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ABSTRACT

Theoretical results have recently been established in non
parametric entropy estimation, based on asymptotic prop-
erties of minimal spanning trees (MST). A new application
is proposed for the automatic extraction of time-frequency
skeletons in the case of multicomponent chirp-like signals.
The proposed method makes use of local maxima of a time-
frequency distribution (considered as realizations of a 2D or
3D process), and exploits the efficiency of MST’s for den-
sity discrimination and clustering.

1. INTRODUCTION

In a recent series of studies [1, 2], we have addressed the
problem of estimating the R´enyi entropy of a multi-dimensional
distribution from a given set of observations. It has been es-
tablished thatMinimal Spanning Trees(MST), i.e., acyclic
graphs of minimum total length connecting all points of a
process sample, allow for a direct estimation of this entropy
at a low computational cost. An extension of this result to
k-MST’s, i.e., subgraphs connectingk points only among
all observed realizations, has been shown to permitting a
robustseparation of a statistical mixture. In this paper, we
present a new application of those tools to the detection and
extraction of structured signal components from a noisy ob-
servation. The principle of the approach is to consider local
maxima of a time-frequency distribution as realizations of
a mixture model (“signal + noise”), onto which ak-MST
strategy is applied. In the case of noisy multicomponent
chirp-like signals, individual “signal” components can be
associated to coherent time-frequency trajectories, as op-
posed to “noise” contributions whose maxima distribution is
incoherent. The rationale of the proposed method is there-
fore that minimum length trajectories—as identified byk-
MST’s—are expected to reveal a meaningful signalskele-
ton.
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In Sections 2 and 3, we will recall basic definitions and
properties of MST’s andk-MST’s. The question of how to
make use ofk-MST’s in a time-frequency context will be
addressed in Section 4, where two different algorithms will
be proposed, based either on the 2D (time + frequency) pro-
jection of local maxima onto the plane, or on the complete
3D information (time + frequency + energy density).

2. MST ET K-MST

Let Tn be an acyclic graph (or tree) connecting all realiza-
tionsXn = fx1; x2; : : : ; xng of a point process defined in
IR

d. Such a graph is indeed a convenient way of coding
a set ofvertices(the pointsxi) and connectionsei;j be-
tween them. The total length of the graph being obtained
by adding up the lengths of all elementary connections, we
will introduce the parameterized quantity :

Ln; :=

X
ei;j2Tn

jei;j j
 ; (1)

with  2]0; d[.
Given this measure, theMinimal Spanning Tree(MST)

is, among all possible (acyclic and totally connected) graphs
that be constructed, the one with minimum length :

T ?

n := argmin
Tn

Ln; : (2)

This MST can be exactly computed with algorithms of
complexityO(n logn).

The above definition (2) can be extended to what is re-
ferred to ask-MST’s. By definition, ak-MST is a MST
connectingk points only amongn observed points. Equiva-
lently, ak-MST is the MST associated with ak-points sub-
setXn;k � Xn. In this case, minimization concerns both the
identification of the subsetXn;k := fxi1 ; : : : ; xing and the
length of the MST constructed on the points of the subset :

X ?

n;k = arg min
i1;:::;ik

argmin
Tn

Ln;k; : (3)



In practice, this double minimization is often conducted
jointly : this is especially true for the algorithms that we
have developed [1, 2]. Of course, the computational cost
of k-MST’s is increased as compared to simple MST’s, and
it has been even proved that the problem is NP-complete
in IR

2 [4]. Ravi et al. have proposed an approximate al-
gorithm with polynomial cost in the case of bidimensional
distributions. In [2], we have extended this work and pro-
posed an approxmate solution in thed-dimensional case
(d � 2), whose approximation ratio is bounded above by
O(k(1�1=d)2

). The precise structure of the algorithm, its ro-
bustness evaluated by means of influence curves, as well as
proof elements of its asymptotic convergence, are detailed
in [2] : we will not, here, elaborate further on this very tech-
nical part.

3. PROPERTIES

LetLn; be the quasi-additive euclidean function of order

defined in (1), andXn a set of independent realizations of a
stochastic process with Lebesgue densityf(x), defined on
IR

d. Generalizing upon a result by Beardwood, Halton et
Hammersley [6], Steele has proved that :

lim
n!1

Ln;(Xn)

nd�=d
a:s:
= �(; d)

Z
IRd

f(x)d�=d dx: (4)

If we now introduce� := 1 � =d,  2]0; d[ (hence,
� 2]0; 1[), and if we define the quantity :

cH�(X
�
n;k) :=

1

1� �
ln

�
n��Ln;(X

�
n;k)

�
+ �(�; d) (5)

as a statistics based on thek-MST length

Ln;(X
�
n;k) =

X
ei;j2T

?
n;k

jei;j j
(1��)d; (6)

the following central result can be established :

Theorem [2]. Let bLn;(X
�
n;k

) be an estimate of the length
Ln;(X

�
n;k

), obtained by thek-MST approximation described
in [2], with k := �n, � 2 [0; 1]. Plugging this estimate in
(5), we end up with a consistent and robust estimate of the
Rényi entropy of the densityf(:) :

cH�(X
�
n;k)

a:s:
! min

A:P (A)��

1

1� �
ln

Z
A

f�(x) dx; (7)

where the minimization is conducted on all Borel subsetsA

defined on[0; 1]d, and whose probabilityP (A) is such that

P (A) =

Z
A

f(x) dx � �: (8)

It is worth noting that the value� in (5) exactly identifies
to the Rényi entropy of a uniform distribution on[0; 1] d :
it is therefore a function of� andd only. The parameter
k, which controls the size (in terms of connected vertices)
of the considered MST, plays a role similar to that of the
parameter� in �-truncated mean value estimators : in the
presence of outliers,k can be tuned so as to guarantee a
form of robustness to the entropy estimator [1, 2]. Finally,
one can remark that the proposed method can be extended in
a straightforawrd manner to other entropy functionals such
as, e.g., the (non-additive) structural entropy of Havrda and
Charvàt.

4. MST’S AND TIME-FREQUENCY

In order to apply a MST strategy in a time-frequency con-
text, all local maxima of a given time-frequency distribu-
tionE(t; �) are first identified. Each of those relative max-
ima is indeed considered as a realization of a 3D stochas-
tic process, the considered variables being of the typex =

[t; �; E(t; �)], with t 2 T , � 2 F andE(t; �) 2 IR. The
assumed model is a mixture model “signal + noise”, with
density

f = (1� ")g(xjsignal) + "g(xjnoise); (9)

whereg(xj:) is the conditional probability density function
of local maxima. The problem of extracting a signal part
from the observation reduces therefore to a problem of mix-
ture separation.

A crucial issue consists in defining a relevant norm in
the spaceT � F � IR. A natural constraint is that such
a norm should not depend upon the sampling rate in the
time-frequency plane : in other words, the “distance”D12

between two energy contributions located atf(t i; �i) ; � =
1; 2g should be independent of the sampling frequencyF e

of the time series, as well as of the numberNb of frequency
bins. This can be achieved by introducing two normaliza-
tion constantsK andK 0 (dimensionally homogeneous to
time), thus defining :

D12 =

s�
t1 � t2

KFe

�2

+

�
K 0Fe

2Nb

(�1 � �2)

�2

(10)

whereti; �i refer to sample indexes. In the following, and
for a sake of simplicity, we will takeFe = 1 andK = K 0

=

1, i.e.,Nb = N=2 frequency bins forN time samples. It has
however to be remarked that the dynamic range of the third
variableE(t; �) is totally arbitrary.
A 2D approach. A first possibility is to directly apply two-
dimensional techniques which have been previously pro-
posed. The method is based on the construction of a 2D
MST in the time-frequency plane (only the locations of the



most energetic local maxima are considered), and on its re-
cursive pruning with Banks’ algorithm [9]. The set of most
energetic local maxima is determined by thresholding, the
rejection threshold being fixed by a change point detection
criterion applied to the second derivative of the cumulative
distribution function of local maxima heights [7]. Alterna-
tively, a detection based onk-MST only is presented, which
relies on identifying the most important increase in the en-
tropy as a function ofk, see figures 1 and 2.

A 3D approach. A second possibility is to jointly exploit
the 3D nature of a time-frequency distribution. In this case,
the energy density is normalized so that the dynamic ranges
are numerically identical on the three axes. GivenT ?

n , the
MST constructed on the total setS of local maxima of the
time-frequency distribution, andfe i;jg the set of the cor-
responding segments, the objective is to split the complete
MST into two parts :S = S1 [ S2, so thatS1 andS2 are
maximally different while being, individually, maximally
coherent. In other words, the question is to find a separa-
trix c on the MST, defined by :

c = argmin
ei;j

maxfH(S1); H(S2)g; (11)

whereH(:) is some cost function. If the constraint is to min-
imize the maximum entropy of the resulting distributions,
one can choose forH the Rényi entropy, as estimated by
MST’s. Such an approach reformulates the problem of de-
tecting time-frequency components as a “clustering” prob-
lem on the set of local maxima of a time-frequency distribu-
tion. Bidimensional MST’s can therefore be applied to each
of the resulting subsets. One can remark that, in this case,
the usual euclidean norm ( = 1) in a space of dimension
d = 3 leads necessarily to using the R´enyi entropy of order
� = 2=3. Determining the best order to use still remains an
open problem.

The results obtained by using this procedure are in full
concordance with those previously obtained in a 2D con-
text (figure 2), and are therefore not shown again. For ev-
idencing the efficiency of the proposed method, figures 3
and 4 present further results obtained by extending the 3D
approach to the example of a two-component signal embed-
ded in noise.

5. CONCLUSION

A novel method has been proposed for the automatic skele-
tization of spectrograms. The approach, which relies on
information-theoretic criteria, presents the advantage of be-
ing fully non-parametric and robust. In particular, no a pri-
ori knowledge is required concerning statistical properties
of the noise distribution in the time-frequency plane.
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Figure 1: Example of a monocomponent frequency modu-
lated signal, at 5dB SNR. Left : spectrogram; Right : (2D)
distribution of the relative maxima
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Figure 2: Component separation using R´enyi entropy. Top
Left : Entropy estimated fromk-MST length, and threshold
detection (largest entropy increase :k = 28). Top right :
3D 28-MST. Bottom : 2D MST’s of identified components.
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Figure 3: Example of a two-component frequency modu-
lated signal, at 5dB SNR. Left : spectrogram; Right : (2D)
distribution of the relative maxima
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Figure 4: Direct 3D approach in the two-component case :
the 3D plots show the 3D MST’s of the identified compo-
nents, whereas the 2D plots show their respective MST’s in
the time-frequency plane.


