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Time or frequency 7?7

Example of a bat echolocation call:

e Same information is displayed, but from
two mutually exclusive perspectives

e Need for some more meaningful descrip-
tions

“Mathematics vs. Physics”



Time and frequency

e Description is improved by using time and
frequency jointly:

e Representation of a signal on a “musical
score”

e ""Time-frequency’ appears as a natural /lan-
guage for nonstationary signals, but this
calls for mathematical definitions support-
ing physical interpretation



Local Fourier analyses as a starting point

Making the Fourier transform local in time and/or
frequency defines the same quantity F;,gh)(t,w),
but with three possible interpretations:

1. Short-time Fourier transform:

Fagh) (t,w) = /OO xz(s)h(s —1) e~ w(s—t/2) gg

O . v .
windowed signal

2. Band-pass filtering:

FM(tw) = [~ X(© HE=w) /2 %

filtered gbectrum

3. Gabor’s “logons”:
h
FSM (t,w) = (x, hew)

ht,w(s) — b(s — 1) eiw(s—t/Qz

time—frquency atom




Local methods and time-frequency
localization

Signal x(t) is recovered in the limit of in-
finitely narrow windows h(t) — §(t)

Spectrum X (w) is recovered in the limit of
infinitely narrow filters H(w) — 6(w)

Joint localization is limited by Heisenberg’s
inequality
1

inf [|(z—1 — X, > =,
to,wo”( 0) z||o |[(w — wp) ||2_2

with equality for Gaussians

Perfect localization on chirps would call
for locally adapted (signal-dependent) win-
dows /filters/atoms



Self-adaptation in local methods

e Taking for the window the time-reversed
signal itself (matched filter principle) leads
to

(z_) 1 (t w)
F t) — _W ~' A ]
v (bw) =W (55
with

We(t,w) = /az (t + %) x (t — %) e W dr

the Wigner(-Ville) distribution (Wigner, '32;
Ville, '48)

e Perfect localization of the Wigner distribu-
tion on lines of the time-frequency plane:

x(t) = exp{iat2/2} = We(t,w) = 6§ (w — at)

e Quadratic transform (energy distribution)



A geometrical interpretation

e For a phase signal z(t) = exp{ip(t)}, whose
“instantaneous frequency” is wz(t) = dy/dt,
the Wigner distribution is, at each time ¢,
the Fourier transform of the phase signal
exp{iP:(7)}, with

oicr=o(r+) o)

e T his new signal has for “instantaneous fre-
quency”’
0 1 T T
— (1) = = t 4 — t——11,
5 2T =3 [wx( + 2> +w"”'< 2)]
a quantity which exactly coincides with wz(t)

if and only if ¢(¢) is at most quadratic (/in-
ear chirps)



Two consequences

e Localization from quadratic phase compen-
sation

e Quadratic superposition principle:
2 2
Waa:—l—by — |a’| W + |b| Wy + 1,

with I an oscillating term which lies midway
between the interacting components

Janssen’s interference formula (Janssen, '82):

W (t,w)|? =
[ w59 5

Localization revisited: a line is the only curve
of the plane which is defined as the locus of
all of its midpoints



Localization on nonlinear curves

e Idea: localization is based on a construc-
tive interference principle

e Application: modified “midpoint geome-
tries” may lead to modified Wigner distri-
butions with localization properties on non-
linear curves of the plane (F. & Goncalves,
'96)

e Example: localization on power-law group
delays:

tx(w) =tg+cw k<O

can be achieved in the class of affine Bertrand
distributions (Bertrand & Bertrand, '92)



From Wigner to Bertrand

WX(taw) —
- od
/X(w—ké) X(w—§> giwt &4
\ 2/ 2/ v27r,
shiﬁ+ shift — Fourier
J
k
B (t,w) =

f ] X @A) X @) pu(w) ™ du

dilation compressmn welgthed Fourier

Bertrand distributions are defined for analytic
signals and Bgf) = Wx

In the limit of narrowband signals, Bg“) = Wx
for all k's



Beyond Wigner and Bertrand — 1.

e Covariance principles applied to quadratic
transforms lead to classes of distributions

e Shifts in time and frequency — Cohen’s
class (Cohen, '66)

ds d&

Co(t,w) = [ [ Wals, ) N(s = 1,6 =) ==

e Shifts in time and dilations — affine classes
(Bertrand and Bertand, '92, Rioul and F.,
'92)

ds dé¢

2(t,w) = [ [ Wals,©) N(w(s—1),6/w)



Beyond Wigner and Bertrand — 2.

e Distributions are “parameterized” by an “ar-
bitrary” function [T

e Specific distributions may be tailored to
specific required properties

e In most cases, generalized distributions are
smoothed versions of (localizable) mother
distributions = lower time-frequency reso-
lution



Back to the bat chirp

Wigner spectrogram

spectrogram

reassigned spectrogram

.

time

reassigned spectrogram




Spectrograms and Wigner

e A spectrogram is the squared magnitude of
a short-time Fourier transform

2 , 2
agh) (t,w)‘ = ‘/x(s) h(s —1t) e~ w(s—t/2) g ,

with h(t) a low-pass analyzing window

e An equivalent definition can be given as
ds dg

FM w)\ [ [ Wels,© Wi(s—t,6-w) <
with Wy the Wigner distribution

The interpretation

IS that spectrograms are smoothed Wigner dis-
tributions



Summary

e /inear short-time Fourier transforms, and
therefore squared linear transforms (spec-
trograms) cannot be sharply localized

e truely quadratic (Wigner-type) transforms
can be localized, but create cross-terms
between different components

e trade-off between localization and cross-
terms



The objective

IS to get, simultaneously, the sharp localization
of truely quadratic transforms and the low level
of cross-terms of squared linear transforms

A solution

is to make use of the nonlinear technique of
reassignment, introduced by Kodera et al. in
the mid-70’s



A mechanical analogy

The spectrogram smoothing operator acts lo-
cally over a small domain of the time-frequency
plane, namely the essential support of the Wigner
distribution of the window at the considered
location

Thinking of the Wigner distribution of the sig-

nal within this domain as a distribution of mass,
evaluating a spectrogram at a given point amounts
to

1. reducing the local mass distribution to one
number (the total mass) by summing up
all contributions in the domain

2. assigning this number to the geometrical
center of the domain



Smoothing the Wigner distribution

Wigner distribution

frequency

time



Smoothing the Wigner distribution

time-frequency window

frequency

time



T he idea of reassignment

IS to replace the geometrical center of the do-
main by the center of gravity of the distribution
within the domain and, therefore, to reassign
computed values of the smoothed distribution
to local centroids

S (¢, w)

1
ds dg

// S (5,6) 8 (t — Tu(s,8),w — Ba(s, €))

Remark — Reassignment has been originally introduced
(by Kodera et al.) for spectrograms only, but it applies
in fact to any distribution which results from a smooth-
ing of some localizable mother distribution: Cohen’s
class based on Wigner, affine class based on Bertrand,
hyperbolic class based on Altes, ... (Auger & F., '95)



An optical analogy

spectro spectro
spectro. reass. spectro.

“Lens” is local and signal-dependent. adaptive
optics

Focus on lines of the image plane: caustics for
nonlinear chirps



Reassignment in practice

For each time-frequency point (¢,w), local cen-
troids t;(t,w) and &z (t,w) have to be evaluated

In the case of spectrograms, we have (Auger
& F., '95)

£ (Th)
tz(t,w) =t + Re ‘”(h) (t,w)

and

) FggDh)

Or(t,w) =w —Im Fagh) (t,w),
with (Th)(t) = th(t) and (Dh)(t) = (dh/dt)(t).
Similar relations hold for scalograms.

As compared to a conventional spectrogram, a
reassigned spectrogram amounts to computing
three short-time Fourier transforms instead of
one (and two only with Gaussian windows)



Perfect localization

Reassigned distributions localize as perfectly as
the unsmoothed distribution on which they are
based

For reassigned smoothed Wigner distributions,
localization is on lines of the time-frequency
plane:

e impulses — §(t — tg)

e pure tones — 6(w — wp)

e linear chirps — 6(w — at)



Approximate localization
LLocalization is still almost perfect as long as a
chirp approximation is locally valid, within the

time-frequency smoothing window

Example of a Hermite function







A new trade-off for noisy signals

e In the vicinity of a signal component, reas-
signment is good, since it reinforces local-
ization

e In (broadband) noise-only regions, reassign-
ment is bad, since it reinforces local peaks
which depend on the realization

Idea

1. Identify noise-only regions

2. Inhibate reassignment in those regions



Reassignment for analysis and processing

signal

analysis

distribution vector field

reass.

image

process.

l

features



Reassignment for analysis and processing

—_— 2 —
ggfal
analysis
distribution vector field
process. process.
reass.
image
process.
l

- features -



Examples

supervised reassignment

differential reassignment

time-frequency partitioning

chirp detection



Concluding remarks

Time-frequency localization can be given sim-
ple geometric interpretations

Time-frequency localization is faced with trade-
offs related to ‘“‘uncertainty principles”

Reassignment is an effective and easy way to
improve localization and readability of time-
frequency distributions

A freeware Matlab toolbox is available at the
URL

http://crttsn.univ-nantes.fr/duger/tftb.html



