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A brief historical sketch

Lamperti, 1962: seminal result on self-similar processes, of-

ten quoted (e.g., in Vervaat, 1987 or Samorodnitsky & Taqqu,

1994), but rarely discussed per se (until Burnecki et al., 1997).

Gray & Zhang, 1988; Yazici & Kashyap, 1995–1997; Vidács

& Virtamo, 1999: independent re-introductions of Lamperti’s

warping idea.

Nuzman & Poor, 1999–2000: systematic use of the Lamperti

transform for processing self-similar processes.

Borgnat et al., 2001: extension and application to stochastic

discrete scale invariance.
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Outline of the talk

1. Stationarity and self-similarity

2. The Lamperti transformation: Definition, consequences,

examples and applications

3. A variation related to stochastic discrete scale invariance

4. Concluding remarks
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Shifts and dilations

Definition 1 Given τ ∈ IR, the shift operator Sτ operates on

processes {Y (t), t ∈ IR} according to:

(SτY )(t) := Y (t + τ).

Definition 2 Given H > 0 and λ > 0, the renormalized dilation

operator DH,λ operates on processes {X(t), t > 0} according to:

(DH,λX)(t) := λ−H X(λt).
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Stationarity and self-similarity

Definition 3 A process {Y (t), t ∈ IR} is said to be stationary if

{(SτY )(t), t ∈ IR} d
= {Y (t), t ∈ IR}

for any τ ∈ IR.

Definition 4 A process {X(t), t > 0} is said to be self-similar of

index H (or “H-ss”) if

{(DH,λX)(t), t > 0} d
= {X(t), t > 0}

for any λ > 0.
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The Lamperti transformation

Definition 5 Given some number H > 0, the Lamperti trans-

form LH operates on processes {Y (t), t ∈ IR} according to:

(LHY )(t) := tH Y (log t), t > 0,

whereas the corresponding inverse Lamperti transform L−1
H op-

erates on processes {X(t), t > 0} according to:

(L−1
H X)(t) := e−Ht X(et), t ∈ IR.

5

Lamperti’s theorem

Lemma 1 The Lamperti transform guarantees an equivalence

between shifts and renormalized dilations in the sense that, for

any λ > 0:

L−1
H DH,λLH = Slogλ.

Theorem 1 If {Y (t), t ∈ IR} is stationary, its Lamperti transform

{(LHY )(t), t > 0} is H-ss. Conversely, if {X(t), t > 0} is H-ss, its

inverse Lamperti transform {(L−1
H X)(t), t ∈ IR} is stationary.
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Brownian motion

Lamperti-stationarized Brownian motion
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Consequences — 1.

Covariances — Statistical properties of self-similar processes can

be inferred from those of their Lamperti counterparts, and vice-

versa. Introducing the notation RX(t, s) := IEX(t)X(s), we have

RL−1
H X

(t, s) = e−H(t+s) RX(et, es)

RLHY (t, s) = (ts)H RY (log t, log s)

Stationarity — In the case where {Y (t), t ∈ IR} is stationary,

RY (t, s) = γY (t − s) and

RLHY (t, s) = (ts)H γY (log(t/s)).
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Consequences — 2.

Corollary 1 Any second-order H-ss process {X(t), t > 0} has
necessarily a covariance function of the form

RX(t, s) = (ts)H cH(t/s)

for any t, s > 0, with cH(exp(.)) a non-negative definite function.

Corollary 2 Given a second-order H-ss process {X(t), t > 0}, the
spectrum of its stationary counterpart {(L−1

H X)(t), t ∈ IR} is the
Mellin transform of the scale-covariant function cH(.):

ΓL−1
H X

(f) = (McH)(i2πf),

with

(MX)(s) :=
∫ +∞
0

X(t) t−s−1 dt.
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Scale-covariant systems — 1.

Definition 6 A linear operator G is said to be scale-covariant if

it commutes with any renormalized dilation, i.e., if

GDH,λ = DH,λG
for any H > 0 and any λ > 0.

Proposition 1 If an operator G is scale-covariant, it necessarily

acts on processes {X(t), t > 0} as a multiplicative convolution:

(GX)(t) =
∫ +∞
0

g(t/s)X(s) ds/s.

Corollary 3 Scale-covariant operators preserve self-similarity.
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Scale-covariant systems — 2.

Corollary 4 The Lamperti transform maps linear filters onto
scale-covariant systems.

Proposition 2 Any H-ss process {X(t), t > 0} can be repre-
sented as the output of a linear scale-covariant system of impulse
response g(.):

X(t) =
∫ +∞
0

g(t/s) dV (s)/s,

with IEdV (t)dV (s) = σ2 t2H+1 δ(t − s) dt ds.

Corollary 5 The spectrum of {(L−1
H X)(t), t ∈ IR}, stationary

counterpart of the H-ss process {X(t), t > 0}, is given by

ΓL−1
H X

(f) = σ2 |(Mg)(H + i2πf)|2.
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Applications

From stationarity to self-similarity — Classes and models of self-

similar processes can be obtained by “lampertizing” correspond-

ing classes and models of stationary processes.

From self-similarity to stationarity — Conversely, “delampertiz-

ing” self-similar processes can render their processing easier, by

making them amenable to classical tools aimed at stationary

processes.
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A general framework

A transformation T on an H-ss process {X(t), t > 0} can be

equivalently achieved as T = LH T̃ L−1
H , according to the commu-

tative diagram:

X(t)
?−→ (T X)(t) (self − similar world)

| ↑
inverseLamperti Lamperti

↓ |

(L−1
H X)(t) −→ (T̃ L−1

H X)(t) (stationary world)
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Example 1. — Tones and chirps

The (stationary) random phase “tone”

Y0(t) := a cos(2πf0t + ϕ), t ∈ IR,

with a, f0 > 0 and ϕ ∈ U(0,2π), is “lampertized” into the (self-

similar) random phase “chirp”

X0(t) := (LHY0)(t) = a tH cos(2πf0 log t + ϕ), t > 0.

Remark — X0(t) = Re{a eiϕ ms(t)}, with s = H + i2πf0 and

ms(t) := ts the basic building block of the Mellin transform.
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tone

chirp
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Example 2. — From fBm to gOU

H-ss processes {X(t), t > 0} with stationary increments (or, “H-

sssi” processes) have a covariance function of the form

RX(t, s) =
σ2

2

(
t2H + s2H − |t − s|2H

)
.

H-sssi + Gaussian ⇒ fractional Brownian motion (fBm) BH(t).

The inverse Lamperti transform {YH(t) := (L−1
H BH)(t), t ∈ IR} is

a generalized Ornstein-Uhlenbeck (gOU) process of (stationary)

covariance function

γYH
(τ) = σ2

(
cosh(H|τ |) − 22H−1 sinh2H(|τ |/2)

)
.
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Example 2. — From fBm to gOU (cont’d)

Bm & OU — If H = 1/2, {B1/2(t), t > 0} is the ordinary Brown-
ian motion of covariance function RB1/2

(t, s) = σ2 min(t, s), and
its Lamperti image {Y1/2(t), t ∈ IR} is the ordinary OU process
of (stationary) covariance function:

γY1/2
(τ) = σ2 e−|τ |/2.

Long-range vs. short-range dependence — The (stationary) in-
crement process of fBm (or fractional Gaussian noise, fGn) is
long-range dependent if 1/2 < H < 1, whereas the gOU process
YH(t) is short-range dependent for any H ∈ (0,1), since

γYH
(τ) ∝ σ2 e−min(H,1−H)τ

when τ → ∞.
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Example 2. — From fBm to gOU, and back

The spectrum density of gOU processes reads

ΓYH
(f) =

σ2

H2 + 4π2f2

∣∣∣∣∣
Γ((1/2) + i2πf)

Γ(H + i2πf)

∣∣∣∣∣
2

,

and it can be factorized so that ΓYH
(f) = |Φ+(f)|2, with Φ+(f)

the transfer function of a causal filter.

Whitening — Whitening gOU is equivalent to transforming fBm
into Bm ⇒ innovations representations for fBm.

Prediction — Observing a self-similar process on some finite
interval [0, T ] is equivalent to observing its (stationary) Lamperti
counterpart on the real half-line [0,∞) ⇒ linear prediction of fBm
from Wiener-type prediction of gOU (Nuzman & Poor, 2000).
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Example 3. — From OU to ssOU

The OU process {Y1/2(t), t ∈ IR} is solution of the Langevin
equation

dY (t) + α Y (t) dt = dB(t),

with α = 1/2. Given α > 0, the general solution is

Yα(t) =
∫ t

−∞
e−α(t−s) dB(s),

whose Lamperti transform (or, ssOU process)

Xα,H(t) := (LHYα)(t) = tH−α
∫ t

0
sα dB(log s), t > 0,

is solution of

t dX(t) + (α − H)X(t) dt = dV (t),

with IEdV (t)dV (s) = σ2 t2H+1 δ(t − s) dt ds.
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Example 3. — From OU to ssOU (cont’d)

Scale-covariant representation — Noting that dB(log t) is covariance-

equivalent to t−1/2dB(t), we have

Xα,H(t) =
∫ +∞
0

[(t/s)H−α u(t/s − 1)]︸ ︷︷ ︸
g(t/s)

[sH+1/2 dB(s)]︸ ︷︷ ︸
dV (s)

/s,

with u(.) the unit-step function.

ssOU covariance function — The (nonstationary and H-ss) ssOU

process generalizes Bm according to

RXα,H
(t, s) = σ2 (min(t, s))H+α (max(t, s))H−α,

leading to RXH,H
(t, s) = (min(t, s))2H, and X1/2,H(t) = tH−1/2 B(t).
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Example 4. — From ARMA to EC

Stochastic differential equation — Ignoring non-differentiability

issues, the Langevin equation of OU processes can be written as

dY

dt
(t) + α Y (t) = W (t),

with W (t) “white noise” such that IEW (t)W (s) = σ2 δ(t−s) dt ds.

ARMA — This can be generalized to ARMA(p, q) processes of

the form
p∑

n=0

αn Y (n)(t) =
q∑

n=0

βn W (n)(t),

with the notation Y (n)(t) := (dnY/dtn)(t).
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Example 4. — From ARMA to EC (cont’d)

Proposition 3 Stationary ARMA processes have an H-ss Lam-

perti counterpart, referred to as Euler-Cauchy processes, which

is solution of an equation of the form

p∑
n=0

α′
n tn X(n)(t) =

q∑
n=0

β′
n tn W̃ (n)(t), t > 0,

with W̃ (t) = tH+1/2 W (t).
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Variations on Lamperti’s theorem

Applying the Lamperti transformation to weakened forms of sta-

tionarity leads to weakened forms of self-similarity.

Multiplicative harmonizability — Harmonizable nonstationary pro-

cesses {Y (t), t ∈ IR} have a Lamperti counterpart which admits

the Mellin representation

(LHY )(t) =
∫ +∞
−∞

tH+i2πf dξ(f), t > 0,

with IEdξ(f)dξ(ν) 	= 0 for f 	= ν.

Example — Spectral increments may be periodically correlated,

i.e., IEdξ(f)dξ(ν) 	= 0 for f = ν + k/T, k ∈ ZZ.
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Cyclostationarity and DSI

Definition 7 A process {Y (t), t ∈ IR} is said to be periodically
correlated (PC) of period T0 (or “T0-cyclostationary”) if

{(ST0
Y )(t), t ∈ IR} d

= {Y (t), t ∈ IR}.

Definition 8 A process {X(t), t > 0} is said to possess a discrete
scale invariance of index H and of scaling factor λ0 > 0 (or to
be “(H, λ0)-DSI”) if

{(DH,λ0
X)(t), t > 0} d

= {X(t), t > 0}.

It follows from these definitions that T0-cyclostationary processes
are also T -cyclostationary for any T = kT0, k ∈ ZZ, and that
(H, λ0)-DSI processes are also (H, λ)-DSI for any λ = λk

0, k ∈ ZZ.
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Discrete scale invariance

Deterministic DSI — The concept of DSI has been introduced

in a deterministic sense in Saleur & Sornette, 1996.

Ubiquity — DSI has been theoretically shown to naturally oc-

cur in many critical systems, and it has been experimentally evi-

denced in a number of situations: earthquakes, financial crashes,

etc.

Evidence — Power laws attached to usual scale invariance are

decorated with log-periodic oscillations.

Example — The simplest example is given by the middle-third

Cantor set, which is deterministically (0,1/3)-DSI.
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Cyclostationarity, DSI and Lamperti

Theorem 2 If {Y (t), t ∈ IR} is T0-cyclostationary, then its Lam-
perti transform {(LHY )(t), t > 0} is (H, eT0)-DSI. Conversely,
if {X(t), t > 0} is (H, eT0)-DSI, its inverse Lamperti transform
{(L−1

H X)(t), t ∈ IR} is T0-cyclostationary.

Synthesis and analysis of DSI processes can therefore be achieved:

• either by “lampertizing” cyclostationary tools
(PC world → DSI world),

• or by “delampertizing” self-similar tools
(DSI world → PC world).
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DSI and multiplicative harmonizability

Covariance — If a process {X(t), t > 0} is (H, λ)-DSI, its covari-

ance function RX(t, s) can be expanded on a Mellin basis:

RX(t, kt) = kH
∞∑

n=−∞
Cn(k) t2H+i2πn/ logλ

Spectral distribution function — Spectral increments of (H, λ)-

DSI processes are such that IEdξ(f)dξ(ν) = ΦX(f, ν) df dν, with

ΦX(f, ν) =
∞∑

n=−∞
(MCn)(f) δ(f − ν − n/ logλ).
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Example 1. Weierstrass

Given i.i.d. phases ϕn ∈ U(0,2π), the Weierstrass-like functions

WH,λ(t) =
∞∑

n=−∞
λ−Hn g(λnt) eiϕn,

define (H, λ)-DSI processes whose (inverse) Lamperti image is
logλ-cyclostationary, according to:

(L−1
H WH,λ)(t) =

∞∑
n=−∞

(L−1
H g)(t + n logλ) eiϕn.

Weierstrass-Mandelbrot — In the specific case g(t) = 1 − exp it,
the process WH,λ(t) has furthermore stationary increments, and

(L−1
H g)(t) = e−Ht (1 − exp iet).
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Example 2. DSI sequences

From EC to DSI — Continuous-time: DSI can be obtained by in-

troducing log-periodic time-varying coefficients in an EC model.

Discrete-time: discretize EC by integration of its evolution +

log-periodic coefficients.

Another model — Fractional difference operator + AR with log-

periodic time-varying coefficients.
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Analysis 1. From DSI to PC

Theory — “Delampertizing” a DSI process turns it into a PC

process amenable to classical cyclostationary tools, such as cyclic

spectrum analysis.

Practice — Effective analysis decomposes as:

1. geometrical sampling of the data (given or interpolated)

2. inverse Lamperti transform (with H guessed or estimated)

3. cyclic periodogram (function of f and cyclic frequency ν)

4. marginalization in cyclic frequency ν
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Analysis 2. From PC to DSI

A reversed perspective — Another way of analyzing DSI pro-

cesses would be to operate in the data space directly, by using

“lampertized” cyclostationary tools.

Mellin strikes back — In this respect, a central tool is the (Mellin-

based) scale-invariant Wigner spectrum (F., 1990) :

WX(t, σ) :=
∫ +∞
0

RX(tτ+1/2, tτ−1/2) τ−i2πσ−1 dτ,

from which ΦX(f, ν) can be recovered and marginalized.
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Conclusion

• Lamperti, from stationarity to self-similarity, and back

• A framework for stochastic DSI

• Applications? (DLA)
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