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Correspondence 

Generalized Target Description and Wavelet 
Decomposition 

PATRICK FLANDRIN, FRANCOIS MAGAND, 
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Abstract-Generalized target description by means of colored bright 
spots (Altes [Z]) is very attractive for recognition or classification tasks 
in active sonar applications. In this correspondence, we show how such 
a description can be achieved directly from the impulse response to 
identify. It turns out that the resulting procedure is in close connection 
with the recently introduced technique of wavelet decomposition. 

I .  INTRODUCTION 
In active sonar applications, recognition or classification of tar- 

gets can be achieved by means of parameters related to the target 
impulse response. These must be extracted from returning echos of 
some transmitted signal, and for this parameterization to be effi- 
cient, a convenient modeling of the impulse response is required. 
In this respect, it appears that a generalized target description offers 
great flexibility and that an efficient identification is possible by 
using suitably chosen transmitted signals. 

In this correspondence, we show that the use of a suitable trans- 
mitted signal can be made implicit, hence allowing us to identify 
targets directly from their impulse response. A closer look at the 
resulting procedure reveals then its close connection with the re- 
cently introduced technique of wavelet decomposition. 

11. GENERALIZED TARGET DESCRIPTION 
In active sonar situations for which target information is carried 

by the returning echo of a transmitted waveform, a standard ap- 
proximation is to consider the target echo as resulting from a num- 
ber of range-distributed point scatterers. This means that the target 
impulse response x(  t )  is supposed to be of the form 

K 

X ( f )  = X k S ( f  - Tk) .  ( 1 )  
k =  I 

The transversal filter representation (1) is therefore character- 
ized by a set of weights xk and delays rk (associated to ranges), 
which are to be identified. 

Although ( I )  is useful as a rough approximation, it appears that 
it is oversimplified for a proper description of realistic targets [2]. 
This comes merely from the fact that in ( I ) ,  all the "glints" or 
"bright spots" are assumed to be associated to perfect reflections 
and do not encompass any frequency dependence. This can be 
overcome by replacing the target description (1) by a generalized 
target description [I], [2] which is based on differentiated and in- 
tegrated delta functions, and not only on delta functions: 

K M  

x ( f )  = c c X k m 6 ( ' " ) ( t  - T k ) ,  (2)  
k =  I m =  -M 

an expression which can be thought of as a decomposition by means 
of cofored bright spots [3]. 
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Fig. 1. First receiver configuration using explicitly a transmitted signal 
h ( r ) .  

In order to identify the set of coefficients (xkm,  7 k ) ,  Altes has 
designed a receiver structure [2] which, in a first step, makes use 
of a bank of matched filters, each filter of the bank being matched 
to some differentiated or integrated version of the transmitted sig- 
nal: if h ( t)  stands for this transmitted signal, a first configuration 
of the receiver is given in Fig. 1 where e,(7, m )  is the output of 
the filter matched to the mth derivative (or integral) of h ( t ) .  In such 
a configuration, identification is achieved by using explicitly a 
transmitted waveform, which is a priori arbitrary. 

However, an objective choice of h ( r )  is possible if we impose 
some constraint on, e.g., the receiver complexity. Since the band- 
width of the successive derivatives of h ( t )  increases as the order 
of differentiation increases, a natural requirement is to impose that 
their duration decrease correspondingly, in order to keep a time- 
bandwidth product (and hence, a complexity) constant for all the 
filters of the bank. A possibility is to deal with signals for which 
differentiation (respectively, integration) is equivalent to compres- 
sion (respectively, dilation). This results in very special waveforms 
whose Fourier transform reads [2] 

( 3 )  
(where U stands for the unit step function, n, g ,  and c are real- 
valued parameters, and A is some constant) or, equivalently [3], 

(where A ' is some other constant) if emphasis is to be put on the 
central (angular) frequency 

WO = g". ( 5 )  
Such a signal meets the condition of equivalence between dif- 

ferentiation and scaling since [2] 

Hn,g.c(  g- "w)  = [ g-m(fr+m/2)  exp ( - j2?rmc)]  O " ' H , , ~ , ~ ( W ) .  

(6 )  
Among different interesting properties of the signal (3), we can 

mention one which will be useful in the following, and which reads 

lHn.K.c(  g- "w)  l 2  = g-m(2n+m) 2m H 2 " . 6 O ( U ) .  (7) 
The signal defined by (3) or (4) has a structure of linear period 

modularion (hyperbolic frequency modulation) and a log-normal 
envelope. Thus, in addition to constraining the receiver complexity 
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through (6), it also possesses the remarkable feature of being 
Doppler-tolerant [4] and it provides a satisfactory modeling of some 
natural sonar signals emitted by mammals for echolocation (21. 

111. WAVELET DECOMPOSITION 
In the recent past, sustained interest has been devoted to a new 

technique of signal decomposition, based on a linear transform 
which is referred to as the wavelet transform [5]-[7]. The general 
idea of this approach is to consider a finite energy signal as result- 
ing from the superposition of a number of “building blocks” which 
all have the same time-bandwidth product, and which can all be 
deduced from one elementary waveform (the analyzing wavelet) 
by means of shifts in the time direction and scale changes (dilations 
or compressions). The spirit is similar to that of classical Gabor- 
Helstriim decompositions [8], [SI, but when replacing frequency 
shifts by scale changes, making the wavelet transform a time-scale 
analysis more than a time-frequency analysis [lo], [ 1 11. 

By definition, given an analyzing wavelet w (t). the wavelet 
transform of x ( t )  expresses as 

For this to make sense, the Fourier transform of w( t )  must sat- 
isfy the admissibility conditions [5], [6] 

. .. 
2 dw W ( 0 )  = 0. (9)  

The first condition corresponds to a sufficiently fast decay of 
W ( w )  at high frequencies, whereas the second one imposes w ( t )  
to be zero mean. As a result, the analyzing wavelet can be viewed 
as the impulse response of a bandpass filter, which possesses at 
least some oscillations, whence the name. 

Provided that the conditions (9) hold, x (  t )  can be recovered from 
its wavelet transform as [SI, [6] 

This inversion formula makes clear the role played by the wave- 
let transform as a weight associated to each of the scaled and shifted 
building blocks. 

It is known that Gabor-Helstrom theory is primarily based on 
Gaussian functions. In the wavelet case, Grossmann and Morlet 
have justified [5] that a companion function is to be privileged 
which, in the frequency domain, is just the image of the Gaussian 
function under a natural map. According to their parameterization, 
the Fourier transform of this function reads 

IV. GENERALIZED TARGET DESCRIPTION AND WAVELET 
DECOMPOSITION 

Coming back to the receiver configuration of Fig. 1, it is pos- 
sible to commute the first two filters in order to directly process the 
impulse response n ( t )  without making use explicitly of the trans- 
mitted signal h ( t ) .  This ends up with the second receiver config- 
uration, which is given in Fig. 2. 

This is of special interest when only the impulse response is 
available. In fact, this procedure allows us to characterize any sig- 
nal considered as the impulse response of some target. 

Within this second configuration, the output e,( 7 ,  m )  expresses 
as 

+m 

€3,(7, rn) = 1 n ( t )  rkm’*(t - r )  df  (12) 
-m 
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Fig. 2. Second receiver configuration using implicitly the transmitted sig- 
nal h ( r )  of Fig. 1. 

transmitted signal echo 

where 

is the autocorrelation function of h (t).  

from (7) that 
If h ( t )  is chosen to be the Altes signal (3), it follows directly 

(14) 

Hence, (12) can be rewritten by means of dilated or compressed 
versions of the autocorrelation function of h ( I ) .  According to the 
definition (8), this yields to the central result 

rim)(t) = j rng(m/2) (1  + 2 n + m / 2 )  Yh( gm’2 t ). 

e,(7, ,,,) = j-mg(m/2)(l/2+2n+m/2) T ,.yh(7’ 8-m’2). (15) 

This indicates that the matched filter based processing involved 
in the identification of a generalized target description is equivalent 
to the evaluation of (suitably chosen) sections of the wavelet trans- 
form of the impulse response, the analyzing wavelet being chosen 
as the autocorrelation function of the transmitted signal. 

It is easily checked that, in the Altes case, this is gn admissible 
wavelet since 

Moreover, the shape itself of the corresponding wavelet is in 
accordance with that of Grossmann and Morlet since we have 

Wa(w> = I ~ O . & ~ . O ( W )  tz. (17) 

Simple physical arguments can be provided for justifying the 
close connection which exists between generalized target descrip- 
tion and wavelet decomposition. 

By construction, the wavelet transform (8) depends on  a scale 
parameter and small scales are associated to fine details in a signal, 
whereas large scales correspond to a gross characterization. From 
(15), the considered observation scales a are given by 

a = p / 2  (18) 

where m is the order of differentiation or integration. It follows 
from this that, in the generalized target description picture, small 
scales are associated to high-order differentiations, whereas large 
scales correspond to high-order integrations: this is a satisfactory 
physical interpretation. 

Evaluation of the wavelet transform at discrete scale values like 
(18) (and especially on the dyadic grid associated to g = 4) ap- 
proximates the wavelet coefficients involved in a discrete wavelet 
decomposition of the type [7] 

K M  

~ ( t )  = E XkYh(gfn”t - k A 7 )  
k = l  m = - M  

where A 7 is some time sampling rate. 
In the case of Altes signals (6) ,  (14) holds, which identifies scale 

changing operations to differentiation or integration. If their time- 
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bandwidth product is furthermore large, the autocorrelation func- 
tion is sharply peaked (pulse compression effect) and the discrete 
wavelet decomposition (1 9) is an approximation of the generalized 
target description (2). 

Nevertheless, in such discrete cases, the wanted coefficients 
cannot be exactly obtained from either the matched filter output or 
the wavelet transform, as given by (15): this comes from the fact 
that the involved projection filters do not constitute an orthonormal 
basis. Some postprocessing is therefore necessary and a least 
squares solution has been proposed [2]. However, exact ap- 
proaches have been introduced in the wavelet theory [7], [12], and 
it is believed that they can be useful in the generalized target de- 
scription case as well. 

V. CONCLUSION 

Two different and apparently unrelated approaches, generalized 
target description and wavelet decomposition, have been consid- 
ered. In fact, it has been shown that they share important common 
features concerning both the structure of their privileged analysis 
tools (transmitted signal or analyzing wavelet) and the way by 
which they get relevant information on a system under investiga- 
tion. 

The interest in such a comparative perspective is believed to be 
twofold since 1) it provides new insights in the physical meaning 
of the wavelet transform by relating it to the extraction of physical 
target parameters, and 2) it allows generalized target description to 
make a profit of the mathematical body of knowledge concerning 
the wavelet transform (cf., e.g., [7], [12]). 
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A Novel Implementation of a ChiFpZ-_Transform 
Using a CORDIC Processor 

YU HEN HU AND S.  NAGANATHAN 

Abstract-In this correspondence, an efficient implementation of the 
chirp Z transform (CZT) using a CORDIC (coordinate rotation digital 
computer) processor is presented. In particular, it is shown that a scal- 
ing operation in the CZT algorithm can be conveniently implemented 
with a nom correction (normalization) computation, which is often con- 
sidered as an overhead in the CORDIC algorithm. Furthermore, since 
the desired frequencies of CZT are specified before computation, it is 
possible to reduce the total number of CORDIC iterations by finding 
a most economic representation of the angle in terms of the elementary 
CORDIC rotation angles. A simple suboptimal solution is proposed to 
solve this difficult optimization problem. This implementation is most 
effective when very few complex frequencies on the 2 plane are to be 
evaluated via CZT. 

I. INTRODUCTION 
In the formulation of several orthogonal transformation-based 

digital signal processing algorithms such as fast (discrete) Fourier 
transformation and QR factorization for least square estimation, a 
major portion of operations involves the rotation of a two by one 
vector through a certain angle [l]. Such an operation admits an 
efficient hanlware implementation using a rotation-based arithme- 
tic algorithm known as CORDIC [2]-[3]. Recently, a number of 
research efforts have been made to design VLSI (very large scale 
integration)-based pipelined CORDIC a m y  processors circuits [5]- 
[8] for highly concurrent computation. For example, the FFT can 
easily be implemented with a CORDIC processor [9] since each 
butterfly computation is essentially a rotate-and-accumulate oper- 
ation. In this correspondence, the implementation of the chirp 
Z-transformation algorithm [4] using a CORDIC processor is con- 
sidered. 

The chirp Z-transform [4] evaluates the Z transformation of a 
discrete sequence { x ( n )  1 at the points zn = A F V r n  form = 0, 1 ,  
. . . , M - 1 where W = Woe-’@” and A = A0eJBO with WO, Ao, 40, 
and Bo being real numbers. That is, 

N- I N- I 

“ = O  “ = O  
(1)  X(Z,) = c .(n)z,“ = c x(n)A-“W”“.  

Traditionally, CZT may be evaluated using fast Fourier transfor- 
mation using O( ( N  + M - 1 ) logz ( N  + M - 1 ) )  operations [4]. 
However, when only a few chirp frequencies are needed (M << 
N ), it would be more efficient to evaluate (1) directly using a re- 
currence formulation: ’ for n = 0 to N - 1, 

X(Z,) = x(0) + A-”+( 1) + A - ’  Wrn[x(2) . . . 
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the scope of this correspondence. 
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