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nals,” Cargèse, May 2002.



The idea of “scaling”

• Power-law spectra — Power-laws correspond to homoge-
neous functions:

S(f) = C |f |−α ⇒ S(kf) = C |kf |−α = k−αS(f),

for any k > 0.

• Fourier transform — Frequency scaling carries over to the
time domain. If we let s(t) := (F−1S)(f), we get:∫ +∞

−∞
S(kf) ei2πft df = k−1

∫ +∞

−∞
S(f ′) ei2πf ′(t/k) df ′ = s(t/k)/k.

It follows that s(t/k) = s(t)/kα−1 ⇒ self-similarity.
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Scaling processes
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Self-similarity

• Definition — A process {X(t), t ∈ IR} is said to be self-similar

of index H (or “H-ss”) if, for any k > 0,

{X(kt), t ∈ IR} d
= kH{X(t), t ∈ IR}.

• Interpretation — Invariance of statistical properties under

dilations in time, up to a renormalization in amplitude (“self-

affinity”).

Any zoomed (in or out) version of an H-ss process looks

(statistically) the same ⇒ no characteristic scale.
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Self-similarity vs. stationarity

• Exclusion — If a process X is self-similar, it is necessarily
nonstationary. Proof — Assuming that VarX(t = 1) �= 0,
we have, for any t > 0,

Var X(t) = VarX(t × 1) = t2H Var X(1) �= Const.

• Transformations — Stationary processes can be attached to
self-similar processes, and vice-versa (Lamperti, 1962):

– if {X(t), t > 0} is H-ss, then {Y (t) := e−HtX(et), t ∈ IR} is
(strictly) stationary;

– conversely, if {Y (t), t ∈ IR} is (strictly) stationary, then
{X(t) := tHY (log t), t > 0} is H-ss.
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Stationary increments

• Definition — A process {X(t), t ∈ IR} is said to have station-

ary increments if and only if, for any θ ∈ IR, the increment

process: {
X(θ)(t) := X(t + θ) − X(t), t ∈ IR

}
has a distributional law which does not depend upon t.

• Extension — The concept of stationary increments can be

naturally extended to higher orders (“increments of incre-

ments”).
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Self-similarity and stationary increments

• Definition — H-ss processes with stationary increments are

referred to as “H-sssi” processes.

• Covariance — The structure of the covariance function is the

same for all H-sssi processes. Indeed, assuming that X(t) is

H-sssi, with X(0) = 0 and X(1) �= 0, we have necessarily:

IEX(t)X(s) =
1

2

(
IEX2(t) + IEX2(s) − IE (X(t) − X(s))2

)
=

1

2

(
IEX2(t) + IEX2(s) − IE (X(t − s) − X(0))2

)
=

Var X(1)

2

(
|t|2H + |s|2H − |t − s|2H

)
.
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Covariance function of H-sssi processes
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Fractional Brownian motion — 1.

• Definition 1 — A process BH(t) is referred to as a fractional

Brownian motion (fBm) of index 0 < H < 1, if and only if it

is H-sssi and Gaussian.

– fBm has been introduced in (Mandelbrot & van Ness,

1968), as an extension of the ordinary Brownian motion

B(t) ≡ BH(t)|H=1/2 (anomalous diffusion).

– the index H is referred to as the Hurst exponent, and its

limited range guarantees the non-degeneracy (H < 1) and

the mean-square continuity (H > 0) of fBm.
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Fractional Brownian motion — 2.

• Definition 2 — fBm admits the moving average representa-

tion:

BH(t)−BH(0) =
1

Γ(H + 1
2)

{∫ 0

−∞
[(t − s)H−1

2 − (−s)H−1
2]B(ds)

+
∫ t

0
(t − s)H−1

2 B(ds)
}

– fBm results from a “fractional integration” of white noise;

– no specific role attached to time t = 0.
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Fractional Brownian motion — 3.

• Definition 3 — fBm admits the (harmonizable) spectral rep-

resentation:

BH(t) = C
∫ +∞

−∞
|f |−(H+1

2) (ei2πtf − 1)W (df),

with W (df) the Wiener measure.

– the “average spectrum” of fBm behaves as |f |−(2H+1);

– fBm is a widespread model for (nonstationary) Gaussian

processes with a power-law (empirical) spectrum.
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Fractional Gaussian noise — 1.

• Definition — The (stationary) increment process B
(θ)
H (t) of

fBm BH(t) is referred to as fractional Gaussian noise (fGn).

• Autocorrelation — The (stationary) autocorrelation function
of fGn, cH(τ) := IEB

(θ)
H (t)B(θ)

H (t + τ), reads:

cH(τ) =
σ2

2

(
|τ + θ|2H − 2|τ |2H + |τ − θ|2H

)
.

– if θ = 1 and H = 1
2, we have cH(k) = σ2 δ(k), k ∈ ZZ

(discrete-time white noise);

– for large lags τ , one has cH(τ) ∼ σ2θ2H(2H − 1)τ2(H−1)

(subexponential, power-law decay).
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Fractional Gaussian noise — 2.

• Spectrum — If θ = 1, the power spectral density of discrete-

time fGn is given by:

S(f) = C σ2 |ei2πf − 1|2
∞∑

k=−∞

1

|f + k|2H+1
,

with −1
2 ≤ f ≤ +1

2.

– if H �= 1
2, we have S(f) ∼ C σ2 |f |1−2H when f → 0;

– 0 < H < 1
2 ⇒ S(0) = 0;

– 1
2 < H < 1 ⇒ S(0) = ∞ (spectral divergence).
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Fractional Gaussian noise — 3.

• Définition — Given a stationary process {X(n), n ∈ ZZ}, the

recomposition rule

X(n) �→ XT (n) :=
1

T

nT∑
k=(n−1)T+1

X(k)

is referred to as aggregation over T .

– renormalized by TH−1, fGn is invariant under aggregation.

– as T → ∞, aggregating any asymptotically H-ss process

ends up with a process whose covariance structure is that

of fGn.

17



Sample paths — The example of Bm
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Sample paths of fBm — 1.

• Local regularity — For any (small enough) ε > 0 and any

t ∈ IR, we have |B(ε)
H (t)| ≤ C |ε|H, with probability 1.

– fBm is everywhere continuous, but nowhere differentiable;

– sample paths have a uniform Hölder regularity h < H;

– sample paths have a uniform (Haussdorf and box) fractal

dimension: dimB graphBH = 2 − H.
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Sample paths of fBm — 2.

• Correlation between increments — It follows from the co-
variance structure of fBm that, for any t ∈ IR,

CH(θ) := − IEB
(−θ)
H (t)B

(θ)
H (t)

Var B
(±θ)
H (t)

= 22H−1 − 1.

– H = 1
2: no correlation (Brownian motion, D = 1.5);

– H < 1
2: negative correlation (more erratic, limH→0 D = 2);

– H > 1
2: positive correlation (less erratic, limH→1 D = 1);

• Interpretation — H is a roughness measure of sample paths.
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Asymptotic self-similarity

• Definition — A stationary process {X(t), t ∈ IR} is said to be
asymptotically self-similar of index β ∈ (0,1) if

(var X(t))−1 IEX(t)X(t + τ) ∼ τ−β

when τ → ∞.

– H-sssi processes are asymptotically self-similar of index
β = 2(1 − H) (example: fGn with 1

2 < H < 1);

– non-summability (and power-law decay) of the autocorre-
lation ⇒ (power-law) divergence of the PSD at f = 0;

– asymptotic self-similarity ⇒ long-range dependence (LRD)
(also referred to as long memory).
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“1/f” processes

• Definition — A process is said to be of “1/f”-type if its

empirical PSD behaves as f−α (α > 0) over some frequency

range [A, B]. Depending on A and B, one can end up with:

– LRD, if A → 0 and B < ∞;

– scaling in some “inertial range”, if 0 < A < B < ∞;

– small-scale fractality, if A < ∞ and B → ∞.

• Remark — In the fBm case, the only Hurst exponent H

controls all 3 situations.
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Evidencing scaling in data ? — 1.

• Theory — Different and complementary signatures of scal-

ing can be observed with respect to time (sample paths,

correlation, increments . . . ) or frequency/scale (spectrum,

zooming . . . ).

• Suggestion — Use explicitly an approach which combines

time and frequency/scale.

• Formalization — Wavelets !
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Evidencing scaling in data ? — 2.

• Fact — Iterating aggregation reveals scale invariance.

• Suggestion — Use explicitly a multiresolution approach.

• Formalization — Wavelets !
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Wavelets
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Multiresolution analysis — 1.

“signal = (low-pass) approximation + (high-pass) detail”

+

iteration

• successive approximations (at coarser and coarser resolu-

tions) ∼ aggregated data

• details (information differences between successive resolu-

tions) ∼ increments

Multiresolution is a natural language for scaling processes.
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Multiresolution analysis — 2.

A MultiResolution Analysis (MRA) of L2(IR) is given by :

1. a hierarchical sequence of embedded approximation spaces
. . . V1 ⊂ V0 ⊂ V−1 . . ., whose intersection is empty and whose
closure is dense in L2(IR) ;

2. a dyadic two-scale relation between successive approxima-
tions :

X(t) ∈ Vj ⇔ X(2t) ∈ Vj−1 ;

3. a scaling function ϕ(t) such that all of its integer translates
{ϕ(t − n), n ∈ ZZ} form a basis of V0.
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Wavelet decomposition — 1.

For a given resolution depth J, any signal X(t) ∈ V0 can be

expanded as :

X(t)︸ ︷︷ ︸
signal

=
∑
k

aX(J, k)ϕJ,k(t)︸ ︷︷ ︸
approximation

+
J∑

j=1︸︷︷︸
J octaves

∑
k

wav. coeffs.︷ ︸︸ ︷
dX(j, k) ψj,k(t)︸ ︷︷ ︸

details

,

with {ξj,k(t) := 2−j/2 ζ(2−jt − k), j and k ∈ ZZ}, for ξ = ϕ and ψ.

• Definition. — The wavelet ψ(.) is constructed in such a way

that all of its integer translates form a basis of W0, defined

as the complement of V0 in V−1.
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Wavelet decomposition — 2.

• Theory — The wavelet coefficients dX(j, k) are given by the
inner products:

dX(j, k) := 〈X, ψj,k〉 .

• Practice — They can rather be computed in a recursive fash-
ion, via efficient pyramidal algorithms (faster than FFT’s).

– no need for knowing explicitly ψ(t) !

– enough to characterize a wavelet by its filter coefficients
{g(n) := (−1)n h(1 − n), n ∈ ZZ}, with

h(n) :=
√

2
∫ +∞

−∞
ϕ(t)ϕ(2t − n) dt.
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Wavelet decomposition — 3.

• Example — The simplest choice for a MRA is given by the

Haar basis (Haar, 1911), attached to the scaling function

ϕ(t) = χ[0,1](t) and the wavelet ψ(t) = χ[0,1/2](t)−χ[1/2,1](t).

• Remark — When aggregated over dyadic intervals, data sam-

ples identify to Haar approximants.

• Interpretation — Wavelet analysis offers a refined way of

both aggregating data and computing increments.
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Wavelets as filters — 1.

• Admissibility — By construction, a scaling function (resp.,

a wavelet) is a low-pass (resp., high-pass) function ⇒ an

admissible wavelet ψ(t) is necessarily zero-mean:

Ψ(0) :=
∫ +∞

−∞
ψ(t) dt = 0.

• Cancellation — A further key property for a wavelet is the

number of its vanishing moments, i.e., the integer N ≥ 1

such that∫ +∞

−∞
tk ψ(t) dt = 0, for k = 0,1, . . . N − 1 .
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The example of Daubechies wavelets
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Wavelets as filters — 2.

• Input-output — Given the statistics of the analyzed sig-
nal, statistics of its wavelet coefficients can be derived from
imput-ouput relationships of linear filters.

• Stationary processes — In the case of stationary processes
with autocorrelation γX(τ) := IEX(t)X(t + τ), stationarity
carries over to wavelet sequences and we end up with:

CX(j, n) := IEdX(j, k)dX(j, k+n) =
∫ +∞

−∞
γX(τ) γψ(2−jτ+n) dτ ;

∞∑
n=−∞

CX(j, n) e−i2πfn = ΓX(2−jf) ×
∞∑

n=−∞
γψ(n) e−i2πfn
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Wavelets as stationarizers — 1.

• Stationarization — Wavelet admissibility (N ≥ 1) guaran-

tees that, if X(t) has stationary increments, then dX(j, k) is

stationary in k, for any given scale 2j.

Proof — Assuming that X(t) is a s.i. process with X(0) = 0

and Var X(t) := ρ(t), we have

IEX(t)X(s) =
1

2

(
IEX2(t) + IEX2(s) − IE (X(t) − X(s))2

)
=

1

2

(
IEX2(t) + IEX2(s) − IE (X(t − s) − X(0))2

)
=

1

2
(ρ(t) + ρ(s) − ρ(t − s)) .
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Wavelets as stationarizers — 2.

It follows that

IEdX(j, n)dX(j, m) =
∫ ∫ +∞

−∞
IEX(t)X(s)ψjn(t)ψjm(s) dt ds

=
1

2

∫ +∞

−∞
ρ(t)ψjn(t)

(∫ +∞

−∞
ψjm(s) ds

)
︸ ︷︷ ︸

=0

dt

+
1

2

∫ +∞

−∞
ρ(s)ψjm(s)

(∫ +∞

−∞
ψjn(t) dt

)
︸ ︷︷ ︸

=0

ds

−1

2

∫ ∫ +∞

−∞
ρ(t − s)ψjn(t)ψjm(s) dt ds

= −1

2

∫ +∞

−∞
ρ(τ) γψ(2−jτ − (n − m)) dτ.
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Wavelets as stationarizers — 3.

• Extension — Stationarization can be extended to processes

with stationary increments of order p > 1, under the vanishing

moments condition N ≥ p;

• Application — Stationarization applies to H-sssi processes

(e.g., fBm), with ρ(t) = |t|2H;

• Remark — Nonstationarity is contained in the approximation

sequence.
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Wavelets and scale invariance

• Self-similarity — The multiresolution nature of wavelet anal-

ysis guarantees that, if X(t) is H-ss, then

{dX(j, k), k ∈ ZZ} d
= 2j(H+1/2) {dX(0, k), k ∈ ZZ}

for any j ∈ ZZ.

• Spectral interpretation — Given a “1/f” process, the wavelet

tuning condition N > (α − 1)/2 guarantees that

SX(f) ∝ |f |−α ⇒ IEd2
X(j, k) ∝ 2jα
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Wavelets as decorrelators — 1.

• Quasi-decorrelation — In the case where X(t) is H-sssi, the

condition N > H + 1/2 guarantees that

IEdX(j, k)dX(j, k + n) ∼ n2(H−N), n → ∞.

• Interpretation — Competition, at f = 0, between the (diver-

gent) spectrum of the process and the (vanishing) transfer

function of the wavelet:

IEdX(j, k)dX(j, k + n) ∝
∫ +∞

−∞
|Ψ(2jf)|2
|f |2H+1

ei2πnf df.
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Wavelets as decorrelators — 2.

• Consequence — Long-range dependence (LRD) of a process

X can be transformed into short-range dependence (SRD)

in the space of its wavelet coefficients dX(j, .), provided that

the number N of the vanishing moments is high enough.

• Remark — Residual LRD in the approximation sequence.

• The case of H-sssi processes — LRD when H > 1/2 ⇒ SRD

when N > 1 ⇒ Haar not suitable.
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Wavelet correlation of fBm in the Haar case
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Wavelet correlation and vanishing moments
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Wavelets and scaling estimation — 1.

• Theory — Given the variance vX(j) := IEd2
X(j, k), scale in-

variance is revealed by the linear relation :

log2 vX(j) = α j + Const.

• Practice — The further properties of 1) stationarization and

2) quasi-decorrelation suggest to use as estimator of vX(j)

the empirical variance

v̂X(j) :=
1

Nj

Nj∑
k=1

d2
X(j, k),

where N0 stands for the data size, and Nj := 2−jN0.
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Wavelets and scaling estimation — 2.

• Bias correction — Given that log IE �= IE log, the effective

estimator is yX(j) := log2 v̂X(j) − g(j), with

g(j) = ψ(Nj/2)/ log 2 − log2(Nj/2)

and ψ(.) the derivative of the Gamma function, so that

IEyX(j) = αj + Const. in the uncorrelated case.

• Variance — Assuming stationarization and quasi-decorrelation

guarantees furthermore that

σ2
j := Var yX(j) = ζ(2, Nj/2)/ log2 2,

where ζ(z, ν) is a generalized Riemann function.
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Wavelets and scaling estimation — 3.

• From yX(j) to α̂ — The slope α is estimated via a weighted

linear regression in a log-log diagram:

α̂ =
jmax∑

j=jmin

S0 j − S1

S0 S2 − S2
1

1

σ2
j

yX(j),

with Sk :=
∑

j k/σ2
j , k = 0,1,2.

• Bias and variance — We have IEα̂ ≡ α, by construction. As-

suming Gaussianity, the estimator is moreover asymptotically

efficient in the limit Nj → ∞ (for any j), with

Var α̂ ∼ 1/N0.
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Wavelets and scaling estimation — 4.

• Robustness — The vanishing moments condition∫ +∞

−∞
tk ψ(t) dt = 0, for k = 0,1, . . . N − 1,

guarantees that dT (j, n) ≡ 0 for any T (t) of the form

T (t) =
N−1∑
k=0

ak tk.

In other words, a wavelet with enough vanishing moments

makes the transform of Z(t) := X(t)+T (t) blind to a super-

imposed polynomial trend.
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Robustness to polynomial trends
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Wavelets and . . .— 1.

• Aggregation — Wavelets offer a natural generalization to

aggregation: Haar approximants �→ Haar details �→ wavelet

details with higher N .

• Variogram — Wavelets generalize as well variogram tech-

niques (Matheron, 1967), which are based on the increment

property IE(X(t+τ)−X(t))2 = σ2|τ |2H, since increments can

be viewed as constructed on the “poorman’s wavelet”:

ψ(t) := δ(t + τ) − δ(t).
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Wavelets and . . .— 2.

• Allan variance — A refined notion of variance — introduced
in the study of atomic clocks stability (Allan, 1966) — is the
so-called Allan variance, defined by

Var(Allan)
X (T ) :=

1

2T2
IE

[∫ t

t−T
X(s) ds −

∫ t+T

t
X(s) ds

]2

– in the case of H-ss processes, Allan variance is such that
Var(Allan)

X (T ) ∼ T2H when T → ∞;

– when evaluated over dyadic intervals, Allan variance iden-
tifies to the variance of Haar details:

Var(Allan)
X (2j) = Var d

(Haar)
X (j, k).
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Wavelets and . . .— 3.

• Fano factor — In the case of a Poisson process P (t) of
counting process N(.), one can define the Fano factor as:

F (T ) := Var N(T )/IEN(T ).

– for a uniform density λ, we have F (T ) = 1 for any T

whereas, for a “fractal” density λ(t) = λ + B
(θ)
H (t), we

have F (T ) ∼ T2H−1 when T → ∞.

– interpretation as fluctuations/average suggests the wavelet
generalization given by:

F (T ) �→ FW (j) := 2j/2 Var dP (j, k)/IEaP (j, k) ∼ 2j(2H−1)

when j → ∞, and F
(Haar)
W (j) ≡ F (Allan)(2j).
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Variations
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Beyond 2nd order — 1.

• Stable motions — Let X(t) be a (zero-mean) “bursty” pro-

cess, with possibly infinite variance. A possible model is given

by stable motions, whose representation reads

X(t) =
∫ +∞

−∞
f(t, u)M(du) ,

with:

– M(du) some symmetric α-stable (“SαS”) measure, with

scale parameter σ;

– f(t, u) an integration kernel that controls the time depen-

dence of the statistics of the process.
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Symmetric α-stable variables

• Definition — A random variable X is said to be symmetric
α-stable (SαS) if its characteristic function is of the form:

IE exp{iθX} = exp{−σα |θ|α}.
(Remark: α = 1 ⇒ Cauchy and α = 2 ⇒ Gauss.)

• Heavy tails — Let X ∼ Sα(σ) with 0 < α < 2. We then have:

β ≥ α ⇒ IE|X|β = ∞.

• Stability — Let {Xi ∼ Sαi(σi); i = 1,2} be independent SαS
variables, and X := X1 +X2. We then have X ∼ Sα(σ), with
σ = (σα

1 + σα
2)1/α.
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Some stable motions

If f(t, u) ≡ f(0, u − t), then X(t) is a stationary process and, if
f(ct, cu) = cH−1/αf(t, u) for any c > 0, X(t) is an H-ss process.

• Lévy flight — f(t, u) := 1 if t ≥ max(u,0), and 0 otherwise.
Lévy flight (LF) is an H-ss process with H = 1/α, and its
increments are stationary and independent.

• Linear fractional stable motion — f(t, u) := (t−u)d
+−(−u)d

+,

where (t)+ = t if t ≥ 0, and 0 otherwise. Linear fractional
stable motion (LFSM) depends on a parameter d ≤ 1/2 and
is an H-ss process with H = d + 1/α. Its increments are
stationary but dependent, dependence being controlled by d.
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H-sssi stable processes and wavelets

• Representation — Under mild conditions on the wavelet ψ
and the kernel f(t, u), the wavelet coefficients of a stable mo-
tion are SαS random variables with integral representation:

dX(j, k) =
∫ +∞

−∞

(∫ +∞

−∞
f(t, u)ψjk(t)dt

)
M(du).

• Scaling — If X is H-sssi stable, the scale parameters of its
wavelet coefficients satisfy σα

jk = 2j(H+1/2)ασα
00.

While the covariance structure of a stable process X is not
defined when α < 2, the logarithmically transformed process
Y := log |X| has finite second order statistics ⇒ considering
wavelet log-coefficients.
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H-sssi stable processes and wavelet log-coeffs.

• Scaling — Wavelet log-coefficients of H-sssi stable processes

are such that:

IE log2 |dX(j, k)| = j(H + 1/2) + IE log2 |dX(0, k)|.

• From LRD to SRD — In the LFSM case, the asymptotic

dependence structure is bounded as:

|Cov (log2 |dx(j, k)|, log2 |dx(j, k + n)|)| ≤ C |n|−(α/4)(N−H) ,

when |n| → ∞: the decay can be made as fast as desired by

increasing the number of vanishing moments N .
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Estimation in the stable case — 1.

• Variance substitute — The quantity of interest is in this case

wX(j) := IE log2 |dX(j, k)|, that can be estimated by:

ŵX(j) :=
1

Nj

Nj∑
k=1

log2 |dX(j, k)| .

• Bias and variance — Assuming an exact decorrelation, one

has IEŵX(j) = (H + 1/2)j + Const., and

Var ŵX(j) =
(
1 +

2

α2

)
(π log2 e)2

12

1

Nj
.
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Estimation in the stable case — 2.

• Hurst exponent — The corresponding estimator for H is un-

biased and of variance decreasing as 1/N0.

• Stability parameter — Since wavelet details dX(j∗, .) form,

at any scale j∗, sequences of variables that are 1) α-stable

and 2) almost decorrelated, the stability parameter α can

be estimated as α̂ := 1/H∗, where H∗ is the Hurst exponent

obtained from any wavelet analysis dS∗(j, k) of the cumulative

sum S∗(k) :=
∑k

m=−∞ dX(j∗, m) (Abry et al., 2000).

(Remark: in practice, minimizing variance ⇒ maximizing the

number of data points ⇒ j∗ = 1.)

61



Beyond 2nd order — 2.

Given the renormalized definition TX(a) := 2−j/2 dX(j, n)
∣∣∣
j=log2 a

,

one can consider scaling laws which generalize second order be-

haviors:

IE|TX(a)|q ∝ aHq = exp {Hq log a} (“monoscaling”)

↓
exp {H(q) log a} (“multiscaling”)

↓
exp {H(q)n(a)} (“cascade”)
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From self-similarity to cascades

• Self-similarity — If a process is H-ss, the probability density
functions of its wavelet coefficients (a < a′) are such that:

pa(dX) = pa′(dX/α)/α,

with α := (a′/a)H.

• Generalization — Based on Castaing’s approach (Castaing,
1993), one introduces a propagator Ga,a′ such that:

pa(dX) =
∫ +∞

0
Ga,a′(logα) pa′(dX/α) d logα/α.

(Ga,a′(u) = δ
(
u − H log(a′/a)

) ⇒ exact self-similarity.)
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Infinitely divisible cascades — 1.

• Convolution — It follows from the cascade relation that the

pdf’s of the log-details are given by:

pa(log |dX |) =
∫

Ga,a′(u) pa′(log |dX | − u) du

= (Ga,a′ � pa′)(log |dX |).

• Propagation — If pa = Ga,a′′ � pa′′ and pa′′ = Ga′′,a′ � pa′, one

has directly pa = Ga,a′ � pa′, with Ga,a′ = Ga,a′′ � Ga′′,a′.
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Infinitely divisible cascades — 2.

• Infinite divisibility — If there is no characteristic scale be-
tween a and a′, the intermediate scale a′′ is arbitrary. Iterat-
ing the argument thus leads to:

Ga,a′ = G0 � G0 � . . . � G0︸ ︷︷ ︸
n(a)−n(a′)

.

• Moments — Letting H(q) := log G̃0(q), with G̃0 the Laplace
transform of G0, one gets:

IE |TX(a)|q ∝ exp {H(q)n(a)}

⇒ Separability between order q and scale a.

65



Cascades and scale invariance

A scale invariant cascade is characterized by n(a) ≡ log a.

• “Multiscaling” — In the scale invariant case, one gets directly

G̃a,a′(q) = (a/a′)logH(q) and, therefore,

IE |TX(a)|q ∝ aH(q).

• Multifractality — In the small scale limit (a → 0), this is

equivalent to the multifractal model (Riedi, 2000), with the

identification H(q) ≡ ζq.
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Cascades and model testing

• Extended self-similarity (ESS) — From the general cascade
relationship, one can infer, for any p and any q, the ESS
property (Benzi et al., 1993):

log IE |TX(a)|q = (H(q)/H(p)) log IE |TX(a)|p + Const(p, q).

• Test — Estimating IE |TX(a)|q by:

Sq(j) :=
1

Nj

Nj∑
k=1

|dX(j, k)|q , j = log2 a,

testing for ESS amounts to testing for the linearity of logSq

versus logSp (while taking into account the estimation vari-
ances Var logSq(j)).
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Cascades and estimation

• Estimation of H(q) — Given some (arbitrary) reference order

p, the quantity Ĥ(q)/H(p) is estimated as the slope in the

weighted linear regression of logSq(j) versus logSp(j).

• Estimation of n(a) — For dyadic scales a ≡ 2j, the estimation

of n(a) follows from the ESS property and reads (Chainais

et al., 1999):

n̂(a) :=

〈
1

Ĥ(q)

logSq(j) −
〈
logSq(j) −

Ĥ(q)

H(p)
logSp(j)

〉
j

〉
q

.
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Web links

• Publications, preprints, software

www.ens-lyon.fr/~flandrin/

www.ens-lyon.fr/~pabry/

www.ens-lyon.fr/PHYSIQUE/Signal/index.html

www.emulab.ee.mu.oz.au/~darryl/

www.cmap.polytechnique.fr/~bacry/LastWave/

• Wavelet Digest

www.wavelet.org
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