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Self-similarity and 1/f spectra

Ubiquity — Self-similar processes and empiri-
cal “1/f" spectra are observed in many areas
(communications, solid-state physics, biology,
turbulence, ...)

Variations — T his however may correspond to
different features, depending on the frequency
range :

e AL f < B : scaling (e.g., turbulence in the
inertial range)

e 0 < f < A (large scales) : long-range de-
pendence, slowly-decaying correlation

e B < f < oo (small scales) : fractality,
Holder regularity



Scaling processes
Common property is scale invariance

In each case, no characteristic scale exists (in
a given range), the important feature being
rather the existence of some invariant relation
between scales.

Non-standard situations in signal processing or
time series analysis (nonstationarity, long-range
dependence, ...) = challenging problems in
term of analysis, synthesis, and processing (fil-
tering, prediction, ...).

Specific tools have been developed over the
years and, in a recent past, a natural approach
has been to consider scaling processes from
the perspective of the multiresolution tools in-
troduced around the concept of wavelet



Continuous wavelet transform

The wavelet transform of a signal X () € L?2(IR)
is defined in continuous time by

Tx(a,t) := %/X(s)w (8 _t> ds,

a

where :

e t IS time

® a IS scale

e ¢(.) is the analyzing wavelet, i.e., some
zero-mean function, well-localized in both
time and frequency

It is a time-scale transform, that can be viewed
as a “mathematical microscope”



Multiresolution analysis

Slogan — "signal (at any resolution = approx-
imation (at a coarser resolution) + detail”

Theory — More precisely, a MultiResolution
Analysis of L2(IR) is given by

1. a collection of nested approximation spaces

LoV CVgC V...

such that their intersection is zero and their
closure dense in L?(R) ;

2. a dyadic scaling relation between the dif-
ferent approximation spaces :

X(t) €Vj & X(2t) € Vi_1;

3. a scaling function o(t) such its integer trans-
lates {p(t —n),n € Z} form a basis of V4.



Discrete wavelet transform 1.

It follows that, given a resolution depth J, any
signal X (t) € Vp admits the decomposition :

X)) =) ax(J,k) o )+
\k _y

approximation

J

> D dx (G, k) v (1),
j=1 kK

N~
scale

>

J S details

with {p; ,(t) := 279/2p(277t — k),jand k € Z}
and {¢;,(t) := 27929277t — k),jand k € Z},
the wavelet ¥(.) being such that its integer
translates are a basis of Wy, the complement
of Vo in V_1.

The ax’'s and dx's stand, respectively, for the
approximation and detail (or wavelet) coeffi-
cients of X (¢).



Discrete wavelet transform 2.

e The detail coefficients dx(j,k) measure a
difference in information between two suc-
cessive approximations, and are obtained
as

dx (G, k) = 2_j/2/X(t)¢ (277t — k) dt.

e From a practical point of view, they can be
computed recursively with efficient pyrami-
dal algorithms (faster than FFT).

e An important property of a wavelet is its
number of vanishing moments, i.e., the num-
ber N > 1 such that

/tkw(t)dtzo, k=0,1,...N—1.



Self-similarity 1.

Definition — A process X = {X(t),t € R} is
said to be self-similar with self-similarity pa-
rameter H > 0 (or, “H-ss") if and only if the
processes X1 ;= X and X, .= {c_HX(ct),t S JR}
have the same finite dimensional distributions
for any ¢ > 0 (statistical scale-invariance).

(Remark : self-similarity = nonstationarity.)
Wavelet characterization — T he wavelet coef-

ficients of an H-ss process X exactly reproduce
its self-similarity through :

(dx(5,0),...,dx (7, Nj —1)) g

20(H+1/2)(dx(0,0),...,dx(0,N; — 1)).



Self-similarity 2.

Two consequences of the wavelet characteri-
zation of self-similarity :

1. For processes whose wavelet coefficients
have finite second-order statistics, one has:

Ed%(j, k) = 20+ R4 (0, k),
and, thus,

logs IEd% (4, k) = j(2H+1)+logs IEd5 (0, k).

2. For processes whose wavelet coefficients
may have infinite second-order statistics,
but for which the quantity IElogs |dx (j, k)|
exists, one has :

IElogs |dx(7,k)| =

j(H+1/2) + Elogs |dx(0,k)|.



Stationary increments 1.

Definition — A process X = {X(t),t € IR} is
said to have stationary increments (or, to be
“si” ) if and only if, for any h € IR, the finite-
dimensional distributions of the increment pro-
cesses

x(h) .= {X<h> (t) = X(t+h) — X(@),tc JR}

do not depend on t.

Wavelet characterization — In the case of the
wavelet transform, this results in a stationar-
ization property, according to which the details
{dx(j, k), k € Z} of a si process form, at each
octave j, a stationary sequence.



Stationary increments 2.

Some remarks :

1. Stationarization can be extended to pro-
cesses which have increments of order p,
under the condition that N > p.

2. Stationarization applies as well to the con-
tinuous wavelet transform.

3. The increments of a process X can be read
as a specific example of wavelet coefficients,
since we have

X (ko) (1) := X (t-+ahg)—X(8) = ——Tx (a,1),
va

with ¢(t) = §(t+hg)—46(t) (the “poorman’s

wavelet”).



Finite variance and Gaussian processes

Let X denote a zero-mean H-ssSsi process with
finite variance. Assuming that X(0) = 0, one
has necessarily :
o2
EX0)X(s) = — (|27 + s — |t - s27)

with the two consequences that wavelet coef-
ficients

1. may be asymptotically decorrelated when
277k — 27 k’| — 00

Edx(j,k)dx(j', k') ~ [27 7k — 277/ |2(H-N),

2. have a variance reproducing the scaling law :
Var dx (5, k) = 20CHtD 20 (y, 1),
with

O, 1) = [ 1P ( [ ()0 +wdv) du.

(Remark : Gaussianity = FBM.)



Long-range dependence

Definition 1 — A second-order stationary pro-
cess X is said to be long-range dependent (LRD)
if its stationary covariance function cx satis-
fies :

cx (1) ~ cr ’7'_’8, T — 400,

with 0 < 8 < 1.

Definition 2— An equivalent definition amounts
to saying that the spectrum I x of a LRD pro-
cess satisfies :

Cx(f) ~ce lfI77, F—0,
with 0 < v < 1.

Interpretation — Both definitions imply that
/CX(T) dr = oo,

i.e., that the asymptotic decay of the station-
ary covariance function is so slow that it is not
summable (“long memory”).



LRD processes and wavelets

Scaling — The variance of the wavelet coef-
ficients of a LRD process reproduces the un-
derlying power-law :

Var dx (j, k) ~ 277¢;C(3,7) ,j — oo,
with
C,y) = [P dr.

Weak dependence — Moreover, the covariance
of wavelet coefficients has as asymptotic be-
haviour :

Edx(j,k)dx (', k') ~ |27k — 277 /P~ 172N

when |279k — 277'k/| — oo : long-range corre-
lation within X can be turned to short-range
correlation within its wavelet coefficients, un-
der the condition that N > ~/2.



Wavelets for scaling exponent estimation

Wavelet analysis offers a unifying framework
for the scaling processes discussed so far, since
wavelet coefficients

1. form stationary sequences, at any scale :

2. reproduce the scale invariance, through ei-
ther

logs Var dx(j,k) =jv+C
or

IElogs |dx(5,k)| =3(H+1/2) + C,

3. are weakly correlated if the number of van-
Ishing moments is high enough.

Efficient estimation of scaling exponent is there-
fore possible on the basis of a simple linear
regression in a log-log plot (logscale diagram).



Estimation for finite variance and
Gaussian processes 1. Definition

Variance — At each scale j, Var dx(J,k) can
be efficiently estimated by

1
pi=— Y dx(,k),
Ny =1

and there exists a (known) correction number
9g; such that Y; = l0go i — g; verifies

FEy; =~5+ C.

Exponent — Estimation is achieved through
the weighted linear regression

- 1 Soj—51>
T = Yjs
%:<aj5052—sf /

with Spm 1= 32;3™/Var y; for m =0, 1, 2.




Estimation for finite variance and
Gaussian processes 2. Properties

1. By construction, the estimator is unbiased :

FE~y = ~.

2. Assuming no correlation between wavelet
coefficients, Var 4 decreases as 1/n for data
of size n (in the limit of large n; at each
scale j under consideration).

3. The Cramér-Rao lower bound is attained
in this case, and the estimate 4 is (asymp-
totically) normally distributed.



Wavelet-based estimations — Additional
benefits

1. Robustness to non-Gaussianity.

2. Insensitivity to polynomial trends. Impos-
iIng N > 1 vanishing moments results in a
wavelet that is blind to polynomials up to
orders p< N — 1.

3. Computational efficiency. Because of their
multiresolution structure and their pyrami-
dal implementation, wavelet-based meth-
ods are associated with fast algorithms over-
performing FFT-based algorithms (complex-
ity O(n) vs. O(nlogn), for n data points).



Conclusion

e \Wavelet analysis offers a unified framework
for the characterization of scaling processes.

e It allows for a unique treatment of a large
variety of processes, be they self-similar,
fractal, long-range dependent, Gaussian or
not, ...

e Further extensions can be given to the re-
sults presented so far (point processes with
fractal-type characteristics, multifractional
or multifractal processes, ...).

Wedding wavelets with scaling processes is in
some sense ‘‘natural,” in terms of a structural
adequacy between the mathematical framework
they offer (multiresolution) and the physical
nature of the processes under study (scaling).



