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ABSTRACT

An extension of Empirical Mode Decomposition (EMD)
is defined for graph signals. EMD is an algorithm that de-
composes a signal in an addition of modes, in a local and
data-driven manner. The proposed Graph EMD (GEMD) for
graph signals is based on careful considerations on key points
of EMD: defining the extrema, interpolation procedure, and
the sifting process stopping criterion. Examples of GEMD
are shown on the 2D grid and on two examples of sensor net-
works. Finally the effect of the graph’s connectivity on the
algorithm’s performance is discussed.

Index Terms— Graph signal processing, Empirical Mode
Decomposition, Graph interpolation

1. INTRODUCTION

Graphs are a useful coding or representation of relations in
data for many applications, e.g., neural, sensor, energy, social
or biological networks. A graph signal is a signal defined on
the nodes of a graph, the structure of this graph being either
known a priori or inferred from proximity or similarity mea-
sures between nodes. Fig. 1 shows two examples of such sig-
nals, in the context of sensor networks, where nodes are sen-
sors spread out in space. Recently, there has been a substantial
effort to adapt classical signal processing tools to graph sig-
nals [1, 2] such as the graph wavelet transform [3–6], lifting
schemes [7], the windowed Fourier transform [8] or interpola-
tion [9]. We introduce the Graph Empirical Mode Decompo-
sition, an adaptation to graph signals of the now widely used
Empirical Mode Decomposition (EMD) [10, 11]. EMD is a
data-driven algorithm that aims at locally separating fast from
slow oscillations in a signal. As EMD is local and adaptive,
it is especially useful when the components of the signal one
wants to separate are nonstationary or have overlapping spec-
tra, hence when a simple filtering in the Fourier space fails.
For examples and illustrations, we focus on sensor networks,
but the method is relevant for any graph signal. In Sec. 2, the
Graph EMD (GEMD) is introduced after recalling the classi-
cal EMD (CEMD). In Sec. 3, GEMD is applied to signals on
the 2D grid, and on the two examples of Fig. 1. We conclude
in Sec. 4.

(a) (b)
−0.2 0 0.3−1

0
1

−0.2

0

0.2
 

x

 

y

z

−1

0

1

2

Fig. 1. Examples of graph signals in sensor networks, as de-
tailed later on in Sec. 3.2. The values of the graph signals on
the nodes is color-coded (as per the colorbars).

2. ALGORITHM FOR GRAPH EMD

2.1. Classical Empirical Mode Decomposition

Let us recall classical EMD (CEMD). Given a signal x(t),
it separates a local “low frequency” component m1(t) –the
trend– from an Intrinsic Mode Function (IMF) d1(t) which
is a local “high frequency” mode having the same number
of extrema and zero crossings, and roughly symmetric with
respect to zero. By applying the same decomposition tom1(t)
we obtain m1(t) = m2(t) + d2(t), and, recursively:

x(t) = mK(t) +

K∑
k=1

dk(t). (1)

The signal is decomposed in IMFs until they are all extracted.
Given mi(t), this separation of the slow oscillating trend

mi+1(t) from the fast oscillating IMF di+1(t), is done in the
EMD algorithm by using the so-called sifting process [10]:

1. s = mi. While s(t) does not meet the sifting process
stopping criterion, repeat steps 2 to 5:

2. Detect the local extrema of s(t).
3. Interpolate the minima (resp. extrema) to obtain some

envelope emin(t) (resp. emax(t)).
4. Compute the mean (local trend) µ(t) = emin(t)+emax(t)

2 .
5. Subtract it from the signal: s(t)← s(t)− µ(t).
6. Set di+1(t) = s(t) and mi+1(t) = mi(t)− s(t).

The most conservative stopping criterion is that the loop stops
as soon as s(t) is an IMF. This is usually too strong a con-
straint and it is relaxed to a stopping criterion yielding ap-
proximate IMFs [12].



2.2. From CEMD to Graph EMD

Before discussing the elements defining EMD on graphs (ex-
trema, interpolation and stopping criteria), let us study how
one creates a graph for data when it is not known beforehand.

2.2.1. Graph creation

We place ourselves in the context of sensor networks, where
the signal has a value at each sensor whose locations in space
are known. Let V be the set of the sensors, used as nodes for
the graph. Among the options to define edges in the graph
supporting the signal, we explore two:

1. a weighted graph parametrized by δ: only pairs of sen-
sors (i, j) at a distance di,j shorter than δ are connected
by an edge, with weight wi,j = exp(−d2i,j/2δ2).

2. a binary graph parametrized by k: each node is con-
nected to its k nearest neighbors (k-NN).

These procedures do not necessarily build connected graphs
(typically when δ or k are too small). To avoid interpolation
problems, choose a connected component and add the short-
est link connecting it to another component – the component
grows larger – and repeat this until the graph is connected.

In other contexts, the graph could be known beforehand,
or obtained, e.g., by using statistical similarities as distances.
Anyway, we end up with a graph G = (V,E), where E is the
set of edges connecting nodes. Let us note A its adjacency
matrix and D the diagonal matrix of degrees.

2.2.2. Definition of local extrema

For a signal x defined on V , a node i is a local maximum
(resp. minimum) if, for all its neighbours k in G, x(i) > x(k)
(resp. x(i) < x(k)). Note that other notions of extremum
could be introduced: for instance extremum along one direc-
tion only, as it is done for images in “Pseudo-2D” EMD where
extrema are along lines or columns only [13]. We explore an-
other definition of extrema in Sec. 3.3.

2.2.3. Interpolation procedure

There are several ways to interpolate a graph signal. There
are for instance global procedures, like the method discussed
in [9], where the authors minimize the highest graph Fourier
frequency mode necessary to recover the signal on the known
nodes. Since this method is based on global Fourier modes,
it would not be appropriate to extract modes having some
nonstationnarity within the graph, e.g. a chirp. The high-
est frequency retained would be globally the highest one, and
it contradicts the locality of EMD: at local places in the graph
where the modes have lower frequency, this interpolation pro-
cedure would never extract the mode.

Instead, we rely on an interpolation method formulated
through a discrete partial differential equation on the graph.
Inspired by Grady et al. [14], interpolation is recast as a

Dirichlet problem on the graph. Consider the Laplacian
L = D − A of graph G, the signal s on nodes V to be
interpolated, and B (resp. U ) the set of nodes where the
signal is known (resp. unknown). Solving the Dirichlet prob-
lem comes down to finding s that minimizes s>Ls under
the constraint s(b) = sB(b) the known values for b ∈ B.
By re-ordering the nodes, one may write s> = [s>Bs

>
U ] and

L =
[
LB R

R> LU

]
. Solving the Dirichlet problem boils down to

solving the system of linear equations: LUsU = −R>sB .

2.2.4. Choice of stopping criteria

With the previous elements, the sifting process is easily mod-
ified and we propose a stopping criterion for this sifting pro-
cess from an energy criterion: stop the loop 2-5 as soon as the
energy of the mean µ(t) (computed at step 4) is lower than the
energy of the signal mi(t) analysed divided by 1000. In all
the experiments we have made, this criterion converges. This
criteria is reminiscent of choices in CEMD, see [10, 12].

2.2.5. The GEMD algorithm

Akin to the CEMD, we define the GEMD from its algorithm.
Given a set of sensors V , a set of measures {xi}i∈V , and K,
the number of modes to be extracted, the algorithm reads:

1. Create the adjacency matrix A for the graph G, here by
considering the relative spatial positions (as in 2.2.1).

2. Set m0 = x. Iterating on i, extract from mi the fast
mode di+1 and slow trend mi+1 following the sifting
process of Sec. 2.1 (where t stands now for the indices
of nodes) using the extrema, interpolation procedure
and stopping criterion described above.

3. Stop and obtain x(t) = mK(t) +
∑K

k=1 dk(t).
Note that we do not discuss here the number of modes to be
extracted K, it is fixed a priori.

3. EXAMPLES AND DISCUSSION

3.1. Application and discussion on the 2D grid

Consider the case of N = 400 sensors distributed on the 2D
grid 20 × 20. Instead of discussing it as a regular image,
we adopt the point-of-view of graphs. Let us consider, as an
example, a superposition of sine waves separated by an angle
θ; the signal is the sum of three components:
• a horizontal sine wave of amplitude 2 and frequency 2.
• a sine wave of amplitude 1 and frequency 7, that prop-

agates with an angle θ with the horizontal.
• a uniform noise of amplitude 0.5.

Fig. 2 shows the results of the GEMD for θ = 0, π/4 and
π/2. For the first two cases, the two sines waves are sepa-
rated as expected (high frequency wave in the first IMF). For
orthogonal sine waves (θ = π/2), the GEMD does not sep-
arate them and the explanation touches the very foundations



θ = 0 : θ = π/4 : θ = π/2 :

Fig. 2. The left (resp. center, right) column represents the
result of the GEMD for an angle θ = 0 (resp. π/4, π/2)
between two sine waves. The first row is the original signal,
the second and third rows are the first and second IMF, and
the last row is the residue.

of EMD: the definition of extrema in 2.2.2. Fig. 3 displays
the first steps of the algorithm. For θ = 0 and π/4, there are
enough extrema to force the envelopes (and thus the mean µ)
to follow the low frequency component thereby enabling the
separation of components; whereas for θ = π/2, there are not
enough extrema and they have approximately the same value:
the envelopes are flat, µ has very low energy and the first IMF
will contain the whole signal, for no separation. This issue is
that this signal is a valid IMF, like it is for EMD in 2D [15],
and one should turn to “Pseudo-2D” EMD [13] with another
definition of extrema to change that. In fact, the definition
of extrema (combined with interpolation and stopping crite-
rion) defines a posteriori what is an IMF. Depending on the
application, one may change this to force the separation of a
component. This issue is discussed in Sec. 3.3.

3.2. Two examples of sensor networks and discussion

3.2.1. A sensor network in 2D space

Consider a network of 512 sensors uniformly distributed on
the 1 × 1 square. We create a weighted graph from their
2D space positions following 2.2.1 with δ = 0.075. On this
graph, we create a signal as the sum of 4 components:
• a sine wave of amplitude 1 and frequency 7, propagat-

ing with an angle θ = π/4 with the horizontal (Fig. 4a).
• a horizontal linear chirp of amplitude 2 (Fig. 4d).

θ = 0 : θ = π/4 : θ = π/2 :

Fig. 3. The first steps of the GEMD on the 2D grid for the
three angles. The first line is the original signals. The sec-
ond row shows the extrema (minima in blue and maxima in
red). The last row shows the mean µ of the two envelopes
interpolated from these extrema.

• a null signal except for a localized set of nodes of am-
plitude 2 (Fig. 4g).
• a uniform noise of amplitude 0.5.

The total signal is plotted in Fig. 1a. Results are plotted in
the center column of Fig. 4. The first IMF recovers the high
frequency sine wave component. The linear chirp is partly
in the second IMF and in the residue. The localized signal
ends up in the residue. The right column of Fig. 4 shows
that a filtering in the graph Fourier space (as defined using
the Laplacian [3]) would have failed because of overlap in the
Fourier spectra.

3.2.2. A sensor network in 3D space

Consider a network of N = 1024 sensors distributed on a
“swiss roll” manifold in 3D space [16] as shown in Fig. 1b.
The 3D positions (X,Y, Z) of the sensors on this mani-
fold are computed in 3 steps: i) create U1 and U2, two
uniformly random vectors between 0 and 1 of N points;
ii) the 3D coordinate vectors are obtained by setting S1 =
π
√

(b2 − a2)U1 + a2, and

X = S1 cosS1; Y = π2(b2 − a2)U2/2; Z = S1 sinS1.

Parameter aπ (resp. bπ) is the starting (resp. ending) angle
of the swiss roll. Here, a = 1 and b = 4. Y is chosen such
that the length of the manifold in the Y direction is equal to
the total length of the manifold if unrolled: this is to ensure
a uniform distribution of sensors; iii) the swiss roll is finally
centered and rescaled to fit in the cube of side length 2.

The corresponding k-NN binary graph is created follow-
ing section 2.2.1 with k = 14. On this graph, create a signal
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Fig. 4. Sensor network of 512 uniformly distributed nodes.
Left column: the three components of the original signal.
Middle column: the first two IMFs and the residue uncov-
ered by the GEMD. The colormap is the same as in Fig. 1a.
Right column: theoretical (resp. uncovered) signals in blue
(resp. red) in the graph Fourier domain.

as the sum of 3 components:

• a sine wave in the 3D space: amplitude 1 and frequency
7, that propagates with an angle θ = π/4 in the (y,z)
plane (Fig.5c),

• a linear chirp along the manifold of amplitude 1
(Fig.5d),

• a uniform noise of amplitude 0.5.

The total signal is plotted in Fig.5a and Fig.5b for two differ-
ent view points. The rest of Fig. 5 shows the results of the
GEMD: the first (resp. second) IMF in (e) (resp. (f)) recovers
the 3D sine wave (c) (resp. the chirp on the manifold (d)).
Here again, a simple filtering in the Fourier space would not
have separated both signals (see Fig. 5g and h).
Let us now investigate the impact of the construction of the
graph from 2.2.1 on the power of recovery of the original
components by the GEMD. The recovery rate of the 3D sine
wave (resp. the chirp) is measured in terms of its correlation
distance with the first (resp. second) IMF. Both methods de-
tailed in section 2.2.1 are investigated and results are plotted
in Fig.6. They present a similar behavior: when the connec-
tivity is too low, the method is not sensible to slowly varying
signals and recovery fails; when the connectivity is too high,
there are too few maxima and the whole signal ends up in the
first IMF: recovery fails; there exists an optimal connectivity
for which both signals are reasonably uncovered. However,
the sensitivity is not too high for k; if k is (roughly) between
10 and 20, the recovery appears to be correct.
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Fig. 5. GEMD results on a swiss roll manifold. (a) and (b) are
two different views of the original signal composed of a sum
of a 3D sine wave (c) and a linear chirp on the manifold (d).
(e) and (f) are the first two IMFs. The colormap is the same
as in Fig. 1b. (g) and (h) compare the original (dashed blue)
and recovered (red) components in the graph Fourier domain.
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Fig. 6. For the swiss roll example, power of recovery of the
3D sine wave (red) and the chirp on the manifold (dashed
blue) vs. the connectivity of the graph.

3.3. Another definition of local extrema

Suppose a different notion of extremum: a node is a local
maximum (resp. minimum) if its value is higher (resp. lower)
than a portion of its neighbors, like it would be for maximum
along lines or columns on a grid. Here, we only explore this
definition for half of the neighbors. In Fig. 7 we compare re-
sults obtained with this definition (two right columns) with
results previously obtained with Sec. 2.2.2’s definition (two
left columns) on the 2D grid example with θ = π/2. We
see how this new definition of extrema increase the number
of extrema, thereby enabling the extraction of the fast oscil-
lating mode (first IMF) but pushing the slow oscillating mode
into the residue. This observation suggests to look for more
elaborate notions of extrema that would take into account the
topology of the graph.
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Fig. 7. Comparison of results using two different defini-
tions of extrema. The two columns on the left (resp. right)
show results obtained with the notion of extrema described
in Sec. 2.2.2 (resp. in Sec. 3.3). Fig. a (resp. a’) represent
the same original signal described in Sec. 3.1 with θ = π/2.
Fig. b (b’) represent the local maxima (in red) and minima (in
blue). Fig. c (c’) represent the mean of the two envelopes
interpolated from these extrema. Fig. d (d’) represent the first
IMF, Fig. e (e’) the second IMF and Fig. f (f’) the residue.

4. CONCLUSION

A straight-forward adaptation of the classical EMD for graph
signals is explored in this communication. The extension of
EMD to graph signals opens many degrees of freedom for
the key points of EMD: extrema, interpolation, and stopping
criterion. In this first communication on the subject, we de-
liberately chose to use the simplest definitions. We discussed
that an additional point is essential to GEMD: the way one
chooses to create the graph associated to a given network,
more specifically the choice of how connected one chooses
to create the graph. In fact, the connectivity has a direct im-
pact on the number of extrema of the signal, therefore a direct
impact on the very definition of what is an IMF. Future work
will explore this link between connectivity and local extrema.
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