Fourier + 200

Patrick Flandrin

CNRS & École Normale Supérieure de Lyon, France

DAFx'11- IRCAM, Paris (F), Sep. 22, 2011

signal processing as a "3-body system"

« physics »

(laws of Nature, real world applications)

« mathematics »

(models, proofs)

« computer science »

(algorithms)

Fourier (1811)

Commissaires Le come de Grange la Ar linute Xaplace béorie du monvement de la Chaleur dans he geader - - Va les corps solides. 7 octobre 1811 11. Copris a de decras à M. La Barn Harrie (Boy) Palpe de Dipartent a Cherce & Frande . Er gune regint month (Pres.) Selance du dantes 6 janvier 1840

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Sac

the Fourier example

analysis/synthesis

Fourier decomposition based on $e_f(t) := \exp\{i2\pi ft\}$

$$x(t) \rightarrow X(f) = \langle x, e_f \rangle, \ s.t. \ x(t) = \int \langle x, e_f \rangle \ e_f(t) \ df$$

- mathematics: "any" waveform is made of the superimposition of a (possibly infinite) number of harmonic modes which are *everlasting*, *undamped* and with a *fixed frequency*
- **physics**: keyrole played by the concept of *frequency* in relation with vibrations and waves
- computer science: further development of efficient algorithms (FFT = 1965) which favoured its practical use

cycles

- physics "of Nature", from macrophysics (celestial mechanics, tides, ...) to microphysics (Quantum Mechanics)
- physics "of engineers" (rotating machines, modal analysis, surveillance of vibrating structures, ...)

W. Thomson (Lord Kelvin), 1876-1878

200

lenses

- o diffracted field
- Fourier image in the focal plane
- spatial filtering

magnitude and phase

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

magnitude and phase

tones

- eigenmodes of cavities
- Helmholtz resonators
- inner ear (cochlea)

Appareil de Kœnig pour l'analyse du timbre des sons. Document Laboratoire de Mécanique et d'Acoustique, CNRS, Marseille.

music notation

score "wavelets" uncertainty

music notation

music notation

from waves to wavelets

Issue

"localized modes" \Rightarrow switch to a 2-parameter transformation group that includes time

$$\mathbf{x}(t) \to \mathcal{T}(t,\lambda) = \langle \mathbf{x}, \mathbf{h}_{t,\lambda} \rangle, \ \mathbf{s}.t. \ \mathbf{x}(t) = \iint \langle \mathbf{x}, \mathbf{h}_{s,\lambda} \rangle \ \mathbf{h}_{s,\lambda}(t) \ \mathbf{d}\mu(s,\lambda)$$

1) time-frequency:
$$\lambda = f$$
 and $h_{s,f}(t) = h(t - s) e_f(t)$

 \rightarrow short-time Fourier transform

) time-scale:
$$\lambda = a$$
 and $h_{s,a}(t) = |a|^{-1/2} h((s-t)/a)$

 \rightarrow wavelet transform

the wavelet connection (\sim 1980-90)

« physics »

vibroseismics for oil exploration

(Morlet)

« mathematics »

CWT, MRA, bases, etc.

(Grossmann, Meyer, Daubechies)

« computer science »

filter banks, fast algorithms

(Mallat, Cohen, Vetterli)

イロト イ理ト イヨト イヨト

 \exists

DQC

exclusion principles

« physics »

classical formulation

Localization trade-off

based on a second order (variance-type) measure: $\Delta t_x = (\int t^2 |x(t)|^2 dt)^{1/2}$ and $\Delta f_x = (\int f^2 |X(f)|^2 df)^{1/2} \Rightarrow$

$$\Delta t_x \, \Delta f_x \geq \frac{\|x\|}{4\pi} \, \, (>0)$$

- no perfect pointwise localization
- variations: same limitation with other spreading measures, e.g., entropy (Hirschman, 1957)
- o common denominator: minimum achieved with Gaussians

<ロト < 同ト < 三ト < 三ト < 三 ・ < への < つ > への >

extension

no pointwise localization does not mean no localization

Stronger uncertainty relation (Schrödinger, 1935)

$$\Delta t_x \,\Delta f_x \geq \frac{\|x\|}{4\pi} \sqrt{1 + 16\pi^2 \left(\int t \,\left(\partial_t \arg x(t)\right) \,|x(t)|^2 \,dt\right)^2}$$

bound achieved for "squeezed states" $\{\exp(\alpha t^2 + \beta t + \gamma)\},\$ with linear "chirps" as a limit when $\operatorname{Re}\{\beta\} = 0$ and $\operatorname{Re}\{\alpha\} \to 0_-$

time-frequency alternatives

From stationarity...

spectrum analysis "à la Wiener-Khintchine-Bochner": $\Gamma_x(f) = \mathcal{F}\{\gamma_x\}(f)$, with $\gamma_x(\tau) := \langle x, \mathbf{T}_{\tau}x \rangle$ a time-independent correlation function

... to nonstationarities

 $\gamma_x \rightarrow time$ -frequency correlation $\langle x, \mathbf{T}_{\tau,\xi} x \rangle + 2D$ Fourier transform \Rightarrow Wigner-type transforms

- intrinsic definitions: no dependence on some measurement device (window, wavelet)
- perfect localization for linear chirps (with possible extensions to non linear cases)

"distribution/correlation" duality

Definition

by definition,
$$W_x(t, f) \xrightarrow{TF-2D} \mathcal{F}\{W_x\}(\xi, \tau) := A_x(\xi, \tau)$$
:
ambiguity function (AF)

Interpretation

the TF-shift operator $(\mathbf{T}_{\xi,\tau}x)(t) := x(t-\tau) e^{-i2\pi\xi(t-\tau/2)}$ is such that $A_x(\xi,\tau) = \langle x, \mathbf{T}_{\xi,\tau}x \rangle \Rightarrow AF = TF$ correlation, with

- "auto-terms" neighbouring the origin of the plane
- "cross-terms" at a distance from the origin that equals the TF distance between components

<ロト < 同ト < 三ト < 三ト < 三 ・ < への < つ > への > < つ > への > < つ > への > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > <

Fourier notes localization oscillations

distributions "chirps" sparsity

the other trade-off and its "classical" way out

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <

spectrogram = smoothed Wigner

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <

spreading of auto-terms

cancelling of cross-terms

Fourier notes localization oscillations

distributions "chirps" sparsity

・ロト ・ 同ト ・ ヨト ・ ヨト

590

reassignment (Kodera et al., 1976, Auger & F., 1995)

music

echolocation

time

bats

"animal sonar"

Patrick Flandrin Fourie

Fourier + 200

gravitational waves

Riemann's function

1.8

a "compressed sensing" approach

Sparsity

minimizing the ℓ_0 quasi-norm not feasible, but almost optimal solution by **minimizing the** ℓ_1 **norm**

a "compressed sensing" approach"

Idea (F. & Borgnat, 2008-10)

- (1) choose a domain Ω neighbouring the origin of the AF plane
- ② solve the program

$$\min_{\rho} \|\rho\|_{1} ; \mathcal{F}\{\rho\} - A_{x} = \mathbf{0}|_{(\xi,\tau)\in\Omega}$$

3 the exact equality over Ω can be relaxed to

$$\min_{\rho} \|\rho\|_{1} ; \|\mathcal{F}\{\rho\} - A_{x}\|_{2} \leq \epsilon|_{(\xi,\tau)\in\Omega}$$

a toy example

Wigner

ambiguity

selection

distributions "chirps" sparsity

sparse solution

comparison sparsity vs. reassignment

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <

instantaneous frequency

Aim

model a signal
$$x(t) \in \mathbb{R}$$
 as $x(t) = a_x(t) \cos 2\pi \int^t f_x(s) ds$

- for a given t, "1 equation and 2 unkowns" ⇒ no unique representation
- multiplicity of solutions under constraints
 - global
 - Iocal
 - o non harmonic

<ロト < 同ト < 三ト < 三ト < 三 ・ < への < つ > への >

"global" approach (Gabor, 1946; Ville, 1948)

monochromatic wave = **circle** in the complex plane + constant speed

2
$$x(t) \rightarrow z_x(t) = x(t) + i \mathcal{H}\{x(t)\}$$
 (analytic signal)

modulated "AM-FM" signal: circle \rightarrow "any" loop around the origin of the complex plane + varying speed

3 amplitude : $a_x(t) = |z_x(t)|$ instantaneous frequency : $f_x(t) = \frac{1}{2\pi} \partial_t \arg z_x(t)$

variation (Equis, Jacquot & F., 2011)

<ロト < 同ト < 三ト < 三ト < 三 ・ < への < つ > への >

"local" approach (Teager, 1980 ; Kaiser, 1990)

$$I x(t) = a \cos 2\pi f t \Rightarrow \Psi(x) := (\partial_t x)^2 - x \cdot \partial_t^2 x = 4\pi^2 a^2 f^2$$

 $\Psi(x)$ energy operator taking the form $E(x) = x^2[n] - x[n-1]x[n+1]$ in discrete-time

② similar local properties when $a \rightarrow a_x(t)$ and $f \rightarrow f_x(t)$

3 instantaneous amplitude : $a_x(t) = \Psi(x)/\sqrt{|\Psi(\partial_t x)|}$ instantaneous frequency : $f_x(t) = \frac{1}{2\pi}\sqrt{|\Psi(\partial_t x)/\Psi(x)|}$

・ロト ・ 同ト ・ ヨト ・ ヨト

200

"non harmonic" approach (Huang et al., 1998)

Idea of Empirical Mode Decomposition (EMD) signal = fast oscillation + slow oscillation [& iteration]

- data-driven "fast vs. slow" disentanglement
- "local" analysis based on neighbouring extrema
- oscillation rather than frequency

algorithm

$$\begin{aligned} x(t) &= c_1(t) + r_1(t) \\ &= c_1(t) + c_2(t) + r_2(t) \\ &= \dots &= \sum_{k=1}^{K} c_k(t) + r_K(t) \end{aligned}$$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Э

DQC

・ ロ ト ・ 団 ト ・ 王 ・ ト ・ 王 ・ りへぐ

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

- イロト イロト イヨト イヨト ヨー シック

Э

<ロ> < 団> < 豆> < 三> < 三> < 三> < 三</p>

IMF 1; iteration 1

IMF 1; iteration 1

▲□▶▲□▶▲□▶▲□▶ □ りへぐ

IMF 1; iteration 1

IMF 1; iteration 1

в

・ () ・ 一 一 ・ ・ 三 ・ ・ 三 ・ つへぐ

<ロト < 同 ト < 三 ト < 三 ト 三 の < ○</p>

IMF 1; iteration 2

Э

в

IMF 2; iteration 2

シック・ ボーネル・ボット 一切 マ

time

・ロト・西・・ヨ・・日・・ うくぐ

« physics »

(production, perception)

イロト イロト イヨト イヨト ニヨー

Patrick Flandrin

Fourier + 200

DQC

simulations

Signal

$$x(t) = \underbrace{a_1 \cos\left(2\pi f_1 t\right)}_{x_1(t)} + \underbrace{a_2 \cos\left(2\pi f_2 t + \varphi\right)}_{x_2(t)}, \quad f_1 > f_2$$

Analysis of its EMD

- only the first IMF is computed: if separation, it should be equal to the highest frequency component x₁(t)
- criterion (= 0 if separation) :

$$c\left(\frac{a_2}{a_1}, \frac{f_2}{f_1}, \varphi\right) = \frac{\|IMF_1(t) - x_1(t)\|_{\ell_2}}{\|x_2(t)\|_{\ell_2}}$$

DQC

 sampling effects are neglected : f₁, f₂ ≪ f_s, with f_s the sampling frequency

simulations

Signal

$$x(t) = \underbrace{a_1 \cos\left(2\pi f_1 t\right)}_{x_1(t)} + \underbrace{a_2 \cos\left(2\pi f_2 t + \varphi\right)}_{x_2(t)}, \quad f_1 > f_2$$

Analysis of its EMD

- only the first IMF is computed: if separation, it should be equal to the highest frequency component x₁(t)
- **criterion** (= 0 if separation) :

$$c\left(\frac{a_{2}}{a_{1}}, \frac{f_{2}}{f_{1}}, \varphi\right) = \frac{\|IMF_{1}(t) - x_{1}(t)\|_{\ell_{2}}}{\|x_{2}(t)\|_{\ell_{2}}}$$

Dan

 sampling effects are neglected : f₁, f₂ ≪ f_s, with f_s the sampling frequency

$$\left(\frac{a_{2}}{a_{1}}, \frac{f_{2}}{f_{1}}, \varphi\right) = \frac{\|IMF_{1}(t) - x_{1}(t)\|_{\ell_{2}}}{\|x_{2}(t)\|_{\ell_{2}}}$$

= 0 if separation
$$\begin{bmatrix} 0 & \text{if separation} \\ 0.8 & 0.6 \\ 0.4 & 0.2 \\ 0 & -2 & -1 & 0 \\ 0.2 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

 \exists

200

0.8

0.6

0.4

0.2

Э

200

0 2

Patrick Flandrin

- Nonlinear behaviour ⇒ dissymmetry of tones disentanglement w.r.t. amplitude ratio a = a₂/a₁, via the sign of a - 1:
 - smooth variation when a < 1 (HF dominant) & no a-dependence
 - abrupt phase transition when a > 1 (LF dominant) & strong a-dependence

・ロト ・ 同ト ・ ヨト ・ ヨト

DQC

 Data-driven separation ⇒ good match to "beating effect" perception ⇒ connection with hearing?

concluding remarks

- Fourier: 200 years and still alive!
- basic ideas related to decompositions and frequency still central in "modern" approaches, whatever the variations (localized and/or evolutive tones, nonlinear techniques,...)
- time-frequency as a natural language

<ロト < 同ト < 三ト < 三ト < 三 < つへの</p>

back to music notation

Rainer Wehinger' visual listening score created in the 70's to accompany Gyorgy Ligeti's *Artikulation*

http://www.youtube.com/watch?v=71hNl_skTZQ

(thanks to Laurent Chevillard & Gabriel Rilling)