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A brief historical sketch

Lamperti, 1962: seminal result on self-similar processes, of-
ten quoted (e.g., in Vervaat, 1987 or Samorodnitsky & Taqqu,
1994), but rarely discussed per se (until Burnecki et al., 1997).

Gray & Zhang, 1988; Yazici & Kashyap, 1995—-1997; Vidacs
& Virtamo, 1999: independent re-introductions of Lamperti’'s
warping idea.

Nuzman & Poor, 1999-2000: systematic use of the Lamperti
transform for processing self-similar processes.

Borgnat et al., 2001: extension and application to stochastic
discrete scale invariance.

Outline of the talk

1. Stationarity and self-similarity

2. The Lamperti transformation: Definition, consequences,
examples and applications

3. A variation related to stochastic discrete scale invariance

4. Concluding remarks

Shifts and dilations
Definition 1 Given 7 € IR, the shift operator S; operates on
processes {Y (t),t € R} according to:

(SY)t) =Y+ T7).

Definition 2 Given H > 0 and XA > 0, the renormalized dilation
operator Dy \ operates on processes {X(t),t > 0} according to:

(DA X)) == 2T X ().




Stationarity and self-similarity

Definition 3 A process {Y (t),t € R} is said to be stationary if
{(SY)(1),t e R} £ {Y(1),t € R}

for any T € R.

Definition 4 A process {X(t),t > 0} is said to be self-similar of
index H (or “"H-ss") if

(D AX)(#),t > 0} £ {X(t),t > 0}
for any A > 0.

The Lamperti transformation

Definition 5 Given some number H > 0, the Lamperti trans-
form Ly operates on processes {Y (t),t € R} according to:

(LyY)(@) :=tH y(logt),t >0,

whereas the corresponding inverse Lamperti transform Lﬁl op-
erates on processes {X(t),t > 0} according to:

(LG X)(@) = e X ()t € R.

Lamperti’'s theorem

Lemma 1 The Lamperti transform guarantees an equivalence
between shifts and renormalized dilations in the sense that, for
any X > 0:

Ly DLy = Siog -
Theorem 1 If{Y (t),t € R} is stationary, its Lamperti transform

{(LygY)(t),t > 0} is H-ss. Conversely, if {X(t),t > 0} is H-ss, its
inverse Lamperti transform {(ﬁﬁlX)(t),t € R} is stationary.

Brownian motion




Consequences — 1.

Covariances — Statistical properties of self-similar processes can
be inferred from those of their Lamperti counterparts, and vice-
versa. Introducing the notation Rx (¢, s) := EX(t)X(s), we have

Ry (ts) = e TUTI Ry (el e)

R, v(ts) = (ts)” Ry (logt,log s)
Stationarity — In the case where {Y (t),t € R} is stationary,
Ry (t,5) = vy (t — 5) and

R,y (t,s) = (ts)” vy (log(t/s)).

Consequences — 2.

Corollary 1 Any second-order H-ss process {X(t),t > 0} has
necessarily a covariance function of the form

Ry (t,5) = (ts)" cp(t/s)
for any t,s > 0, with cy(exp(.)) a non-negative definite function.

Corollary 2 Given a second-order H-ss process {X(t),t > 0}, the
spectrum of its stationary counterpart {(ﬁﬁlX)(t),t € R} is the
Mellin transform of the scale-covariant function cg(.):

Ty (f) = (Meg)(i2nf),
with
(MX)(s) := /O+OOX(t) t=5 1z

Scale-covariant systems — 1.

Definition 6 A linear operator G is said to be scale-covariant if
it commutes with any renormalized dilation, i.e., if

GDux =Dy a9
for any H > 0 and any XA > 0.

Proposition 1 If an operator G is scale-covariant, it necessarily
acts on processes {X(t),t > 0} as a multiplicative convolution:

@0 = [ 9(t/) X(5) s/

Corollary 3 Scale-covariant operators preserve self-similarity.
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Scale-covariant systems — 2.

Corollary 4 The Lamperti transform maps linear filters onto
scale-covariant systems.

Proposition 2 Any H-ss process {X(t),t > 0} can be repre-
sented as the output of a linear scale-covariant system of impulse
response g(.):

X = [ gt/ avis)ss,
with EEdV (£)dV (s) = o2 t2H+1§(¢t — ) dt ds.

Corollary 5 The spectrum of {(ﬁl_ilX)(t),t € R}, stationary
counterpart of the H-ss process {X(t),t > 0}, is given by

Ty () =02 [(Mg)(H +i2n ).
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Applications

From stationarity to self-similarity — Classes and models of self-
similar processes can be obtained by “lampertizing” correspond-
ing classes and models of stationary processes.

From self-similarity to stationarity — Conversely, “delampertiz-
ing" self-similar processes can render their processing easier, by
making them amenable to classical tools aimed at stationary
processes.
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A general framework

A transformation 7 on an H-ss process {X(t),t > 0} can be
equivalently achieved as 7 = L‘H’T/:;Il, according to the commu-
tative diagram:

X(t) SN (TX)(t) (self — similar world)
| T
inverse Lamperti Lamperti
! |

(EﬁlX) (t) — (Tﬁ;llX) (t)  (stationaryworld)
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Example 1. — Tones and chirps

The (stationary) random phase ‘“tone”

Yo(t) := a cos(2n fot + ¢),t € R,

with a, fo > 0 and ¢ € U(0,2x), is “lampertized” into the (self-
similar) random phase ‘chirp”

Xo(t) :=(LygYy) () = att cos(2mfglogt + ¢),t > 0.

Remark — Xo(t) = Re{ae’®ms(t)}, with s = H + i2nfg and
ms(t) := t° the basic building block of the Mellin transform.
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Example 2. — From fBm to gOU

H-ss processes {X(t),t > 0} with stationary increments (or, “H-
sssi” processes) have a covariance function of the form

2
o
Rx(t,s) = S (t2H A 5|2H) .

H-sssi + Gaussian = fractional Brownian motion (fBm) By (t).

The inverse Lamperti transform {Yy(t) := (5;IlBH)(t),t eR}is
a generalized Ornstein-Uhlenbeck (gOU) process of (stationary)
covariance function

Yy, (1) = 02 (cosh(H|T|) — p2H-1 sthH(|T|/2)) .
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gOU process (Lamperti-transformed fBm)
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Example 2. — From fBm to gOU (cont'd)

Bm & OU —If H = 1/2, {By,5(t),t > 0} is the ordinary Brown-
ian motion of covariance function Rp, 2(t,s) = o2min(t,s), and
its Lamperti image {Yl/z(t),t € R} is the ordinary OU process
of (stationary) covariance function:

Tyy (1) = 02 e 1T/,

Long-range vs. short-range dependence — The (stationary) in-
crement process of fBm (or fractional Gaussian noise, fGn) is
long-range dependent if 1/2 < H < 1, whereas the gOU process
Yy (t) is short-range dependent for any H € (0,1), since

,YYH(T) x o2 efmin(H,lfH)T

when 7 — oo.
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Example 2. — From fBm to gOU, and back

The spectrum density of gOU processes reads

o2 r((1/2) +i2xf)|?

FYH(f) == ) 20 . y
H? + 4n2f M(H + 27 f)

and it can be factorized so that I'y, (f) = |d>+(f)|2, with &4 (f)
the transfer function of a causal filter.

Whitening — Whitening gOU is equivalent to transforming fBm
into Bm = innovations representations for fBm.

Prediction — Observing a self-similar process on some finite
interval [0,T] is equivalent to observing its (stationary) Lamperti
counterpart on the real half-line [0, 00) = linear prediction of fBm
from Wiener-type prediction of gOU (Nuzman & Poor, 2000).
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Example 3. — From OU to ssOU

The OU process {Y],5(t),t € R} is solution of the Langevin
equation

dY (t) + a Y (t) dt = dB(t),

with a = 1/2. Given a > 0, the general solution is

t
Yo(t) = / ooe—a(t—8> dB(s),

whose Lamperti transform (or, ssOU process)

t
Xou(®) = (LaYa) () =7~ [ 57 dB(l0gs),t > 0,
is solution of
tdX(t) + (a— H) X (t)dt = dV (1),

with EdV (¢)dV (s) = o2 t2H+1§(t — 5) dt ds.
20

Example 3. — From OU to ssOU (cont’'d)

Scale-covariant representation — Noting that dB(logt) is covariance-

equivalent to t~1/2dB(t), we have

Xon(® = [ /9" utt/s ~ D) 2B s
g9(t/s) dv(s)
with u(.) the unit-step function.

ssOU covariance function — The (nonstationary and H-ss) ssOU
process generalizes Bm according to

RXa H(t7 S) = 0-2 (min(ta S))H+a (max(t, S))H_aa
leading to R, ,, (t,s) = (min(t,))?", and X; )5 (1) = t1-1/2 B().
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Example 4. — From ARMA to EC

Stochastic differential equation — Ignoring non-differentiability
issues, the Langevin equation of OU processes can be written as

dy
W +ay®) =W,

with W (t) “white noise” such that EW (t) W(s) = 026(t—s) dt ds.

ARMA — This can be generalized to ARMA(p, q) processes of
the form

p q
3 an Y@ = 3 B W),
n=0 n=0

with the notation Y (") (¢) := (d"Y/dt")(¢).
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Example 4. — From ARMA to EC (cont’'d)

Proposition 3 Stationary ARMA processes have an H-ss Lam-
perti counterpart, referred to as Euler-Cauchy processes, which
is solution of an equation of the form

p q
S, " XMW@y =3 gLt W), ¢ >0,
n=0 n=0

with W (t) = tHt1/2w ().
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Variations on Lamperti's theorem

Applying the Lamperti transformation to weakened forms of sta-
tionarity leads to weakened forms of self-similarity.

Multiplicative harmonizability — Harmonizable nonstationary pro-
cesses {Y (t),t € R} have a Lamperti counterpart which admits
the Mellin representation

(V)@ = [T ag(p). e >0

with Ede(f)dé(w) # 0 for f # v.

Example — Spectral increments may be periodically correlated,
i.e., Ed¢(f)dé(v) #0 for f=v+k/T,k € Z.
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Cyclostationarity and DSI

Definition 7 A process {Y (t),t € R} is said to be periodically
correlated (PC) of period Ty (or ‘Tp-cyclostationary”) if

{(SpY)(®),t € R} £ {Y(1),t € R}.

Definition 8 A process {X(t),t > 0} is said to possess a discrete
scale invariance of index H and of scaling factor A\g > 0 (or to
be “(H,\g)-DSI”) if

d
{(DrX)(1),t >0} = {X(),t > 0}.
It follows from these definitions that Tp-cyclostationary processes

are also T-cyclostationary for any T = ki, k € Z, and that
(H, \g)-DSI processes are also (H,\)-DSI for any A = Xk k e ZZ.

25

Discrete scale invariance

Deterministic DSI — The concept of DSI has been introduced
in a deterministic sense in Saleur & Sornette, 1996.

Ubiquity — DSI has been theoretically shown to naturally oc-
cur in many critical systems, and it has been experimentally evi-
denced in a number of situations: earthquakes, financial crashes,
etc.

Evidence — Power laws attached to usual scale invariance are
decorated with log-periodic oscillations.

Example — The simplest example is given by the middle-third
Cantor set, which is deterministically (0,1/3)-DSI.

26
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Cyclostationarity, DSI and Lamperti

Theorem 2 If {Y(t),t € R} is To-cyclostationary, then its Lam-
perti transform {(LyY)(t),t > 0} is (H,eT0)-DSI. Conversely,
if {X(t),t > 0} is (H,el0)-DSI, its inverse Lamperti transform
{(L;IIX)(t), t € R} is Ty-cyclostationary.

Synthesis and analysis of DSI processes can therefore be achieved:

e cither by “lampertizing” cyclostationary tools
(PC world — DSI world),

e or by “delampertizing” self-similar tools
(DSI world — PC world).

28

DSI and multiplicative harmonizability

Covariance — If a process {X(t),t > 0} is (H, \)-DSI, its covari-
ance function Rx(¢,s) can be expanded on a Mellin basis:

(X> .
Ry (t, kt) = [Nl Z Cn (k) (2H+i27n/log A

n——oo

Spectral distribution function — Spectral increments of (H, \)-
DSI processes are such that EdE(f)déE(v) = @ x(f,v) df dv, with

Sx(f,v)= ) (MC)(f)d(f—v—n/log)).

n—=——oo
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Example 1. Weierstrass
Given i.i.d. phases ¢, € U(0,27), the Weierstrass-like functions

o0
Waa(®) = Y AT g efen,

n=-—oo
define (H,\)-DSI processes whose (inverse) Lamperti image is
log A-cyclostationary, according to:

oo

LFWe)®) = Y (Lgte)(t +nlog ) e'en.

n——oo

Weierstrass-Mandelbrot — In the specific case g(t) = 1 — expit,
the process Wy ,(t) has furthermore stationary increments, and
(L) () = e (1 — expiel).

30

Weierstrass function (H = 0.5)
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Example 2. DSI sequences

From EC to DSI— Continuous-time: DSI can be obtained by in-
troducing log-periodic time-varying coefficients in an EC model.

Discrete-time: discretize EC by integration of its evolution 4+
log-periodic coefficients.

Another model — Fractional difference operator 4+ AR with log-
periodic time-varying coefficients.

Signal with DSI, H=0.1, 2=1.06
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Analysis 1' From DSI tO PC Delampertzation of a DSI signal
10 T
Theory — "“Delampertizing” a DSI process turns it into a PC 8WW\/\/\MN\/W\/\/\N\N\/\/\M/W\N\/\/\/\NV\?
process amenable to classical cyclostationary tools, such as cyclic
spectrum analysis. o
o
Practice — Effective analysis decomposes as:
oL
1. geometrical sampling of the data (given or interpolated) o
[
2. inverse Lamperti transform (with H guessed or estimated) -2
3. cyclic periodogram (function of f and cyclic frequency v) ‘I
Y 75 85
4. marginalization in cyclic frequency v
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Cyclic Marginal for a delampertized DSI process
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Analysis 2. From PC to DSI

A reversed perspective — Another way of analyzing DSI pro-
cesses would be to operate in the data space directly, by using
“lampertized” cyclostationary tools.

Mellin strikes back — In this respect, a central tool is the (Mellin-
based) scale-invariant Wigner spectrum (F., 1990) :

+o0 )
Wx(t,o) = /O RX(tT‘H/Q,tT—l/?) Fi2mo—1 dr,

from which ®x(f,v) can be recovered and marginalized.

37

Conclusion

e Lamperti, from stationarity to self-similarity, and back

e A framework for stochastic DSI

e Applications? (DLA)
contacts
flandrin@ens-lyon.fr
pborgnat@ens-lyon.fr

Bidou.Amblard@lis.inpg.fr
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