ESTIMATING SINGULARITIES WITH REASSIGNED DISTRIBUTIONS
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ABSTRACT

Sharply localized time-frequency and time-scale distri-
butions can be obtained by means of a nonlinear tech-
nique referred to as reassignment. Basics of reassign-
ment are recalled in the case of both spectrograms and
scalograms (i.e., short-time Fourier and wavelet-based
energy densities, respectively), with emphasis on their
usefulness for characterizing isolated Holder singulari-
ties as well as oscillating singularities.

1. INTRODUCTION

Time-frequency analysis of nonstationary signals can
be performed in many different ways, with techniques
ranging from short-time Fourier or wavelet transforms
to Wigner-type methods [6, 7, 14]. Whereas the for-
mer approaches exhibit poor localization properties,
the latter ones are impaired by interference phenom-
ena which limit the effectiveness of their sharper local-
ization in multicomponent situations [10]. A nonlinear
technique, referred to as reassignment, has been pro-
posed to overcome both limitations [1, 12, 13]. In a nut-
shell, reassignment is a two-step process which consists
in smoothing out oscillating interference terms while
squeezing the localized terms which have been spread
over the plane by the smoothing operation. Originally
proposed only for spectrograms (short-time Fourier en-
ergy densities) [12, 13], the method has been general-
ized far beyond [1, 3], with a possible application to
time-scale techniques such as scalograms (wavelet en-
ergy densities). The purpose of this paper is to address
some specific issues related to scalogram reassignment,
and especially to investigate how reassigned scalograms
may be used for characterizing Holder as well as oscil-
lating singularities.

2. THE REASSIGNMENT PRINCIPLE

It is a well-known fact in time-frequency and time-scale
analysis that quadratic energy distributions are faced
with a conflict between their joint resolution and the
importance of their interference terms [7, 10]. A way
of getting some insight into this conflict is to start with
the general frameworks offered by the Cohen’s class and
the affine class.

By definition [6, 7], Cohen’s class C,(t,w) of finite
energy signals z(t) € L2(IR) is the family of functions
of time ¢ and (angular) frequency w that are given by :
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with W, (t,w) the Wigner-Ville distribution (WVD) :
Wa(t,w) = / 2t +5/2) T =352 e ds,  (2)

and II(¢,w) an arbitrary kernel function.
In a similar way [16], the affine class is the family
of functions of time ¢ and scale a > 0 given by :
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In cases for which the arbitrary kernel II(¢,w) is
of low-pass type, the above distributions (1) and (3)
make explicit the fact they both result from a smooth-
ing of the WVD (2), with the consequence that the
value that they take at a given point of the plane cannot
be considered as pointwise. In fact, this value rather
results from the summation of all Wigner-Ville contri-
butions within some time-frequency domain defined as
the essential time-frequency support of II(t,w), prop-
erly “centered” at the location of the considered point

! Throughout this paper, integrals run from —oo to 400, ex-
cept for scale variables for which the integration range is [0, 00).



of interest. A whole distribution of values is therefore
summarized by a single number, and this number is
assigned to the geometrical center of the domain over
which the distribution is considered. Reasoning with a
mechanical analogy, the situation is as if the total mass
of an object was assigned to its geometrical center, an
arbitrary point which—except in the very specific case
of an homogeneous distribution over the domain—has
no reason to suit the actual distribution. A much more
meaningful choice is to assign the total mass to the
center of gravity of the distribution within the domain,
and this is precisely what reassignment does : at each
point where a distribution value is computed, we also
compute the local centroid of the WVD distribution, as
seen through the time-frequency window defined by the
local kernel, and the distribution value is moved from
the point where it has been computed to this centroid.

3. REASSIGNING SPECTROGRAMS AND
SCALOGRAMS

General forms can be given for centroids associated to
any distribution [1] but, for a sake of simplicity, a spe-
cial attention can be paid to spectrograms and scalo-
grams, the only cases we will consider here.

Given a short-time window h(t) € L?(R) and an
admissible wavelet ¢(t) € L?(IR), the spectrogram and
the scalogram of a signal z(t) € L?(IR) are respectively
defined by SV (t,w) == |F{"(t,w)|? and B{¥ (t,a) =
IT$Y) (¢, a))?, where F{" (¢,w) and T{¥)(¢,a) stand for
its short-time Fourier transform (STFT) and continu-
ous wavelet transform (CWT), defined respectively by :

Fz(h)(t,w) = /x(s)me*iw(sft/z) ds ; (4)
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As written in (5), the CWT is a function of time and
scale but one can remark that, under mild conditions
on the analyzing wavelet 1(t) (namely that its spec-
trum is unimodal and characterized by some reference
(angular) frequency wp > 0), it can also be expressed
as a function of time and frequency w > 0, with the
identification w := wg/a.

Spectrograms and scalograms just happen to be
special cases of (1) and (3), with II{(t,w) = Wj(t,w)
or Wy (t,w), respectively. As such, centroids needed in
the reassignment process could be directly computed
from (1) and (3). This would be however a very unef-
ficient way of action, which has been proved [1] to be
replaced with much more computational profit by the

equivalent procedure :
L(tw) = t+Re{E™/FM}(tw); (6)

Gp(t,w) = w—Im {FéDh) /F§h)} t,w), (7)
with (Th)(t) := t h(t) and (Dh)(t) := (dh/dt)(t).
Scalogram reassignment is almost similar, although
it is a two-step process. In fact, whereas the computa-
tion of the centroid in time mimicks the spectrogram
case, the associated centroid in scale a, (¢, a) needs some
intermediate step in frequency, from which a frequency-
to-scale conversion is, then, achieved. From a practical
point of view, an efficient evaluation of those centroids
requires the introduction of the two additional wavelets
(T)(t) := t1p(t) and (DY)(t) := (dyp/dt)(t), thanks to

which we have [1] :

t.(t,a) = t+aRe {Tz(Tw)/Tﬁ’)} (t,a); (8)

az(t,a) = — m {TéDw)/Tz(w)} (t,a)' 9)

It is worth noting that the computation of the differ-
ent CW'T’s involved in the reassignment process (three
in the general case, and only two when using a Morlet
wavelet 1, (t) since we have D1, o< Ty, in such a
case) can be equipped with fast algorithms [8].

4. REASSIGNMENT AS SQUEEZING

Whereas there is no time-frequency curve onto which
conventional spectrograms and scalograms can perfectly
localize, their reassigned versions inherit automatically
of the localization properties of the WVD on straight
lines of the time-frequency plane. Within this model,
letting the chirp rate go to oo leads formally to ide-
alized impulses for which we also have :

z(t) = 6(t —to) = Wa(t,w) =6 (t—t0),  (10)

contrasting with the situation of ordinary scalograms :

)

In this latter case, the essential support of the scalo-
gram corresponds to a time-scale domain (referred to
as its cone of influence) that is limited by the two lines
of equations t = tg + a Aty /2, where Aty stands for a
measure of effective width of the wavelet v (¢).

It immediately follows from (8) that #,(t,a) = to
for any (¢,a) and any 9 (t), thus guaranteeing that the
reassigned scalogram reduces to a Dirac distribution,
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)82 (t,a) x §(t — to), as does the WVD in (10). Reas-
signement acts therefore as a squeezing operator that
permits to end up with a perfectly localized distribu-
tion in the case of a perfectly localized impulse.

5. SINGULARITY CHARACTERIZATION
FROM REASSIGNED SCALOGRAMS

Scalograms are known to provide a tool simultaneously
adapted for the detection and the characterization of
singularities [14, 15]. Inspired by the impulse exam-
ple sketched above, it is therefore natural to consider
reassigned scalograms of singularities, the underlying
motivation being that reassignment methods may im-
prove the contrast in the representation of singularities
and therefore their detection.

In a first step, we will limit ourselves to isolated
Holder singularities whose frequency structure can be
written as (details about the construction of this family
and the explicit form of A, can be found in [3]) :

X(w) = Aylw|™ . (12)

Labelling 2(®)(t) the fractional derivative of order
a of a signal z(t), it turns out [9] that isolated Holder
singularities of the type (12) have the property that
their CWT is equal to a rescaled version of the wavelet
fractional derivative of order a = —v — 1 :

TV (t,a) = A o 10 /D 2 (o) (—t/a).  (13)

One can see in (13) two important characteristics of
the scalogram structure of Holder singularities. First,
the energy is almost entirely concentrated in the sup-
port of [¢)(*)(—t/a)|, which defines in the time-scale
plane a cone-shaped domain centered around ¢ = O.
Second, from the restriction of (13) at time ¢ = 0,

log [T™)(0, )2 = log |4, () + (2v + 1) log a,
(14)
one can get a simple estimate of v by measuring the
slope along the scale axis in a log-log diagram [15].
In order to go further, the wavelet ¢(t) has to be
specified, and it proves convenient to make use of a
Klauder wavelet [11], defined in the time- domain as

Kaa(t) = O (v —it)FFY, (15)

with Cjs,, a suitable normalization constant. One can
check [5] that the Klauder wavelet family is covariant
to fractional differentiation, as well as stable by multi-
plication by ¢t and by differentiation. Combining these
properties, we can get the algebraic form of the three

wavelet transforms involved in (8) and (9), leading fi-
nally to (see [3, 5] for details) :

itt,a) = aiﬂt; (16)
N _ wWo t2
oo = =2 (e+l),  an

with the reference frequency of the Klauder wavelet
equal to wp = (8 +1/2)/~.

Therefore, although the Klauder wavelet is of infi-
nite support in time, it leads to a reassigned scalogram
whose time-scale support is strictly limited to a cone
centered at the time of occurrence t = 0 of the sin-
gularity. The sharpness of this cone is controlled by
both the singularity strength (through «) and the cho-
sen wavelet (through 8 and 7). More precisely, it can
be shown that, for any fixed 8 and ~ (i.e., for any fixed
Klauder wavelet), the angle 6 of the cone goes to zero
as 0 ~ [(v/B)(B+1)/(B+1/2)] x a when @ — 0, as
expected from the result we obtained in the impulse
case. Conversely, we also get that 6 goes to zero as
0 ~ vya/p when a is fixed and f — oco. In such a limit,
the Klauder wavelet converges to a Morlet wavelet, thus
evidencing that a Morlet scalogram perfectly localizes
Holder singularities, even in cases where a # 0.

The explicit evaluation of the reassigned scalogram
can finally be achieved by inverting the reassignment
operators (16) and (17). The central result is that, at
the time of occurrence t = 0 of the singularity, we get

3 (0,a) oc =2, (18)

equation from which we conclude that (i), as for the
scalogram, the reassigned scalogram undergoes a power-
law behaviour with respect to scales, and () the ex-
ponent —(2a + 1) = 2v + 1 of this power-law is the
same as in the scalogram case (see (14)). This means
that the measurement of the Holder exponent v can be
possibly done with a reassigned scalogram.

6. OSCILLATING SINGULARITY
SIGNATURE FROM REASSIGNED
SPECTROGRAMS

Whereas Holder singularities naturally occur in sig-
nals or images as signatures of discontinuities or break-
points, more complex (non-Holder) singularities may
also be encountered. Those singularities include an os-
cillating part, a typical example being provided by the
gravitational waves radiated from two coalescing as-
trophysical objects [4]. In such cases, the signal model
(which generalizes (12)) is that of a power-law chirp of
the form

Xi(w) = C|w|7"*1 exp{i¥r(w)}, (19)



with ¥y (w) = —(tow + cw®) if k£ < 0 and the extension
Uo(w) = —(tow + ¢ logw).

A well-established theory has been developed for
the analysis of such signals [2], with specific distribu-
tions Bgc)(t,w) explicitly tailored to the group delays
tx, (w) := —=(0¥/0w)(w), i.e., such that

B (t,w) o< 8 (t = tx, (). (20)

The computational burden associated to such dis-
tributions is however quite heavy, whereas a reassigned
spectrogram may serve as a much simpler, yet very ac-
curate, substitute (see, e.g., [4]). The reason is that re-
assignment operates basically in a local fashion, with a
nearly optimal localization as long as the time-frequency
trajectory of the chirp (i.e., its group delay or instan-
taneous frequency curve) can be considered as locally
linear within the analysis time-frequency window. A
way of guaranteeing at best this approximation is to
adapt the short-time window length to the chirp rate,
at the time-frequency point where the group delay has
a maximum curvature. An explicit evaluation shows
that the window length has to be chosen as

3k \*

where Aty stands for the duration of the Gaussian win-
dow whose WVD has circular isocontours.

7. CONCLUSION

Initially introduced for improving spectrogram read-
ability, reassignment techniques have been generalized
to large classes of time-frequency and time-scale dis-
tributions. The case of singularities, discussed here, is
one of the instances in which reassignment has more-
over proved to be relevant not only for a qualitative
“image” enhancement, but also for a quantitative pa-
rameter estimation. Other aspects along this line are
discussed in [3].

Software — Matlab codes for computing reassigned time-

frequency and time-scale distributions are available as

part of a Toolbox, freely distributed on the Internet :
http://iut-saint-nazaire.univ-nantes.fr/
“auger/tftb.html.
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