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The idea of ‘scaling”

e Power-law spectra — Power-laws correspond to homoge-
neous functions:

S(fy=C|fI™" = Skf) =CIlkf|" " =k~ *S(f),
for any k > 0.

e Fourier transform — Frequency scaling carries over to the
time domain. If we let s(t) := (F~18)(f), we get:

/ T Sk p) 27 g = g1 /| T S(11 27 ) g = (k)
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It follows that s(t/k) = s(t)/k®~1 = self-similarity.






Scaling processes



Self-similarity

e Definition — A process {X(t),t € R} is said to be self-similar
of index H (or “H-ss") if, for any k > 0,

(X(kt),t e R} 2 kH{X(1),t € R}.

e Interpretation — Invariance of statistical properties under
dilations in time, up to a renormalization in amplitude ( “self-
affinity’").

Any zoomed (in or out) version of an H-ss process |ooks
(statistically) the same = no characteristic scale.
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Self-similarity vs. stationarity

e E£xclusion — If a process X is self-similar, it is necessarily
nonstationary. Proof — Assuming that VarX(t = 1) #= O,
we have, for any ¢t > 0O,

Var X (t) = VarX (¢t x 1) = t* var X (1) # Const.

e [ransformations — Stationary processes can be attached to
self-similar processes, and vice-versa (Lamperti, 1962):

— if {X(¢),t >0} is H-ss, then {Y(t) := e HiX(e!),t € R} is
(strictly) stationary;

— conversely, if {Y(t),t € R} is (strictly) stationary, then
{X@1) :=tHY(logt),t > 0} is H-ss.



Stationary increments

e Definition — A process {X(t),t € R} is said to have station-
ary increments if and only if, for any 0 € IR, the increment
process:

{X<9>(t) = X(t+0) — X(¢),t € R}

has a distributional law which does not depend upon ¢t.

e Extension — The concept of stationary increments can be
naturally extended to higher orders (‘'increments of incre-
ments'’).



Self-similarity and stationary increments

e Definition — H-Ss processes with stationary increments are
referred to as “H-sSsSSi’”’ processes.

e Covariance — The structure of the covariance function is the
same for all H-sssi processes. Indeed, assuming that X (¢) is

H-sssi, with

EX(¢)X(s)

X(0) =0 and X(1) # 0, we have necessarily:
= (EX2() + EX?(s) ~ E(X(1) - X())?)

— % (IEXQ(t) +EX?(s) —E(X(t—s) — X(O))2>

Var X (1
; (1) <|t|2H—|- |S|2H— |t—8|2H> .



Covariance function of H-SSSi processes




Fractional Brownian motion — 1.

e Definition 1 — A process By(t) is referred to as a fractional
Brownian motion (fBm) of index 0 < H < 1, if and only if it

is H-sssi and Gaussian.

— fBm has been introduced in (Mandelbrot & van Ness,
1968), as an extension of the ordinary Brownian motion
B(t) = BH(t)\Hzl/Q (anomalous diffusion).

— the index H is referred to as the Hurst exponent, and its
limited range guarantees the non-degeneracy (H < 1) and
the mean-square continuity (H > 0) of fBm.
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Fractional Brownian motion — 2.

e Definition 2 — fBm admits the moving average representa-
tion:

1

By (t)—Bp(0) = FH+ D
5

PR CE L BRI

t g_1
+ [ =92 Bds)
— fBm results from a “fractional integration”’ of white noise;

— no specific role attached to time t = 0.
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Fractional Brownian motion — 3.

e Definition 3 — fBm admits the (harmonizable) spectral rep-
resentation:

By(t) =C /_f 17U (27— 1) W (ap),

with W (df) the Wiener measure.
— the “average spectrum’ of fBm behaves as |f|~(2H+1);

— fBm is a widespread model for (nonstationary) Gaussian
processes with a power-law (empirical) spectrum.
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Fractional Gaussian noise — 1.

e Definition — The (stationary) increment process Bg)(t) of
fBm Bpy(t) is referred to as fractional Gaussian noise (fGn).

e Autocorrelation — The (stationary) autocorrelation function
of fGn, cy(r) := EBV ) B (t + 1), reads:

2
o}
er(r) =7 (Ir + 0127 = 217127 4 |7 — 027 .

—if 9 = 1 and H = 3, we have cy(k) = 026(k),k € Z
(discrete-time white noise);

— for large lags 7, one has cy(7) ~ 0202H(2H — 1)72(H-1)
(subexponential, power-law decay).
13
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Fractional Gaussian noise — 2.

e Spectrum —If 8 = 1, the power spectral density of discrete-
time fGn is given by:
2 ionf 2 — 1
— 2f
S(f)—CO’ |e 1| Z |f_|_k|2H—|-1’

k=—00

with — .

<f<+

N|—
N|—

— if H # %, we have S(f) ~ Co?|f|1=2H when f — 0;
- 0< H< 3= 8(0)=0;
— % < H < 1= 8(0) = oo (spectral divergence).

15
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Fractional Gaussian noise — 3.

e Définition — Given a stationary process {X(n),n € Z}, the
recomposition rule

nl’
X(n) — XT(n) :=% S X(k)
k=(n—1)T+1

IS referred to as aggregation over T'.
— renormalized by TH—1 fGn is invariant under aggregation.

— as 1" — oo, aggregating any asymptotically H-ss process
ends up with a process whose covariance structure is that
of fGn.
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Sample paths — The example of Bm

1zample path 100 sarnple pakhs
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Sample paths of fBm — 1.
e [ ocal regularity — For any (small enough) € > 0 and any
t € R, we have | B9 (t)| < C|e|H, with probability 1.
— fBm is everywhere continuous, but nowhere differentiable;
— sample paths have a uniform Holder regularity h < H;

— sample paths have a uniform (Haussdorf and box) fractal
dimension: dimggraph By =2 — H.
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Sample paths of f Bm — 2.

e Correlation between increments — It follows from the co-
variance structure of fBm that, for any t € IR,

EBy () Bi () _ o1

+0
Var Blg{ )(t)
— H = %: no correlation (Brownian motion, D = 1.5);
— H< %: negative correlation (more erratic, limg_,o D = 2);

— H > %: positive correlation (less erratic, limyg_,1 D = 1);

e Interpretation — H is a roughness measure of sample paths.
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Asymptotic self-similarity
e Definition — A stationary process {X(t),t € R} is said to be
asymptotically self-similar of index 3 € (0,1) if
(Var X())  TEX®)X(t+7) ~ 7P

when 7 — oo.

— H-sssi processes are asymptotically self-similar of index
B =2(1— H) (example: fGn with % < H<1);

— non-summability (and power-law decay) of the autocorre-
lation = (power-law) divergence of the PSD at f = 0;

— asymptotic self-similarity = long-range dependence (LRD)
(also referred to as long memory).
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“1/f" processes

e Definition — A process is said to be of "“1/f"-type if its
empirical PSD behaves as f~% (a > 0) over some frequency
range [A, B]. Depending on A and B, one can end up with:

— LRD, if A— 0 and B < oo;
— scaling in some “inertial range”, if 0 < A < B < o0;

— small-scale fractality, if A < oo and B — oo.

e Remark — In the fBm case, the only Hurst exponent H
controls all 3 situations.
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Evidencing scaling in data 72 — 1.

e [ heory — Different and complementary signatures of scal-
ing can be observed with respect to time (sample paths,

correlation, increments ...) or frequency/scale (spectrum,
zooming ...).
e Suggestion — Use explicitly an approach which combines

time and frequency/scale.

e Formalization — Wavelets |

24



Evidencing scaling in data 7 — 2.
e Fact — Iterating aggregation reveals scale invariance.
e Suggestion — Use explicitly a multiresolution approach.

e Formalization — Wavelets !

25



Wavelets
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Multiresolution analysis — 1.

“signal = (low-pass) approximation + (high-pass) detail”

_|_
iteration

e successive approximations (at coarser and coarser resolu-
tions) ~ aggregated data

e details (information differences between successive resolu-
tions) ~ increments

Multiresolution is a natural language for scaling processes.

27



Multiresolution analysis — 2.

A MultiResolution Analysis (MRA) of L2(IR) is given by :

1. a hierarchical sequence of embedded approximation spaces
.. V1 C Vo CV_q1..., whose intersection is empty and whose
closure is dense in L2(R) ;

2. a dyadic two-scale relation between successive approxima-
tions :

Xt)eV,e X(2t)e V1,

3. a scaling function ¢(t) such that all of its integer translates
{o(t —n),n € Z} form a basis of Vj.

28



Wavelet decomposition — 1.

For a given resolution depth J, any signal X(¢t) € Vp can be
expanded as :

vvav coeffs.

J
X@#) =) ax(Lk) e+ > > Ix G, k) Vi k(t),
i k j=1 k
signal N — _ _
approximation J octaves detalls

with {¢;,(t) :=279/2¢(277t — k),j and k € Z}, for £ = ¢ and .

e Definition. — The wavelet ¢ (.) is constructed in such a way
that all of its integer translates form a basis of Wq, defined
as the complement of V5 in V_;.
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Wavelet decomposition — 2.

e Theory — The wavelet coefficients dx(j, k) are given by the
inner products:

dx (5, k) == (X, ¥ x) -

e Practice — They can rather be computed in a recursive fash-
ion, via efficient pyramidal algorithms (faster than FFT's).

— no need for knowing explicitly ¥ (t) !

— enough to characterize a wavelet by its filter coefficients
{g(n) == (-1)"h(1 —n),n € Z}, with

h(n) =2 /_t:o o(t) (2t — n) dt.

30
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Wavelet decomposition — 3.

e Example — The simplest choice for a MRA is given by the
Haar basis (Haar, 1911), attached to the scaling function

e Remark — When aggregated over dyadic intervals, data sam-
ples identify to Haar approximants.

e Interpretation — Wavelet analysis offers a refined way of
both aggregating data and computing increments.
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Wavelets as filters — 1.

e Admissibility — By construction, a scaling function (resp.,
a wavelet) is a low-pass (resp., high-pass) function = an
admissible wavelet 1 (t) is necessarily zero-mean:

W(0) 1= /+°O¢(t) dt = 0.

— 0

e Cancellation — A further key property for a wavelet is the
number of its vanishing moments, i.e., the integer N > 1
such that

—l-ook
/ tFy()dt=0, for k=0,1,...N —1.

©@
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The example of Daubechies wavelets

Haar Daubechies 2 Daubechies 4 Daubechies 10

scaling function

wavelet
L——I
T
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Wavelets as filters — 2.

e Input-output — Given the statistics of the analyzed sig-
nal, statistics of its wavelet coefficients can be derived from
imput-ouput relationships of linear filters.

e Stationary processes — In the case of stationary processes
with autocorrelation yx(7) = EX((t)X(t 4+ 7), stationarity
carries over to wavelet sequences and we end up with:

~+o0 :
Cx(iyn) = Edx (. R)dx GokAn) = [~ x(r) (27 74n) dr;

0@

> Cx(Gm)e PN =Tx(277f) x Y yp(n) e 2mIm

n——oo n——oo
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Framework
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Wavelets as stationarizers — 1.

e Stationarization — Wavelet admissibility (N > 1) guaran-
tees that, if X (¢) has stationary increments, then dx(j,k) is
stationary in k, for any given scale 27.

Proof — Assuming that X (¢) is a s.i. process with X(0) =0
and Var X (t) := p(t), we have

EX(t)X(s) = % (EX?(t) + EX?(s) — E (X(t) — X(s))°)

— % (IEXQ(t) + EX?(s) —E(X(t—s) — X(O))2>

S (0 + p(s) = p(t — ).

37



Wavelets as stationarizers — 2.

It follows that

EdxGmdxGom) = [ [T EXWX() 00(0) jm(s) e ds

—+ oo 00
= 30w ([ b as) a

0@

4

=0

“+ o0 00
2 7 (s wjm<s>\( [ vinyat) as

o

=0
1 +oo
S [ p(t =) () oy (s) dt ds
1 oo

= p(7) (2 I — (n—m)) dr.

- 2J)
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Wavelets as stationarizers — 3.

e E£xtension — Stationarization can be extended to processes
with stationary increments of orderp > 1, under the vanishing
moments condition N > p;

e Application — Stationarization applies to H-Sssi processes
(e.g., fBm), with p(t) = |t|°H;

e Remark — Nonstationarity is contained in the approximation
sequence.
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Wavelets and scale invariance

e Self-similarity — T he multiresolution nature of wavelet anal-
ysis guarantees that, if X (¢) is H-ss, then

{dx(j, k), k € Zz} £ 20(H+1/2) 140, k), k € Z}
for any 53 € Z.

e Spectral interpretation — Given a “1/f" process, the wavelet
tuning condition N > (o — 1)/2 guarantees that

Sx(f) o< |fI7% = Ed% (4, k) o 27¢

40



Wavelets as decorrelators — 1.

e Quasi-decorrelation — In the case where X (t) is H-sssi, the
condition N > H 4 1/2 guarantees that

Edx (j, k)dx (G, k +n) ~n2HN) p oo

e Interpretation — Competition, at f = 0, between the (diver-
gent) spectrum of the process and the (vanishing) transfer
function of the wavelet:

+oo |W (27 )2

. : 12t f
Edx (j,k)dx (i k +n) o [ e

41
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Wavelets as decorrelators — 2.

e Consequence — Long-range dependence (LRD) of a process
X can be transformed into short-range dependence (SRD)
in the space of its wavelet coefficients dx(4,.), provided that
the number N of the vanishing moments is high enough.

e Remark — Residual LRD in the approximation sequence.

e The case of H-sssi processes — LRD when H > 1/2 = SRD
when N > 1 = Haar not suitable.

43



Wavelet correlation of fBm in the Haar case

correlation
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Wavelet correlation and vanishing moments

H=0.15 H=0.5 H=0.95
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Wavelets and scaling estimation — 1.

e Theory — Given the variance vx(j) := Ed%-(j,k), scale in-
variance is revealed by the linear relation :

logs vx(j) = aj + Const.

e Practice — The further properties of 1) stationarization and
2) quasi-decorrelation suggest to use as estimator of vy ()
the empirical variance

1 N
ix(5) = 3 d3%- (4, k),
J k=1

where Ny stands for the data size, and N, := 277 Np.
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Wavelets and scaling estimation — 2.

e Bias correction — Given that logE # IElog, the effective
estimator is yx () := 109> 0x(j) — g(y), with
9(j) = ¥(N;/2)/1092 — l0ga(N;/2)

and 1(.) the derivative of the Gamma function, so that
Eyx(j) = aj + Const. in the uncorrelated case.

e Variance — Assuming stationarization and quasi-decorrelation
guarantees furthermore that

0% 1= Var yx(j) = ¢(2,N;/2)/log? 2,

where ((z,v) is a generalized Riemann function.
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Wavelets and scaling estimation — 3.

e From yx(j) to @ — The slope « is estimated via a weighted
linear regression in a log-log diagram:

Jmax §pj— 81 1

a2 2 yX(j>7
J=Jmin So S2 Sl Jj

with Sg =3 ;k/0?, k=0,1,2.

a =

e Bias and variance — We have [Ea = «, by construction. As-

suming Gaussianity, the estimator is moreover asymptotically
efficient in the limit N; — oo (for any j), with

Var a ~ 1/N0.

48



Wavelets and scaling estimation — 4.

e Robustness — The vanishing moments condition

-I-ook
/ th () dt =0, for k=0,1,...N —1,

@)

guarantees that d(4,n) = 0 for any T'(t) of the form
N-1
Tt)= Y aptt.
k=0

In other words, a wavelet with enough vanishing moments
makes the transform of Z(t) := X (¢t) +T(t) blind to a super-
imposed polynomial trend.
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Robustnhess to polynomial trends
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Wavelets and ...— 1.

e Aggregation — \Woavelets offer a natural generalization to
aggregation: Haar approximants — Haar details — wavelet
details with higher N.

e Variogram — Wavelets generalize as well variogram tech-
niqgues (Matheron, 1967), which are based on the increment
property E(X (t47)—X(t))? = ¢2|7|?!, since increments can
be viewed as constructed on the “poorman’s wavelet'” :

W(t) 1= 6(t + 1) — 5(¢).
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Wavelets and ...— 2.

e Allan variance — A refined notion of variance — introduced
in the study of atomic clocks stability (Allan, 1966) — is the
so-called Allan variance, defined by

2
(Allan) ;o . 1 t t+T
Vars (T) '_ﬁE /t—TX(S>d8_/t X(s)ds
— in the case of H-ss processes, Allan variance is such that
Varg?”an)(T) ~ T?H when T — oo

— when evaluated over dyadic intervals, Allan variance iden-
tifies to the variance of Haar details:

Varg(A”an)(Qj) = Var dg?aar)(j, k).
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Wavelets and ...— 3.

e Fano factor — In the case of a Poisson process P(t) of
counting process N(.), one can define the Fano factor as:

F(T) := Var N(T)/EN(T).
— for a uniform density A\, we have F(T) = 1 for any T

whereas, for a ‘“fractal” density A(t) = X\ + B}f)(t), we
have F(T) ~ T?2H-1 when T — oc.

— interpretation as fluctuations/average suggests the wavelet
generalization given by:

F(T) = Fyy (j) 1= 2//2Var dp(j, k) /Eap(j k) ~ 2/ 2H
when j — oo, and F{?20(5) = p(Allan) (25),
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Variations
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Beyond 2nd order — 1.

e Stable motions — Let X (t) be a (zero-mean) “bursty” pro-
cess, with possibly infinite variance. A possible model is given
by stable motions, whose representation reads

+o0
X = [ " jtwMdu).

— 00

with:

— M(du) some symmetric a-stable (“SaS" ) measure, with
scale parameter o,

— f(t,u) an integration kernel that controls the time depen-
dence of the statistics of the process.
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Symmetric a-stable variables

e Definition — A random variable X is said to be symmetric
a-stable (SaS) if its characteristic function is of the form:

E exp{i0 X} = exp{—0c®|0|“}.
(Remark: o« =1 = Cauchy and o = 2 = Gauss.)

e Heavy tails — Let X ~ Sa(o) with 0 < a < 2. We then have:
B3>a=EX’ = oco.

e Stability — Let {X; ~ Sq;(0;);i = 1,2} be independent SaS
variables, and X := X7 + X». We then have X ~ S,(0), with
o= (cf+ J%)l/a.
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Some stable motions

If f(t,u) = f(0,u—1t), then X(t) is a stationary process and, if
fct,cu) = cH=1/a ¢t u) for any ¢ > 0, X(t) is an H-ss process.

o [ évy flight — f(t,u) := 1 if t > max(u,0), and 0 otherwise.
Lévy flight (LF) is an H-ss process with H = 1/«, and its
increments are stationary and independent.

e Linear fractional stable motion — f(t,u) := (t—u)% —(—u)%,
where (t)4 =t if t > 0, and O otherwise. Linear fractional
stable motion (LFSM) depends on a parameter d < 1/2 and
is an H-ss process with H = d + 1/«a. Its increments are
stationary but dependent, dependence being controlled by d.
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H-sssi stable processes and wavelets

e Representation — Under mild conditions on the wavelet o
and the kernel f(t,u), the wavelet coefficients of a stable mo-
tion are SaS random variables with integral representation:

ix G = [ ([T 1) o,

e Scaling — If X is H-sssi stable, th.e scale parameters of its
wavelet coefficients satisfy o) = 2i(H+1/2)aga .

While the covariance structure of a stable process X is not
defined when o < 2, the logarithmically transformed process
Y = log |X]| has finite second order statistics = considering
wavelet log-coefficients.
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H-sssi stable processes and wavelet log-coeffs.

e Scaling — Wavelet log-coefficients of H-sssi stable processes
are such that:

Elogs |dx(j,k)| = j(H +1/2) +Elogs [dx (0, k)|.

o From LRD to SRD — In the LFSM case, the asymptotic
dependence structure is bounded as:

|Cov (l0gs |da(j, k)|, 1092 |dz(j, k + n)|)| < C |n|~ (/DN =H)

when |n| — oo: the decay can be made as fast as desired by
increasing the number of vanishing moments N.
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Estimation in the stable case — 1.

e Variance substitute — The quantity of interest is in this case
wx(j) :=Elogs |[dx(j,k)|, that can be estimated by:

N

. 1 .
wx(j) = N > logs |dx (4, k).
j k=1

e Bias and variance — Assuming an exact decorrelation, one
has Ewx(j) = (H 4+ 1/2)7 4+ Const., and

(rlogse)? 1

12 N,

var ax() = (14 =) ]
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Estimation in the stable case — 2.

e Hurst exponent — T he corresponding estimator for H is un-
biased and of variance decreasing as 1/Ng.

e Stability parameter — Since wavelet details dx(j5*,.) form,
at any scale j*, sequences of variables that are 1) «-stable
and 2) almost decorrelated, the stability parameter o can
be estimated as a := 1/H*, where H* is the Hurst exponent
obtained from any wavelet analysis dg«(j, k) of the cumulative
sum S*(k) :=Yk _ __dx(5%,m) (Abry et al., 2000).
(Remark: in practice, minimizing variance = maximizing the
number of data points = j* =1.)
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Beyond 2nd order — 2.

Given the renormalized definition Ty (a) := 2—7/2 dx (7, n)(j_log .
— 2

one can consider scaling laws which generalize second order be-
haviors:

E|Tx(a)|? x a’? = exp{Hgloga} (“monoscaling”)
l

exp{H(q) loga} (“multiscaling”)
|

exp{H(q)n(a)} (“cascade”)
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From self-similarity to cascades

e Self-similarity — If a process is H-ss, the probability density
functions of its wavelet coefficients (a < a’) are such that:

pa(dx) = py(dx/a)/a,
with o = (a’/a)H.

e Generalization — Based on Castaing’s approach (Castaing,
1993), one introduces a propagator G, , such that:

pa(dX) = /O+OO Gaja/(log Oz) pa/(dX/Oé) d log a/a.

(Gyo/(u) =0 (u— Hlog(a'/a)) = exact self-similarity.)
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Infinitely divisible cascades — 1.

e Convolution — It follows from the cascade relation that the
pdf's of the log-details are given by:

pa(10g[dx|) = [ Gqo(u)py(i0og]dx| - ) du
= (Ga,a/*pa/)(log]dXD.

e Propagation — If pg = Ga,a” * Dy and Py — Ga”,a’ * Py ONE
has directly p, = Ga,a’ * Dl with Ga,a’ = Ga,a” * Ga”,a"

64



Infinitely divisible cascades — 2.

e Infinite divisibility — If there is no characteristic scale be-
tween a and o', the intermediate scale a” is arbitrary. Iterat-
ing the argument thus leads to:

Goo =GoxGo*...xGg.

n(a,)rn(a’) ”

e Moments — Letting H(q) := log Gg(q), with Gy the Laplace
transform of Gg, one gets:

E [Tx(a)|? < exp {H(g) n(a)}
= Separability between order g and scale a.
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Cascades and scale invariance

A scale invariant cascade is characterized by n(a) = l0ga.

o “Multiscaling” — In the scale invariant case, one gets directly
Ga,a’(Q) = (a/a’)'°9 H(9) and, therefore,

E|Tx(a)|? < (D,

e Multifractality — In the small scale limit (a — 0), this is
equivalent to the multifractal model (Riedi, 2000), with the
identification H(q) = (y.

66



Cascades and model testing

e Extended self-similarity (ESS) — From the general cascade
relationship, one can infer, for any p and any q, the ESS
property (Benzi et al., 1993):

l0g E [T'x (a)|? = (H(q)/H(p)) 109 E [Tx (a)|” 4+ Const(p, q).

e Test — Estimating E |Tx (a)|? by:
1 N
Sq(3) == — > ldx(4, k)7, j =logsa,
Nj p=1
testing for ESS amounts to testing for the linearity of 10g .Sy
versus log Sy (while taking into account the estimation vari-

ances Var 109 54(j)).
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Cascades and estimation

e Estimation of H(q) — Given some (arbitrary) reference order
p, the quantity H(q)/H(p) is estimated as the slope in the
weighted linear regression of 109 .Sq(j) versus log Sp(7).

e Estimation of n(a) — For dyadic scales a = 27, the estimation
of n(a) follows from the ESS property and reads (Chainais

et al., 1999):
n(a) 1= <ﬁ2q) (Iog Sq(J) — <Iog Sq(j) — Zgg log Sp(j)>j) >q.
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Web links

e Publications, preprints, software

WWW .

WWW .

WWW .

WWW .

WWW .

ens-lyon.fr/"flandrin/

ens-lyon.fr/ “pabry/
ens-lyon.fr/PHYSIQUE/Signal/index.html
emulab.ee.mu.oz.au/ darryl/

cmap.polytechnique.fr/“bacry/LastWave/

e Wavelet Digest

WWW.

wavelet.org



