# Scaling Processes

\_\_\_\_

# A Wavelet Perspective

Patrick Flandrin

CNRS, Ecole Normale Supérieure de Lyon (France)

## Self-similarity and 1/f spectra

Ubiquity — Self-similar processes and empirical "1/f" spectra are observed in many areas (communications, solid-state physics, biology, turbulence, . . . )

Variations — This however may correspond to different features, depending on the frequency range :

- $A \le f \le B$ : scaling (e.g., turbulence in the inertial range)
- $0 \le f \le A$  (large scales) : long-range dependence, slowly-decaying correlation
- ullet  $B \leq f \leq \infty$  (small scales) : fractality, Hölder regularity

#### **Scaling processes**

Common property is scale invariance

In each case, no characteristic scale exists (in a given range), the important feature being rather the existence of some invariant relation between scales.

Non-standard situations in signal processing or time series analysis (nonstationarity, long-range dependence, ...)  $\Rightarrow$  challenging problems in term of analysis, synthesis, and processing (filtering, prediction, ...).

Specific tools have been developed over the years and, in a recent past, a natural approach has been to consider scaling processes from the perspective of the multiresolution tools introduced around the concept of wavelet

#### Continuous wavelet transform

The wavelet transform of a signal  $X(t) \in L^2(I\!\!R)$  is defined in continuous time by

$$T_X(a,t) := \frac{1}{\sqrt{a}} \int X(s) \, \psi\left(\frac{s-t}{a}\right) \, ds,$$

where:

- t is time
- a is scale
- $\bullet$   $\psi(.)$  is the analyzing wavelet, i.e., some zero-mean function, well-localized in both time and frequency

It is a *time-scale* transform, that can be viewed as a "mathematical microscope"

## Multiresolution analysis

Slogan — "signal (at any resolution = approximation (at a coarser resolution) + detail"

Theory — More precisely, a MultiResolution Analysis of  $L^2(I\!\!R)$  is given by

1. a collection of nested approximation spaces

$$\dots V_1 \subset V_0 \subset V_{-1} \dots$$

such that their intersection is zero and their closure dense in  $L^2(I\!\!R)$  ;

2. a *dyadic scaling relation* between the different approximation spaces :

$$X(t) \in V_j \Leftrightarrow X(2t) \in V_{j-1}$$
;

3. a scaling function  $\varphi(t)$  such its integer translates  $\{\varphi(t-n), n \in \mathbb{Z}\}$  form a basis of  $V_0$ .

#### Discrete wavelet transform 1.

It follows that, given a resolution depth J, any signal  $X(t) \in V_0$  admits the decomposition :

$$X(t) = \underbrace{\sum_{k} a_{X}(J,k) \, \varphi_{J,k}(t) \, +}_{\text{approximation}} +$$

$$\underbrace{\sum_{j=1}^{J}}_{J \text{ scales}} \underbrace{\sum_{k} d_X(j,k) \, \psi_{j,k}(t)}_{\text{details}},$$

with  $\{\varphi_{j,k}(t):=2^{-j/2}\varphi(2^{-j}t-k), j \text{ and } k\in \mathbb{Z}\}$  and  $\{\psi_{j,k}(t):=2^{-j/2}\psi(2^{-j}t-k), j \text{ and } k\in \mathbb{Z}\}$ , the wavelet  $\psi(.)$  being such that its integer translates are a basis of  $W_0$ , the complement of  $V_0$  in  $V_{-1}$ .

The  $a_X$ 's and  $d_X$ 's stand, respectively, for the approximation and detail (or wavelet) coefficients of X(t).

#### Discrete wavelet transform 2.

ullet The detail coefficients  $d_X(j,k)$  measure a difference in information between two successive approximations, and are obtained as

$$d_X(j,k) := 2^{-j/2} \int X(t) \, \psi\left(2^{-j}t - k\right) \, dt$$
.

- From a practical point of view, they can be computed recursively with efficient pyramidal algorithms (faster than FFT).
- An important property of a wavelet is its number of vanishing moments, i.e., the number  $N \geq 1$  such that

$$\int t^k \, \psi(t) \, dt \equiv 0, \quad k = 0, 1, \dots N-1 \, .$$

#### Self-similarity 1.

Definition — A process  $X = \{X(t), t \in I\!\!R\}$  is said to be self-similar with self-similarity parameter H > 0 (or, "H-ss") if and only if the processes  $X_1 := X$  and  $X_c := \{c^{-H}X(ct), t \in I\!\!R\}$  have the same finite dimensional distributions for any c > 0 (statistical scale-invariance).

(Remark : self-similarity  $\Rightarrow$  nonstationarity.)

Wavelet characterization — The wavelet coefficients of an H-ss process X exactly reproduce its self-similarity through :

$$(d_X(j,0),\ldots,d_X(j,N_j-1)) \stackrel{d}{=}$$
 
$$2^{j(H+1/2)}(d_X(0,0),\ldots,d_X(0,N_j-1)).$$

#### Self-similarity 2.

Two consequences of the wavelet characterization of self-similarity :

1. For processes whose wavelet coefficients have *finite* second-order statistics, one has:

$$\mathbb{E}d_X^2(j,k) = 2^{j(2H+1)}\mathbb{E}d_X^2(0,k),$$

and, thus,

$$\log_2 \mathbb{E} d_X^2(j,k) = j(2H+1) + \log_2 \mathbb{E} d_X^2(0,k).$$

2. For processes whose wavelet coefficients may have *infinite* second-order statistics, but for which the quantity  $I\!\!E \log_2 |d_X(j,k)|$  exists, one has :

$$I\!\!E\log_2|d_X(j,k)| =$$

$$j(H+1/2) + \mathbb{E} \log_2 |d_X(0,k)|.$$

#### Stationary increments 1.

Definition — A process  $X = \{X(t), t \in \mathbb{R}\}$  is said to have stationary increments (or, to be "si") if and only if, for any  $h \in \mathbb{R}$ , the finite-dimensional distributions of the increment processes

$$X^{(h)}:=\left\{X^{(h)}(t):=X(t+h)-X(t),t\in I\!\!R\right\}$$
 do not depend on  $t$ .

Wavelet characterization — In the case of the wavelet transform, this results in a stationarization property, according to which the details  $\{d_X(j,k), k \in \mathbb{Z}\}$  of a si process form, at each octave j, a stationary sequence.

## Stationary increments 2.

#### Some remarks:

- 1. Stationarization can be extended to processes which have increments of order p, under the condition that  $N \geq p$ .
- 2. Stationarization applies as well to the continuous wavelet transform.
- 3. The increments of a process X can be read as a specific example of wavelet coefficients, since we have

$$X^{(ah_0)}(t):=X(t+ah_0)-X(t)\equiv \frac{1}{\sqrt{a}}T_X(a,t),$$
 with  $\psi(t)=\delta(t+h_0)-\delta(t)$  (the "poorman's wavelet").

### Finite variance and Gaussian processes

Let X denote a zero-mean H-sssi process with finite variance. Assuming that  $X(0) \equiv 0$ , one has necessarily :

$$IEX(t)X(s) = \frac{\sigma^2}{2} \left( |t|^{2H} + |s|^{2H} - |t - s|^{2H} \right),$$

with the two consequences that wavelet coefficients

1. may be asymptotically decorrelated when  $|2^{-j}k-2^{-j'}k'| \to \infty$  :

$$\mathbb{E} d_X(j,k)d_X(j',k') \sim |2^{-j}k - 2^{-j'}k'|^{2(H-N)};$$

2. have a variance reproducing the scaling law:

Var 
$$d_X(j,k) = 2^{j(2H+1)}\sigma^2 C(\psi,H),$$

with

$$C(\psi, H) := \int |u|^{2H} \left( \int \psi(v) \psi(v+u) dv \right) du$$
.

(Remark : Gaussianity  $\Rightarrow$  FBM.)

### Long-range dependence

Definition 1 — A second-order stationary process X is said to be long-range dependent (LRD) if its stationary covariance function  $c_X$  satisfies :

$$c_X(\tau) \sim c_r \, \tau^{-\beta}, \, \tau \to +\infty,$$

with  $0 < \beta < 1$ .

Definition 2 — An equivalent definition amounts to saying that the spectrum  $\Gamma_X$  of a LRD process satisfies :

$$\Gamma_X(f) \sim c_f |f|^{-\gamma}, f \to 0,$$

with  $0 < \gamma < 1$ .

Interpretation — Both definitions imply that

$$\int c_X(\tau)\,d\tau = \infty\,,$$

i.e., that the asymptotic decay of the stationary covariance function is so slow that it is not summable ("long memory").

#### LRD processes and wavelets

Scaling — The variance of the wavelet coefficients of a LRD process reproduces the underlying power-law:

Var 
$$d_X(j,k) \sim 2^{j\gamma} c_f C(\psi,\gamma), j \to \infty,$$

with

$$C(\psi,\gamma) := \int |f|^{-\gamma} |\Psi(f)|^2 df.$$

Weak dependence — Moreover, the covariance of wavelet coefficients has as asymptotic behaviour:

$$IEd_X(j,k)d_X(j',k') \sim |2^{-j}k - 2^{-j'}k'|^{\gamma-1-2N},$$

when  $|2^{-j}k - 2^{-j'}k'| \to \infty$ : long-range correlation within X can be turned to short-range correlation within its wavelet coefficients, under the condition that  $N > \gamma/2$ .

## Wavelets for scaling exponent estimation

Wavelet analysis offers a unifying framework for the scaling processes discussed so far, since wavelet coefficients

- 1. form stationary sequences, at any scale;
- 2. reproduce the scale invariance, through either

$$\log_2 \operatorname{Var} d_X(j,k) = j\gamma + C$$

or

$$I\!\!E \log_2 |d_X(j,k)| = j(H+1/2) + C$$
;

3. are weakly correlated if the number of vanishing moments is high enough.

Efficient estimation of scaling exponent is therefore possible on the basis of a simple linear regression in a log-log plot (logscale diagram).

# Estimation for finite variance and Gaussian processes 1. Definition

Variance — At each scale j, Var  $d_X(j,k)$  can be efficiently estimated by

$$\mu_j = \frac{1}{n_j} \sum_{k=1}^{n_j} d_X^2(j,k),$$

and there exists a (known) correction number  $g_j$  such that  $y_j := \log_2 \mu_j - g_j$  verifies

$$I\!\!E y_j = \gamma j + C.$$

Exponent — Estimation is achieved through the weighted linear regression

$$\hat{\gamma} = \sum_{j} \left( \frac{1}{a_j} \frac{S_0 j - S_1}{S_0 S_2 - S_1^2} \right) y_j \,,$$

with  $S_m := \sum_j j^m / \text{Var } y_j$  for m = 0, 1, 2.

# Estimation for finite variance and Gaussian processes 2. Properties

1. By construction, the estimator is unbiased:

$$I\!\!E\hat{\gamma}=\gamma.$$

- 2. Assuming no correlation between wavelet coefficients,  $\operatorname{Var} \widehat{\gamma}$  decreases as 1/n for data of size n (in the limit of large  $n_j$  at each scale j under consideration).
- 3. The Cramér-Rao lower bound is attained in this case, and the estimate  $\hat{\gamma}$  is (asymptotically) normally distributed.

# Wavelet-based estimations — Additional benefits

- 1. Robustness to non-Gaussianity.
- 2. Insensitivity to polynomial trends. Imposing N>1 vanishing moments results in a wavelet that is blind to polynomials up to orders  $p \leq N-1$ .
- 3. Computational efficiency. Because of their multiresolution structure and their pyramidal implementation, wavelet-based methods are associated with fast algorithms overperforming FFT-based algorithms (complexity O(n) vs.  $O(n \log n)$ , for n data points).

#### Conclusion

- Wavelet analysis offers a unified framework for the characterization of scaling processes.
- It allows for a unique treatment of a large variety of processes, be they self-similar, fractal, long-range dependent, Gaussian or not, . . .
- Further extensions can be given to the results presented so far (point processes with fractal-type characteristics, multifractional or multifractal processes, . . . ).

Wedding wavelets with scaling processes is in some sense "natural," in terms of a structural adequacy between the *mathematical* framework they offer (multiresolution) and the *physical* nature of the processes under study (scaling).