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ABSTRACT

In a previous paper [1] we presented a method for atomic decom-
position with chirped, Gabor functions based on maximum likeli-
hood estimation. In this paper we present the Cramér-Rao lower
bounds for estimating the seven chirp parameters, and the results
of a simulation showing that our sub-optimal, but computationally
tractable, estimators perform well in comparison to the bound at
low signal-to-noise ratios. We also show that methods based on
signal dictionaries will require much higher computations to per-
form well in low signal-to-noise ratios.

1. INTRODUCTION

Given a signal, , our goal is to find a sparse decomposition of
the signal as a weighted sum of chirped, Gabor functions

where

The parameters , , , and represent, respectively, the location
in time, the location in frequency, the chirp rate, and the duration,
and is defined such that

In [1] we presented a method for obtaining this decomposition
based on the principles of maximum likelihood estimation which
we will briefly review in the next section. We will then present
the Cramér-Rao lower bounds along with estimates of the mean
and variance of the estimators proposed in [1]. Finally we will
compare our methods with those that use signal dictionaries and
investigate the issue of greed.

2. ESTIMATION OF CHIRP PARAMETERS

In [1] we presented the maximum likelihood estimator (MLE) for
the following signal model

(1)

where is complex, white, gaussian noise (CWGN) with a
mean of zero and a variance of , and the seven unknown param-
eters are

The MLE can be formulated as follows

(2a)

(2b)

(2c)

(2d)

(2e)

We have shown that, in the absence of noise, equation 2a is a
uni-modal function. However in the presence of noise, solving
equation 2a is computationally expensive, so we will approximate
it with the following sub-optimal estimator based on the results
in [1].

1. Estimate, globally, the chirp rate and duration with the am-
biguity function.

2. Using the current estimate of the chirp rate and the dura-
tion, estimate the location in time and frequency with the
spectrogram.

3. Estimate, locally, the chirp rate and the duration using the
methods proposed in [1].

4. Go to step 2 until the parameters converge.
5. Find the nearest local maximum of the likelihood function
by using a quasi-Newton procedure.

The estimated chirp is then subtracted from the signal, and the
procedure repeated to find the next element in the decomposition.

3. CRAMÉR-RAO LOWER BOUNDS

Here we will present examples that provide intuition for under-
standing the Cramér-Rao lower bounds (CRLBs), followed by the
actual derivation of the CRLBs.

In Figure 1 we present the Wigner distributions of six chirps.
The first three have a chirp rate of zero, and the only difference
between them is the value of the duration parameter. The last three
have a chirp rate of , and again the only difference between
them is the value of the duration parameter. Using these examples,
we present our intuitions about estimating the location in time and
frequency, the chirp rate, and the duration. (The other three pa-
rameters are more obvious.)
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Figure 1: Figures (a), (b), and (c) have a chirp rate of 0, while figures (d), (e), and (f) all have a chirp rate of . The chirp rates are
indicated by the dotted lines, and the only difference within each row is the duration of the chirp.

When the duration is short, the signal is concentrated in
time and thus it should be easy to estimate the location in
time. As the duration increases, it should become harder to
estimate the location in time.

When the chirp rate is zero, estimating the location in fre-
quency should be dual to estimating the location in time.
When the chirp rate is not zero, the signal is not concen-
trated in frequency for long durations (e.g. Figure 1(f)). In
fact, the signal will be the most concentrated in frequency
for some intermediate duration (e.g. Figure 1(e)). Thus for
non-zero chirp rates, the estimation of the location in fre-
quency should be difficult for both short and long durations
with a minimum somewhere in between.

The estimation of the duration should be analogous to the
estimation of the location in time.

When the duration is short, the chirp rate should be very
difficult to estimate (compare Figures 1(a) and (d)). As the
the duration increases, it should become easier to estimate
the chirp rate.

The calculation of the Fisher information matrix is tedious,

though straightforward [2] and the inverse is

where is the number of samples of . The CRLBs are the
diagonal elements of the matrix. The derivation is based on the
following approximations

which are valid as long as the signal has been sampled appropri-
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Figure 2: The Cramér-Rao lower bounds as a function of the inde-
pendent variables.

ately. The bounds are plotted in Figure 2 as a function of the inde-
pendent variables. It is straightforward to see that the bounds are
in agreement with the intuition presented above.

4. SIMULATION RESULTS

To evaluate the performance of our sub-optimal estimators, we ran
simulations corresponding to equation 1 with , ,

, , , , and . Four
noise levels were chosen and 0.12 which
correspond to signal-to-noise ratios (SNRs)1 of 4.9, 0.9, -1.1, and
-2.7 dB, respectively. We ran 10000 trials for each noise level and
applied the standard sample mean and sample variance formulae.
The results are shown in Table 1 in the columns corresponding to
.

Since the signal model in equation 1 is not a linear function of
the unknown parameters, the MLE will not be efficient and thus
not meet the CRLBs with equality (except asymptotically). Thus,
the CRLBs are not realistic bounds for our sub-optimal estima-
tors. To provide a more realistic bound, we ran another simulation
consisting of finding the local maxima of the likelihood function
closest to the true value of the parameters. This is obviously an
unrealistic estimator, since it requires the actual values of the pa-
rameters, but this estimator should have roughly the same perfor-
mance as the MLE for high SNR (since the closest local maximum
is very likely to be the global maximum) and should perform bet-
ter than the MLE for low SNR (since the global maximum is not
necessarily the closest local maximum). The results are shown in
Table 1 in the columns corresponding to .

Table 1 confirms that the MLE is not unbiased and not effi-
cient. As a result, we can not expect our sub-optimal estimators to
be unbiased or efficient. However, the sub-optimal estimator per-
forms well in comparison to the unrealistic estimator, described
above, and thus performs well in comparison to the MLE.
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Figure 3: Two examples showing the “greediness” of the estimator.

5. DICTIONARYMETHODS

Another approach to performing atomic decomposition is based
on signal dictionaries [3]. To do this, one creates a signal dictio-
nary matrix, , where the columns are chirped, Gabor functions
with different parameter values. Since the number of dictionary
elements, , will generally be much larger than the signal length,
, one approach is to solve the under-determined, linear, inverse

problem , where provides the weighting of each dic-
tionary element. The Moore-Penrose inverse provides the mini-
mum norm solution, but this solution will not be sparse. Some
methods which attempt to find sparse solutions to the above linear,
inverse problem are Matching Pursuit [4, 5, 6], Basis Pursuit [7],
and FOCUSS [8].

If one discretizes the parameters of , , , and to
values, then the dictionary will contain elements and all
of the above dictionary methods will be extremely expensive com-
putationally. To circumvent this problem, one can discretize the
parameters at lower rates to decrease the size of the dictionary. For
example in [4, 5], the location in time was discretized at a rate of

, but since the minimum distance between dictionary ele-
ments in time will be , Matching Pursuit will likely find a
local maximum, rather than the global maximum, as increases.
Thus, we expect the performance to greatly deteriorate as in-
creases.

With dictionary methods, it does not seem possible to have a
computationally feasible algorithm that will reliably find the global
maximum. In contrast, the performance of the method that we
present here and in [1] is independent of and requires a reason-
able computations.

6. GREED

Both the method presented here and Matching Pursuit attempt to
maximize the objective function in equation 2a, though the meth-

1Calculated according to .



noise ( ) value CRLB
0.05 32.00 32.00 32 0.254 0.254 0.250
0.08 32.00 32.00 32 0.687 0.687 0.640
0.10 32.01 32.01 32 1.211 1.194 1.000
0.12 32.02 32.01 32 2.150 1.864 1.440
0.05 0.000 0.000 0 0.0025 0.0025 0.0025
0.08 0.000 0.000 0 0.0069 0.0069 0.0064
0.10 0.001 0.001 0 0.0121 0.0120 0.0100
0.12 0.003 0.001 0 0.0216 0.0187 0.0145
0.05 0.0981 0.0981 0.0982 0.89e-5 0.89e-5 0.80e-5
0.08 0.0981 0.0981 0.0982 2.62e-5 2.62e-5 2.05e-5
0.10 0.0981 0.0982 0.0982 5.59e-5 4.80e-5 3.20e-5
0.12 0.0972 0.0979 0.0982 24.6e-5 9.56e-5 4.61e-5
0.05 5.04 5.04 5 0.136 0.136 0.125
0.08 5.11 5.11 5 0.412 0.412 0.320
0.10 5.22 5.21 5 0.809 0.779 0.500
0.12 5.47 5.36 5 1.840 1.467 0.720

Table 1: Simulation Results

ods for doing so are quite different. As a result, our method, like
Matching Pursuit, will be a greedy algorithm and will not be able
to resolve atoms that are closely spaced.

The signal model in equation 1 for the maximum likelihood es-
timator is a single chirped, Gabor function in CWGN. Thus when
presented with a two-component signal, like the solid line in Fig-
ure 3a, the most likely answer is the chirped, Gabor function that
lies in between (indicated by the dashed line marked with a “1”),
and the discrepancies are attributed to noise. The second term in
the decomposition has to compensate for the poor initial choice
(the dashed line marked “2”).

If the two components of the signal are a little more separated,
as in Figure 3b, then the most likely answer corresponds to one of
the components, and the other component is attributed to a bizarre
noise realization. Here, the second term in the decomposition cor-
responds precisely with the other signal component. Thus it seems
that both algorithms will resolve components that are sufficiently
separated, though we have not yet quantified “sufficiently”.

Given the formulation presented here, an obvious choice for
overcoming the greediness of the algorithm is to use a signal model
consisting of multiple chirped, Gabor functions in CWGN. The
likelihood function for this model will no longer be a uni-modal
function in the absence of noise, thus finding the global maxi-
mum is a much more difficult task. One can try to maximize this
likelihood function with a quasi-Newton procedure, though this
becomes increasing difficult as the number of parameters is in-
creased. Initial results with the Expectation-Maximization (EM)
algorithm [10, 11, 12] are promising, though the rate of conver-
gence and the convergence to local, rather than global, maxima
needs to be investigated.

Software implementing the decomposition described here is
available at http://www.eecs.umich.edu/ jeffo.
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