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This work presents a discussion on the probability density function of Intrinsic Mode
Functions (IMFs) provided by the Empirical Mode Decomposition of Gaussian white
noise, based on experimental simulations. The influence on the probability density func-
tions of the data length and of the maximum allowed number of iterations is analyzed
by means of kernel smoothing density estimations. The obtained results are confirmed
by statistical normality tests indicating that the IMFs have non-Gaussian distributions.
Our study also indicates that large data length and high number of iterations produce
multimodal distributions in all modes.
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1. Introduction

The Empirical Mode Decomposition (EMD), first proposed by Huang et al., arose
as a new completely data-driven method for signal analysis with many potential
applications.1 However, some aspects concerning its theoretical properties are still
obscure and the results of its application on a given signal cannot be predicted. Stud-
ies have been carried out by Flandrin et al. which allow us to assert that, when
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applied to Gaussian white noise, EMD acts in a similar way as a wavelet filter
bank.2,3 A research on the EMD effects on uniformly distributed white noise was
performed by Wu and Huang, and normal distributions of the Intrinsic Mode Func-
tions (IMFs) were reported.4 On the basis of these results, Wu and Huang suggested
a chi-square distribution for the energy density distribution of the IMFs. In the men-
tioned article, the authors used one million length white noise time series and the
sifting process was limited to 10 iterations. A similar study was carried out by the
same authors on Gaussian white noise, with 7–10 sifting iterations deriving similar
conclusions.5 However, in none of this works a normality test was applied and the
conclusions were based on a Gaussian-like histogram estimation, using 50,000 data
points in Refs. 4 and 5. An extension of these experiments to fractional Gaussian
noise was conducted by Flandrin et al., and a similar conclusion was reached about
the normality of the IMFs.

In this work, we study the statistical properties of EMD on Gaussian distributed
white noise. We show and discuss the dependence of the IMFs distribution on the
signal lengths and the number of allowed iterations that involves the sifting process.
Additionally, normality tests are carried out on the IMFs in order to test the null
hypothesis of normality.

2. Experimental Design

In order to study the Probability Density Functions (PDFs) of the IMFs obtained
by EMD of Gaussian white noise, a random signal with Gaussian distribution x(n)
was generated with zero mean and unitary variance, with 220 data points. Then,
the signal x(n) was split into W non-overlapping windows xw(n) of lengths L =
210, 212, . . . , 220. For each window xw(n), the EMD algorithm was applied using a
given maximum number Ni of iterations in the sifting process (Ni = 5, 10, 15, 25, 50
and unlimited), yielding the IMFw

k (n) for modes k = 1, . . . , K. In this way, we obtain
a number of realizations to be used for the PDFs estimation purpose. Therefore,
the here considered IMFs are built by concatenation:

IMFk(n) = [IMF1
k(n) | IMF2

k(n) | · · · | IMFW
k (n)], (1)

for k = 1, 2, . . . , K.
We used the Matlab implementation of EMD available at Ref. 8. The sifting

is ended when the number of zero-crossings and the number of extrema differ at
most by one, and when the local mean between the upper and lower envelopes are
close to zero. The criteria for deciding if such local mean is close to zero enough,
are adopted as in Ref. 7, using the typical values suggested in this paper. If these
criteria are not achieved, but an a priori established maximum number of sifting
iterations is reached, the process is terminated.

In this way, using (1) for each IMFk, the PDF was estimated (at the different
window lengths L and number of iterations Ni) using N = 220 data points. The
probability density estimation was performed by Gaussian kernel method,9 using
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Fig. 1. The signal x(n) was split into nonoverlapping windows, (x1(n), x2(n), . . . , xW (n)). EMD
was applied and the K modes IMFw

k (n), k = 1, . . . , K, were obtained for each xw(n), w = 1, . . . , W .
Next, the PDF was estimated for each IMFk(n), k = 1, . . . , K.

Ns = 500 equally spaced points ys covering the range of data in the corresponding
IMFk:

PDF(ys) =
1
N

N∑

n=1

ω(ys − IMFk(n);h), (2)

where ω is the kernel function, whose variance is controlled by the parameter h. In
our case, ω(z; h) denotes the normal density function in z with mean 0 and standard
deviation h. For each mode k, the bandwidth h of the Gaussian kernel was chosen
as the optimal for normal densities9:

h =
(

4
3N

)1/5

σ, (3)

where σ is its standard deviation.
The above described procedure is depicted in Fig. 1.

3. Results and Discussion

First we analyze and compare the PDFs corresponding to each of the IMFw
k for

modes k = 1, 2, . . . , 6 for windows xw(n) of fixed length and unlimited sifting iter-
ations (Sec. 3.1).
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In order to discuss the incidence of the signal length and the maximum number
of sifting iterations, we perform the analysis of the above described data PDFs
using different approaches: (i) density estimation for a fixed value of window length
(L) and different number of maximum iterations (Ni), (ii) density estimation for a
fixed maximum number of sifting iterations (Ni) varying the data length (L). See
Secs. 3.2 and 3.3, respectively.

The first case is equivalent to study the influence of data length on the statistical
properties of the IMFs.

We also study the number of sifting iterations demanded by the method to
accomplished the stopping criteria (Ni is unlimited) in relation to the data length
L (Sec. 3.4).

In Sec. 3.5 a normality test is applied to the IMFs.

3.1. IMF density estimation

In Fig. 2, we compare the kernel smoothing density estimations of IMFw
k , with w =

1, 2, . . . , 1024 and k = 1, 2, . . . , 6 for a Gaussian noise realization xw(n) of length
L = 210 and Ni set to unlimited, plotted in gray lines. It must be noticed that in
this way we are estimating the PDFs corresponding to 210 = 1024 realizations. The
corresponding averages are displayed in black lines. The PDFs have been estimating
using 50 Gaussian kernels.

It can be appreciated that the individual PDFs do not seems to be normal.
However, the average of these estimated distributions tends to a normal curve. An
exception is observed in the first mode, where a bimodal behavior can be appreci-
ated. An explanation of this situation can be read in Ref. 3.

3.2. Fixed data length

By means of EMD we obtain the IMFk for k = 1, 2, . . . , 10 with L = 210, using
different Ni values, (Ni = 5, 10, 15, 20, 25, 50, . . . ,∞). The corresponding PDFs are
estimated with a Gaussian kernel smoothing method using 500 equally spaced points
that cover the range of each IMFk. The obtained results for modes k = 1, . . . , 6 are
shown in Fig. 3. We can observe that for Ni larger than 5, the distributions look
very similar within each mode. In every case, except the first mode, we can appre-
ciate slightly spiky shape around the maximum that corresponds to the statistical
mode.

A similar experiment is carried out with L = 220. In Fig. 4 are displayed the
PDFs estimations of IMFs 1–6. In this case the PDFs exhibit a greater dependence
on the Ni. It can be observed that, in all the cases, increasing Ni the PDF evolves
from a “spiky” shape (alike those obtained with L = 210) towards a flattened one.
In occasions bimodal (k = 5 and 6) and tri-modal (k = 2, 3 and 4) PDFs are
observed when Ni is unlimited.

These observations confirm to the need of performing a normality test.
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Fig. 2. Kernel smoothing density estimation of IMFs 1–6 for L = 210 and unlimited sifting iter-
ations. The PDF estimations for each xw(n), w = 1, 2, . . . , 1024 are plotted in gray. The averaged
PDFs are displayed in black. The averaged PDFs for IMFs 2–6 are approximately Gaussian.

3.3. Fixed maximum number of iterations

Setting Ni = 5, we obtain the PDFs shown in Fig. 5, depending on the data length
L = 210, 212, . . . , 220. Once more, the PDFs are very close within each mode, and
seem not to depend on L. Their shapes look to be closer to a Laplacian distribution
than to a Gaussian.

On the other hand, allowing an unlimited number of sifting iterations Ni, we
observe in Fig. 6 that increasing the signal length L, the densities maxima go lower
and the shape of the PDFs changes from unimodal to multimodal.

3.4. Maximum number of iterations

From a practical point of view, an interesting question about the previous experi-
ments should be which is the number of iterations demanded by EMD to accomplish
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Ni = 5; Ni = 10; Ni = 15; Ni = 20; Ni = 25; Ni = 50; Ni = ∞.

Fig. 3. Kernel smoothing density estimation of IMFs. The PDF estimations of IMFs 1–6 are
shown in (a)–(f). The IMFs are constructed by concatenation of the obtained IMFs of xw(n) with
length L = 210. The maximum number of iterations varies: Ni = 5, 10, 15, 20, 25, 50 and unlimited.

the stopping criteria depending on the signal length. In order to answer it, we
record this information and the results are shown in Fig. 7 for data length
L = 210, 212, . . . , 220. As L increases, then the median and the dispersion also
increase.

When L = 210, we have 1024 realizations, therefore the outliers showed in
the boxplots can be disregarded. The number of iterations needed to accomplish
the stopping criteria has a median value of approximately 10 for all modes. This
situation provides a possible explanation to the similarities of the PDFs presented
in Fig. 3 for Ni ≤ 10. However, when L increases, the number of needed iterations
and their dispersion also increases.

3.5. Normality test

We have run the Jarque–Bera normality test6 on the IMFs obtained as described
in Eq. (1), applying EMD to Gaussian noise of lengths L = 210 and L = 220 for
several maximum number of iterations (Ni = 5, 10, 15, 20, 25, 50, . . . ,∞).
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Ni = 5; Ni = 10; Ni = 15; Ni = 20; Ni = 25; Ni = 50; Ni = ∞.

Fig. 4. Kernel smoothing density estimation of IMFs. The PDF estimations of IMFs 1–6 are
shown in (a)–(f). The IMFs are obtained by EMD of x(n) with length L = 220. The maximum
number of iterations varies: Ni = 5, 10, 15, 20, 25, 50, . . . ,∞.

In the case of L = 210 the null hypothesis of normality has been always rejected
with α = 0.05 and p < 0.001. On the other hand, for L = 220 the null hypothesis
has not been rejected only for IMF 6 when Ni = 10 (p = 0.496), IMFs 3, 4 and 5
when Ni = 15 (p = 0.448, p = 0.500, and p = 0.378, respectively), and IMF 6 when
Ni = 25 (p = 0.500). The null hypothesis has been rejected with a larger value of
p (p = 0.002) for IMF 4, corresponding to Ni = 10. Similar results were obtained
by applying Lilliefors test of normality.

Looking at Fig. 3, the curves corresponding to those cases when the null hypoth-
esis was not rejected seemed to be Gaussians. The occurrence of these Gaussian-like
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Fig. 5. Kernel smoothing density estimation of IMFs. The PDF estimations of IMFs 1–6 are
shown in (a)–(f). The IMFs are constructed by concatenation of the obtained IMFs of xw(n) with
lengths L = 210, 212, . . . , 220. The maximum number of iterations was fixed to : Ni = 5.

distributions, become evident while increasing Ni the curves change from “spiky”
to multimodal alike shapes.

3.6. Further remarks

As discussed in the previous sections, a finding of this paper is that the shape of the
PDFs of the IMFs have a tendency to become bimodal, or even multimodal, as the
sifting number or the data length becomes large. Also, the first IMF always shows a
bimodal structure. In order to explore this situation further and try to understand
the mechanism behind this tendency, one could think in running similar experiments
using, instead of the EMD, the ensemble empirical mode decomposition (EEMD)
proposed by Wu and Huang, which overcomes some of the EMD modes mixing
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Fig. 6. Kernel smoothing density estimation of IMFs. The PDF estimations of IMFs 1–6 are
shown in (a)–(f). The IMFs are constructed by concatenation of the obtained IMFs of xw(n) with
lengths L = 210, 212, . . . , 220. The maximum number of iterations was unlimited.

problems.10 It defines the true IMF components as the mean of certain ensemble
of trials of size Ne, each obtained by adding white noise of finite variance to the
original signal.

In preliminary experiments using EEMD with only five sifting iterations and
Ne = 500, the Gaussian null hypothesis could not be rejected in any mode except
the first one, where a bimodal PDF was still present. In fact, this could be an
expected result, because of the central limit theorem, given that at each mode the
final IMF component is obtained by the addition of the mode corresponding to each
new noisy realization of the original signal.

It must be noticed that these preliminary EEMD results could only be com-
pared with those shown in Fig. 5. Usually, in the EEMD approach the number of
realizations is high (200 ≤ Ne ≤ 1000) while the sifting number is fixed as low as
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Fig. 7. Boxplots of the number of sifting iterations for data of lengths L = 210, 212, . . . , 210

and number of sifting iterations for L = 220 datapoints. The maximum number of iterations was
unlimited.

possible. Therefore, taking into account its extensive computational cost, it would
not be a realistic situation to perform experiments in the EEMD framework with
unlimited number of iterations. Therefore, the new experiments with EEMD should
be carefully designed. These ideas will be explored and developed in future works.

4. Conclusions

A study of the statistical properties of the IMFs obtained by EMD of Gaussian
noise, and its dependence on data lengths and number of allowed sifting iterations
was presented. It indicates that the PDFs is strongly relied on the data length, and
on the maximum allowed number of iterations. Depending on these parameters,
the PDF can have a Laplacian alike or a multimodal shape. Only in a few settings,
a Gaussian distribution is obtained. These results were confirmed by two different
normality tests. Similar conclusions were derived from uniformly distributed white
noise data.
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