Note that one could use not only the

peak activities but the whole temporal features over these days (like the one
reported in Figure 1 for the global system). However, it is less important if
during the low activity parts of the days, two stations have the same behavior
(which could be no activity at all, and that would have no real relevance).

Remind that the goal is to compare the behaviors of stations, hence the
choice of looking at in-in or out-out correlations. An alternative would be
to study in-out correlations between pairs of stations; this metrics would de-
scribe whether two stations are well connected in the meaning that bicycles
leaving one station have a good chance to arrive at another station. However,
this metrics appear to be less interesting: first, the mere study of the flows
connecting two stations, as studied in Section 4, gives already a picture of
how well two stations are connected in this acceptance and this new study
would be somewhat redundant; second, the flows leaving a given station are
usually really spread between many other stations: the statistical confidence
on estimated in-out correlations is low and we leave their study to further
work.

For the Vélo’v network, the situation is that of many nodes (#N = 334)
but only a few observations on one dataset because #TP is 15 for week-days,
and 4 for week-ends. Recent theoretical studies about Correlation Screening
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Fig. 6. Distribution of the empirical correlations ρout
week values.

[37] have shown that, even under the null hypothesis of no correlations be-
tween the node features, one should expect large estimated values if using
the empirical correlation for large #N and small #TP . The number of false
discovery of non-zero correlations can then be really large. In [37], expressions
are given to estimate the threshold under which false discovery becomes dom-
inant. As a consequence, if one wants to build a network of similarity between
nodes based on correlation for a small number of observations (as it is often
the case), it is expected that a thresholding operation is needed on the cor-
relation to reduce the number of false discoveries. Using [37], and the specific
values for the Vélo’v network, a threshold in correlation of 0.8 is reasonable
to obtain some statistical confidence of discovering real correlations. Figure 6
shows the histogram of the values of the correlation matrix ρout

week outside the
diagonal. As expected, the distribution is broad in [−1, 1]. Still, a maximum
in the probability of finding large correlations occurs around 0.85 that is not
predicted by a null hypothesis of uncorrelated node features. This is a sign of
existing similarities in the nodes’ activities in the network.

We build a similarity graph for the nodes by thresholding the 4 correlation
matrices and summing up the thresholded correlations. The weight S[n, m]
on each edge of the similarity graph is then:

S[n, m] =
∑

dir.={in,out}
time={week,w.−end}

max(ρdir.
time, η)− η. (5)

where η is the threshold. Based on the analysis before, we set η = 0.8 (though
the results are not sensitive to small changes of η). An important remark is
that the threshold is applied directly on ρ, not on its absolute value: for the
Vélo’v network, negative correlations are discarded because stations with op-
posite activities would not be in a group of similar behavior. On the contrary,
it could be used as to detect stations whose behavior are far remote, but this
is not our objective here.

As a consequence, the similarity weights S[n, m] are between 0 and 4. If
two nodes are never similar, neither during the week nor during the week-
ends, both for incoming and leaving flows, the weight is 0 and the nodes (i.e.,
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Fig. 7. Communities in the similarity graph S[n, m] of the Vélo’v network. Each
community (in an arbitrary color) reflects a specific pattern of usage of the station
during the week. Edges are non-zero weights of similarity S[n, m] and nodes have a
size proportional to the number of trips made to and from this station.

Vélo’v stations) are not connected in the similarity graph. If the nodes have
similar behavior along time for some of the features, the weight will increase
by being higher than η, 2η, 3η or 4η if they are similar for one, two, three or
all of the feature correlation matrices. Using thresholding before summing the
correlations allows us to escape the poor estimation in correlation screening.

Communities of dynamical activities.

Given the similarity graph, quantifying if the activities of two stations look
alike along time or not, it is possible to build a typology of the stations
by grouping them according to these correlations. This is simply framed as
a problem of detecting communities in the similarity graph of weights S.
The same method of community detection, using modularity and the Louvain
algorithm, is used on the weighted similarity graph. It provides communities
of stations that share, by design of S, their pattern of activity in time. Each
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community is a type of dynamical activity in the Vélo’v network. The set of
communities can be seen as a typology of the different dynamics at work in
the network. Figure 7 shows the obtained typology on the Lyon map.

As compared to the previous communities obtained for space aggregation,
the similarity communities can not be matched on a simple geographical par-
titioning of the city. However, it can be interpreted as a kind of segmentation
of the city in various zones of activity. For instance, the community in black
groups most of the nodes from the university campus (Villeurbanne and near
the park in the north, Gerland in the south, the medicine university in the east
and the university on the banks of the Rhône) and parts of the city with many
companies – places to which people commute. The community of Part-Dieu
(in red) includes many places of major subway or tramway hubs. Another
(in dark blue) is spread out in the city center and has extensions along the
stations of the subway lines crossing the center at Bellecour. Finally, the two
remaining communities (in light colors) group parts of the cities that are in
the east (mostly residential area) or near the Saône river banks in the center
(where there are many shops, especially active during the week-ends).

All these communities, found through the similarity patterns in the dy-
namical Vélo’v network and thanks to information science methods, offer a
typology of the different neighborhoods in Lyon that will be compared in the
future to social science studies.

6 Conclusion

Studying the Vélo’v shared bicycle system as a dynamical network, we have
discussed in this chapter how the methods for complex networks can be used
to understand part of the dynamics of movements in a city. A key point of
the study is the existence of digital footprints left by the use of such auto-
mated systems. The main point of this article, after a review of general results
on community shared bicycle systems, is to show that community detection
thanks to modularity maximization offers a way to create space and/or time
aggregation of a network representation of the system. This method for ag-
gregation in space would make possible the modeling of the Vélo’v systems in
two levels: a first level inside each community (each having many trips inside
the group); a second level between the communities. Separating the modeling
in two levels like that is a good step to reduce the dimensionality of possible
modeling of the number of trips made with bicycles in space and time. Also,
the aggregated networks that were obtained are interesting as they enable
future comparisons of results obtained by these complex network methods,
to results obtained more traditionally by economical and social studies of the
city and its transportation systems.
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