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ABSTRACT

We address the problem of fractal dimension estimation of a dis-
crete sample path. After recalling the multiplicity of possible defi-
nitions, we focus on the regularity dimension and on the regulariza-
tion dimension, and report on the common ingredients that underlie
these definitions: a scale transform of the signal, and a geometric or
statistical measure on the scaled signal. Then, we propose to inter-
change wavelet transforms, ordinarily used as the scale transform,
with empirical mode decomposition (EMD), a recently proposed
signal-adaptive transform. The adaptivity of this latter yields esti-
mation performance that overhauls usual wavelet-based techniques.
To support our claim, we obtain comprehensive results from a Monte
Carlo simulation on fractional Brownian motions.

Index Terms— fractal dimension, regularity exponents, wavelet
transform, EMD

1. MOTIVATION

Fractal dimensions, as indicators of the (ir-)regularity of function
graphs, went beyond the theoretical limits of mathematics, to be-
come in the last two decades a reckoned measurement tool in signal
and image processing. Measuring the regularity of a signal path, or
of an object contour, is now often used to perform data characteri-
zation and classification in a host of real world applications, such as
biomedical, economics, mechanics, tribology, . . . and even so, it still
is a vivid research area with both theoretical and practical issues.

Mathematically, one can define the fractal dimension of a func-
tion f in many different ways, and associate them to as many reg-
ularity measurements. But in all cases, each definition relies on a
particular scale or resolution dependent transformation fa of f , and
on how a certain quantity Mf (a) computed on fa evolves with
a. Then, the fractal formalism posits that Mf (a) behaves as a
power law with respect to the analysis scale a, and that the regu-
larity strength symply relates to the power law exponent.

A theoretically and pratically sensible choice for the global mea-
sure Mf (a) is to consider the finite order moments of fa, or more
simply to focus on the sole variance Var fa (i.e. energy of fa), when
normal data assumption is a valid hypothesis. It is likely that this
choice is closely related to the success of wavelet transforms (WT)
that have proven relevant tools to play the role of the scale transfor-
mation fa, and that, as such, have been widely used in the fractal
community [1]. More recently though, an adaptive scale depen-
dent decomposition, referred to as empirical mode decomposition
(EMD), has been gaining interest in applications, and was already
considered for regularity estimation purpose [2]. At the same time,
alternative measures were explored. For instance, in [3], a mea-

sure corresponding to the algebraic length of the rectifiable1 function
graph Γa of fa is proposed.

In section 2, we recall the definitions of two different fractal
dimensions: the regularity dimension and the regularization dimen-
sion. Both imply different regularity definitions and different global
measures Mf (a), that we will strive to clarify. In a second step, we
intend to compare the statistical performance, benefits, drawbacks
and computational costs of several estimation procedures resulting
from the various combinations and declensions of scale transforms
and global measurements. WT and EMD are briefly introduced in
a common perspective in Section 3, and the estimation procedures
themselves are defined in Section 4. In the course, we particularily
emphasize a novel approach that exploits EMD assets to estimate
the regularization dimension. To carry these comparisons through,
we conducted extensive Monte Carlo simulations on large set of
fractional Brownian motions (fBm), a paradigm for Gaussian self-
similar processes. This reference stochastic process is a pertinent
choice because all different fractal dimensions are equal and con-
trolled by a unique self-similarity parameterH . Results are reported
in Section 5 and demonstrate the clear benefit of combining EMD
with the regularization dimension.

2. FRACTAL DIMENSIONS

There exist many different definitions for the fractal dimension of
a function of f ∈ R

d [4]. However, all of them describe the way
a given measure M applied to the function evolves as the observa-
tional scale varies.
The regularity dimensions relate to the global or to the pointwise
regularity of a continuous, but non-differentiable function2 f ∈ R

d.
More precisely, the global regularity of f over a closed bounded ball
K of R

d is defined as the largest αg ∈]0, 1[ such that:

∃C > 0, ∀x, y ∈ K, |f(x) − f(y)| < C|x− y|αg . (1)

Here, the variation |f(x) − f(y)| plays the role of the measure M
on f , and definition (1) shows that for all observation scales |x− y|,
this measure is bounded by a power law of exponent αg . Then, in the
case of a function f : R → R, the corresponding fractal dimension
of its graph Γ is simply dimg(Γ) = 2 − αg . Similarily, to define
the pointwise regularity αp of f at point x0, we need to confine the
observations to a ball B(x0, ρ) centered on x0 and of radius ρ, and

1The graph Γ of f is not a rectifiable curve, otherwise its fractal dimen-
sion would be inevitably equal to 1.

2For the sake of simplicity, we consider only non-differentiable functions,
but all results are more generally established for CN functions, in which case
N < αg < N + 1.



consider the oscillation Of (x0, ρ) = sup
x,y∈B(x0,ρ)

|f(x) − f(y)| as

our new local measure on f . The pointwise regularity is then defined
as:

αp = lim
ρ→0

log(Of (x0, ρ))

log ρ
. (2)

Here again, for 1-D functions, the pointwise fractal dimension is
dimp(Γ) = 2 − αp, and it conveys the convergence rate of the os-
cillation measure when the observational scale goes towards zero.
The regularization dimension was introduced in [3]. Let Γ be the
graph of a bounded function f defined on some closed bounded in-
terval K ⊂ R. Let fa be the projection of f on some approximation
space at lower resolution a > 0 (such that lima→0 fa = f ), and
define L(a) =

R
K

p
1 + f ′

a(x)2 dx, the finite length of the corre-
sponding graph Γa. Then, the regularization dimension reads:

dimR(Γ) = 1 + lim
a→0

log(L(a))

log(a)
, (3)

and it derives from the same principle that underlies all fractal di-
mensions, that is to fit a measure (here, the trajectory length) with
a polynomial model, to reflect how fast it varies as resolution in-
creases.

Many other definitions of fractal dimension exist, but it is re-
markable that for a large class of functions, all these dimensions are
equal to each other. This is notably the case for fractional Brownian
motions (fBm’s) BH(t) with Hurst exponent 0 < H < 1, for which
we have almost surely dimH(BH) = dimg(BH) = dimp(BH) =
dimR(BH) = 2 −H , and ∀t, αg = αp(t) = H .

3. MULTIRESOLUTION DECOMPOSITIONS

Discrete wavelet transform. Let the pair {φ, ψ} form a multireso-
lution analysis of L2(R), the space of signals with finite energy. The
set {φjk(t) = 2−j/2φ(2−jt− k), k = ...,−1, 0, 1, ...} and the set
{ψjk(t) = 2−j/2ψ(2−jt − k), k = ...,−1, 0, 1, ...} are orthonor-
mal basis of the approximation space Vj ⊂ L2(R), and of the detail
space Wj ⊂ L2(R) respectively, moreover Vj−1 = Vj ⊕Wj , and
Wk ⊥ Wj , ∀k 6= j. Consequently, any signal s ∈ L2(R) can be
decomposed into the sum:

s(t) =
k=∞X

k=−∞

〈s, φJk〉φJk(t) +

j=JX

j=−∞

k=∞X

k=−∞

〈s, ψjk〉ψjk(t)

= AJ(t) +

j=JX

j=−∞

Dj(t), (4)

where AJ(t) is the approximation of s at scale aJ = 2J , and Dj(t)
the detail at scale aj = 2j .
Empirical mode decomposition. EMD is a recent technique [5]
introduced to analyze non-stationary and non-linear time series in
a totally adaptive way. In contrast to standard kernel based ap-
proaches (e.g. wavelet decompositions), EMD is a fully data-driven
method that recursively decomposes a complex signal into a variable
but finite number of zero-mean with symmetric envelopes AM-FM
components called Intrinsic Mode Functions (IMF). The resulting
signal expansion is similar in kind to a wavelet decomposition (4),
s(t) = R(t) +

PM
k=1 Ck(t). where R is the residue, the signal

approximation at the lowest resolution (i.e. trend), and Ck is the
k−th IMF, the signal detail at characteristic scale ak. To proceed, an
iterative algorithm locally identifies in the signal the fastest oscilla-
tions and isolates them in the first IMF. Each successive IMF is then

obtained iterating the same sifting process on the remaining lower
trend.

This appealing analyzing tool is reversible by construction, and
gives rise to a natural “scale” decomposition that goes beyond clas-
sic spectral analysis and its Fourier modes [6]. In particular, it was
shown that applied to a fractional Gaussian noise (the increment
process of a fBm), EMD spontaneously behaves as a constant-Q
filter bank, similar in kind to a wavelet decomposition. However,
EMD noticeably differs from a wavelet multiresolution analysis for
no dyadic structure is imposed, but instead a natural characteristic
scale organization emerges. In the sequel we will refer to the k-th
characteristic EMD scale ak, as the mean time interval separating
two successive zero-crossing points of IMF Ck(t).

4. ESTIMATORS

Listing all existing fractal dimension estimators is definitely beyond
the scope of this work. Here, we deliberately focus on wavelet-based
estimators that have proven among the most efficient and commonly
used approaches to evaluate Hurst exponents from discrete fBm sam-
ple paths.

Our contribution is then twofold: Firstly, we use a wavelet mul-
tiresolution analysis to measure the curve length entering the defini-
tion (3) of the regularization dimension, and we compare the results
with the original estimator proposed in [3]. Secondly, we consider a
new multiresolution decomposition technique, namely the Empirical
Mode Decomposition, that we propose as a substitute to the wavelet
tool used in a wide variety of Hurst estimators.

Regularity dimension estimators. As the wavelet ψ of a multires-
olution analysis is a zero-mean oscillating function, the projector
on Wj is deemed a pseudo-differential operator, and the coefficient
djk = 〈s, ψjk〉 is interpretable as a local variation of s at scale
a = 2j and around time t = 2jk. Thus, it is possible to use
these wavelet coefficients to compute the different measures defin-
ing the global and pointwise regularities in (1) and (2). The variation
|s(x) − s(y)| can be simply replaced by the magnitude of wavelet
coefficients at the appropriate scale 2j ≈ |x− y|, and the oscillation
Os(t ≈ k2j , ρ ≈ 2j), by the supremum of all wavelet coefficients
at finer scales and lying within the interval ](k − 1)2j , (k + 1)2j ].
The retained coefficient is commonly refered to as the leader [7].
This way, estimating a fractal dimension simply amounts to per-
form a linear regression of some wavelet related quantity against
the scale, in a bi-logarithmic plot. Moreover, as we know for fBm’s
αp(t) = αg = H , and the wavelet coefficients at a same scale form
a stationary gaussian time series that fully justifies to built estimators
of H from empirical q−th order moment of djk, rather than on the
djk’s (or the corresponding leaders) directly:

bH = lim
j→−∞

log(2−j P
k |dj,k|

q)

−qj
. (5)

In addition, applied to fBm’s, estimator (5) with q = 2 is asymptoti-
cally efficient [8].

Inspired by the same principle, in [2], an estimator similar to
(5) takes advantage of the EMD adaptivity to bring in a sponta-
neous multiresolution scheme able at disclosing the natural scales
that structure the analyzed process. So, decomposing a fBm BH(t)
into its finite set of intrinsic mode functions {Ck(t), k = 1, ...,M},
the estimator reads:

bH = lim
ak→0

log(VarCk)

log ak
, (6)



where {ak, k = 1, ...,M} are the corresponding IMF’s characteris-
tic scales.
Regularization dimension estimators. In [3] where the regular-
ization dimension was originally introduced, the approximation fa

was obtained by smoothing the initial function f with a scale vari-
able low pass kernel Ga(t) = |a|−1G(a−1t). A gaussian win-
dow G is recommended, and for a fBm BH(t), the Hurst exponent
H = 2 − dimR is estimated according to (3) with:

L(a) =

Z

K

s

1 +

˛̨
˛̨ d
dt

(f ? Ga)(t)

˛̨
˛̨
2

dt. (7)

Here, we suggest to adapt the regularized dimension (3) to the
multiresolution framework of wavelet decompositions, and consider
the approximations Aj(t) ∈ Vj as the regularized trajectories. Do-
ing so, for a discrete fBm sample path, the graph length L(aj) at
scale aj = 2j , becomes:

L(aj) =

Z

K

vuut1 +

˛̨
˛̨
˛
d

dt

k=∞X

k=−∞

〈BH , φj,k〉φj,k(t)

˛̨
˛̨
˛

2

dt. (8)

Like expression (7), the proposed length (8) is parameterized by
a sequence of predefined scale values {aj , j = 1, ..., J}, chosen
independently of the analyzed process. To alleviate this constraint,
we evoke the same rationale as in [2] to resort to EMD and to partial
reconstruction sums of IMFs to get a series of regularized functions
fak

that live at their natural scales {ak, k = 1, ...,M}. More pre-
cisely, assuming that k = M corresponds to the IMF at the coarsest
scale, we propose to use in (3) the following alternative length:

L(ak) =

Z

K

vuut1 +

˛̨
˛̨
˛
d

dt

i=MX

i=k

Ci(t)

˛̨
˛̨
˛

2

dt, (9)

with BH(t) = R(t) +
Pi=M

i=1 Ci(t).
At the final, we end up with 6 different estimators of the fBm’s

Hurst exponent H , which all ammount to perform in a log-log plot a
linear regression of a particular scale-dependent measure against the
scale: (i) wavelet coefficents variance or (ii) wavelet leaders variance
in relation (5) – (iii) IMF’s variance in relation (6) – (iv) smoothed
graph length of expression (7) – (v) wavelet approximation graph
length of expression (8) – and (vi) EMD approximation graph length
of expression (9).

5. NUMERICAL SIMULATIONS

Experimental setup. To assess and compare the performances of
the 6 estimators described above, they are tested on a set of 10.000
independent realizations of fBm’s with the same H . Each sequence
of size N = 1024 points is synthesized by the circulant matrix
method of [9], and the test is repeated for different values of H from
0.1 to 0.9 with a 0.1 stepsize.

To account for a possible variability in the confidence intervals
of the quantities to be regressed, all estimators (i)–(vi) perform a
weighted least square fit of the log-measures against the log-scale.
In addition, EMD-based estimators (iii) and (vi), for which the scale
ak is itself a random variable, employ a weighted linear regression
with uncertainty along the two axes.

Furthermore and according to previous findings, to cope with
finite size effects and spectral aliasings, wavelet based estimators
must adapt their regression scale range to the value of H . Then,

Table 1. Mean Square Error of bH obtained for each estimator (i)–
(vi) and for different values of the Hurst exponent H .

(i) (ii) (iii) (iv) (v) (vi)
H = 0.1 .0439 .0044 .0194 .0497 .0057 .0135
H = 0.2 .0166 .0010 .0099 .0156 .0058 .0044
H = 0.3 .0090 .0051 .0074 .0062 .0079 .0023
H = 0.4 .0060 .0059 .0083 .0030 .0102 .0016
H = 0.5 .0048 .0049 .0069 .0019 .0123 .0016
H = 0.6 .0044 .0041 .0076 .0015 .0139 .0017
H = 0.7 .0042 .0034 .0088 .0016 .0163 .0018
H = 0.8 .0040 .0031 .0117 .0020 .0181 .0019
H = 0.9 .0041 .0030 .0888 .0027 .0175 .0012

in our simulations, we systematically disregard the finest and the
two coarsest scales from wavelet decompositions. Regarding EMD-
based estimators, this limitation does not hold, and they can oper-
ate on full IMF’s decompositions. Finally, we used a Daubechies
wavelet with 2 vanishing moments in estimators (i), (ii) and (v), and
a gaussian kernel whose width varies from 8 to 256 points over 16
voices for the estimator (iv).

Results. Table 1 presents the Mean Square Errors MSE( bH) =

(E bH − H)2 + Var( bH), for each estimator and each value of H .
For most values of the Hurst exponent H , the estimate (vi) based
on the partial EMD reconstruction lengths seems to perform better
– or slightly worse than companion approaches based on regulariza-
tion dimension. Only for small H , does the leaders technique (ii)
seems to significantly outperforms all the others. But a closer view
at the individual biases and variances, sheds a quite different light
on the results. Indeed, by construction, a wavelet leader at scale
j + 1 is necessarily larger or equal to its antecedent at finer scale j.
Inevitably then, the q−th order moment entering the definition (5)
of bH is an increasing function of the scale index j, which in turn
mechanically prevents the slope bH from taking on negative values.
Whereas this limitation may be beneficial for large H’s (typically,
H > 0.2), for small values of H , the distribution of the estimates
being artificially truncated below zero, the resulting variance dras-
tically reduces but at the cost of a deleterious bias. This shrinking
effect is very clear on figure 1 representing the empirical bH distribu-
tions obtained with each method. Ideally, densities corresponding to
different values of H should not overlap, yet with the leaders based
estimator (ii), the densities for H = 0.1 and H = 0.2 respecively,
are totally superimposed, turning impossible to distinguish between
the two exponents. This phenomenon does not appear with the other
estimators, and altough a significant bias systematically occurs for
small H’s – even with the partial EMD reconstruction approach –
the resolution strength remains fairly acceptable.

More generally, there are two different angles for looking at the
estimators:

1. Comparing those which aim at estimating the regularity dimen-
sion (estimates (i)–(iii)) with those which objective is to estimate
the regularization dimension (estimates (iv)–(vi)). From table 1, it
is manifest that the second group of estimators performs generally
better. One sensible reason for this is that, for a reasonably small
sample size (N = 1024), estimating the measure L(a) proves to be
more robust than estimating an empirical variance. We support our
claim by assessing the power law scaling of relations (3), (5) and (6),
which in practice shows less questionable for length measures than
for empirical moments estimates.

2. Comparing the wavelet-based estimators (estimates (i), (ii), (iv)



and (v)) versus the EMD-based estimators (estimates (iii) and (vi)).
According to [3], we include the gaussian regularized estimator (iv)
in the group of wavelet-based estimators, for an evident connection
with continuous wavelet transforms exists. From this viewpoint,
conclusions seem more ambiguous, and it is not so easy to sketch
a sharp frontier between the two groups. However a closer look at
the first group of estimators ((i), (ii), (iv) and (v)) and at their corre-
sponding MSE’s, reveals that the best general results come from the
gaussian kernel regularization method. Surprizingly, this is among
all estimators of its group, the sole that relies on a (equivalent) con-
tinuous wavelet transform. This raises the interesting question of
information redundancy and of its usefulness in small data sets sce-
narios [10].

Beyond the relative satisfacory performance achieved with EMD
for regularization dimension, it is important to stress the pros and the
cons inherent to this method:
– EMD provides with a totally adaptive multiresolution scheme that,
in the case of a fBm (or any self-similar process), does not necessi-
tate to tune the regression scale range, nor it calls for border effects
correction;
– More promisingly, the great interest of EMD applied to fractal di-
mension estimation should arise when addressing processes with dis-
crete rather than continuous scale invariance (e.g. Weierstrass pro-
cesses, Mandelbrot multiplicative cascades, oscillating chirp driven
data. . . ) In these cases, a dyadic (or any apriori fixed) dichotomy
may not necessarily be the appropriate thing to do. On the other
hand, an adaptive multiresolution approach like EMD, will naturally
lead the analysis along the characteristic scales of the process.
– As far as computational cost is concerned, EMD is incomparably
more expensive than a discrete wavelet transform. An obstacle that
can severely penalize its use with large sample sizes.

6. CONCLUSIONS AND PERSPECTIVES

To measure fractal dimension, practitioners first have to choose a
scale dependent measure to suppport estimation. In applications, this
choice often appears as ad hoc. Our first contribution was to reem-
phasize the relation between this choice and the precise dimension
definition one seeks to measure. Doing so, we illustrated that in a
sense, length estimation of scale dependent sample paths (hence the
regularization dimension estimation) is more accurate than energy
measurement (hence the regularity dimension estimation).

Our second contribution was to carry on with the comparison
between wavelet transform and empirical mode decomposition when
both are used to estimate the regularization dimension. The conclu-
sion is surprizing, and clearly shows a subtantial advantage of EMD
when dealing with short size signals, for which its computational
cost is still not too penalizing. This encouraging aspect, along with
the adaptivity of EMD, prompts its use on processes with time vary-
ing regularity, and for which a local approach is necessary. Empirical
mode decomposition should naturally accommodate the scales that
exists in data and thus yield better estimates of the fractal dimen-
sions. This is under current investigations.
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(i) (iv)

−0.2 0 0.2 0.4 0.6 0.8 1
0

−0.2 0 0.2 0.4 0.6 0.8 1
0

(ii) (v)

−0.2 0 0.2 0.4 0.6 0.8 1
0

−0.2 0 0.2 0.4 0.6 0.8 1
0

(iii) (vi)

−0.2 0 0.2 0.4 0.6 0.8 1
0

−0.2 0 0.2 0.4 0.6 0.8 1
0

Fig. 1. For each estimator (i) – (vi) of fBm Hurst exponent, empirical
distributions of bH when H varies from 0.1 (left densities on the
plots) to 0.9 (right densities on the plots).

decomposition, fractional gaussian noise and hurst exponent
estimation,” in ICASSP, 2005.
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