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Empirical Mode Decomposition as a Filter Bank
Patrick Flandrin, Fellow, IEEE, Gabriel Rilling, and Paulo Gonçalvés

Abstract—Empirical mode decomposition (EMD) has recently
been pioneered by Huang et al. for adaptively representing nonsta-
tionary signals as sums of zero-mean amplitude modulation fre-
quency modulation components. In order to better understand the
way EMD behaves in stochastic situations involving broadband
noise, we report here on numerical experiments based on fractional
Gaussian noise. In such a case, it turns out that EMD acts essen-
tially as a dyadic filter bank resembling those involved in wavelet
decompositions. It is also pointed out that the hierarchy of the ex-
tracted modes may be similarly exploited for getting access to the
Hurst exponent.

Index Terms—Empirical mode decomposition (EMD), filter
banks, fractional gaussian noise, wavelets.

I. EMD BASICS

THE STARTING point of the empirical mode decomposi-
tion (EMD) is to consider signals at the level of their local

oscillations. Looking at the evolution of a signal between
two consecutive local extrema (say, two minima occurring at
times and ), we can heuristically define a (local) high-fre-
quency part . Also called detail, cor-
responds to the oscillation terminating at the two minima and
passing through the maximum which necessarily exists in be-
tween them. For the picture to be complete, we also identify the
corresponding (local) low-frequency part , or local trend,
so that we have for . Assuming
that this is done in some proper way for all the oscillations com-
posing the entire signal, we get what is referred to as an intrinsic
mode function (IMF) as well as a residual consisting of all local
trends. The procedure can then be applied to this residual, con-
sidered as a new signal to decompose, and successive consti-
tutive components of a signal can therefore be iteratively ex-
tracted, the only definition of such a so-extracted “component”
being that it is locally (i.e., at the scale of one single oscillation)
in the highest frequency band.

Given a signal , the effective algorithm of EMD can be
summarized as follows [2].

1) Identify all extrema of .
2) Interpolate between minima (resp. maxima), ending up

with some “envelope” (resp. ).
3) Compute the average .
4) Extract the detail .
5) Iterate on the residual .
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In practice, the above procedure has to be refined by a sifting
process which amounts to first iterating steps 1)–4) upon the de-
tail signal , until this latter can be considered as zero-mean
according to some stopping criterion. Once this is achieved,
the detail is considered as the effective IMF, the corresponding
residual is computed and step 5) applies.

By construction, the number of extrema is decreased when
going from one residual to the next (thus guaranteeing that the
complete decomposition is achieved in a finite number of steps),
and the corresponding spectral supports are expected to decrease
accordingly. While modes and residuals can intuitively be given
a “spectral” interpretation, it is worth stressing the fact that, in
the general case, their high- versus low-frequency discrimina-
tion applies only locally and corresponds by no way to a pre-
determined subband filtering (as, e.g., in a wavelet transform).
Selection of modes rather corresponds to an automatic and adap-
tive (signal-dependent) time-variant filtering.

II. EMD ANALYSIS OF FRACTIONAL GAUSSIAN NOISE

For a given signal , EMD ends up with a representation
of the form:

(1)

where stands for a residual “trend” and the “modes”
are constrained to be zero-mean am-

plitude modulation frequency modulation waveforms. As
such, EMD proves especially efficient in those deterministic
situations which precisely enter the framework of “sinusoidal
models” (at large) [2]. At the notable exception of a recent
study [5], much less attention has been paid to more realistic
situations involving noise, and little is known indeed on the
decomposition achieved by EMD when the analyzed signal is
only the realization of some stochastic process. We propose
in this letter to address this issue by resorting to fractional
Gaussian noise as a versatile model for broadband noise.

A. Fractional Gaussian Noise

Let us recall that fractional Gaussian noise (fGn) is defined
as the increment process of fractional Brownian motion [3]. In
discrete-time, fGn corresponds to a time series

indexed by a real-valued parameter
(its Hurst exponent), and such that its autocorrelation sequence

reads

(2)

As is well known, the special case reduces to white
noise, whereas other values induce nonzero correlations, either

1070-9908/04$20.00 © 2004 IEEE



FLANDRIN et al. : EMPIRICAL MODE DECOMPOSITION AS A FILTER BANK 113

Fig. 1. EMD equivalent filters. In the case of fractional Gaussian noise, EMD
can be interpreted as a filter bank of overlapping bandpass filters for modes of
indexes k � 2, the mode #1 corresponding essentially to a half-band highpass
filter. For each value of the Hurst exponent (H = 0:2, 0.5, and 0.8), 5000
independent time series of 512 points each have been generated, and the average
spectra of the seven first IMFs are plotted as a function of normalized frequency.

negative when or positive when
(long-range dependence).

We will here report on extensive simulations that have been
carried out on such processes, with varying from 0.1 to 0.9.
The data length has been typically set to and, for
each value of , 5000 independent sample paths of fGn have
been generated via the Wood and Chan algorithm [4]. Details
on the effective implementation of the EMD algorithm will not
be given here, but the Matlab codes used for the simulations are
available.1

B. Equivalent Filters

A first analysis of the fGn time series consists in estimating
a power spectrum for each mode of the decomposition. To this
end, empirical autocorrelation functions are first computed for
each mode of each realization, prior being ensemble averaged
over all realizations, tapered and Fourier transformed. This re-
sults, mode by mode, in a frequency profile that can be inter-
preted as the frequency output of some equivalent filter. As ev-
idenced in Fig. 1, the collection of all such filters tend to orga-
nize in a filter bank structure which is reminiscent of what is
classically observed in wavelet decompositions in similar situ-
ations [1]. Indeed, while the filter associated to the mode #1 is
essentially highpass (although it contains a nonnegligible low-
pass part in the lower half-band), the modes of higher indexes
are characterized by a set of overlapping bandpass filters. More-
over, each mode of index , occupies a frequency
domain which is roughly the upper half-band of that of the pre-
vious residual of index . It is worth to point out that similar
results have been obtained independently by Wu and Huang [5]
in the case of white noise (corresponding here to ).

1See http://perso.ens-lyon.fr/patrick.flandrin/emd.html.

Fig. 2. IMF zero-crossings. The (base 2) logarithm of the average number
of zero-crossings is plotted in dashed-dotted lines as a function of the IMF
number, for 3 different values of the Hurst exponent (H = 0:2 (crosses), 0.5
(circles), and 0.8 (squares)). We observe in each case a straight line whose slope
(estimated by a linear fit over the six first modes, superimposed full lines) is very
close to �1, indicating an almost dyadic decrease across modes.

C. Filter Bank Structure

The qualitative appreciation given above about the equiva-
lent filter bank structure of EMD can be quantified further as
follows. By construction, each IMF is a zero-mean waveform
whose number of zero-crossings differs at most by one from the
number of its extrema. The number of these zero-crossings is a
rough indication of the mean frequency of each mode, and the
way this number varies from mode to mode is a further indica-
tion of the hierarchical structure of the equivalent filter bank.
As evidenced in Fig. 2, the number of zero-crossings is a
decreasing exponential function of the mode number :

(3)

with very close to 2.
Using this result, we can further check for a possible self-sim-

ilarity in the filter banks of Fig. 1. Denoting by the power
spectrum of the th IMF , self-similarity of the bandpass
filters would mean that

(4)

for some and any and, hence, that the power
spectra of all IMFs could be collapsed onto a single curve, when
properly renormalized. Such a collapse via renormalization can
be observed on Fig. 3, obtained with the specific choice

. Even if some low-frequency discrepancies can be ob-
served (especially when ), these diagrams support the
claim that, in a first approximation (and in agreement with the
findings reported in [5] for white noise), EMD acts on fGn as a
dyadic filter bank of constant- bandpass filters.

D. Estimation of

Using the filter bank structure described above, it becomes
possible to get access to the Hurst exponent via the variance
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Fig. 3. EMD filter bank renormalization—When renormalized according
to the right-hand side of (4) with � = 2H � 1 and � as obtained from
the slopes of Fig. 2, the bandpass frequency profiles of Fig. 1 (i.e., the
spectra corresponding to modes 2–7, plotted here in log-log coordinates)
almost collapse onto a single curve. This supports the claim that, in a first
approximation, the equivalent filter bank structure of EMD is dyadic with
constant-Q bandpass filters.

progression across IMFs. In fact, assuming that the renormal-
ization (4) is satisfied by the considered IMFs, it immediately
follows that their variance should be such that

(5)

Examples of log-variance progressions are plotted in the top
graph of Fig. 4, with the corresponding linear fits and esti-
mates. It turns out that the expected straight lines are obtained
for and 0.8 but that a significant bending occurs for

.
While only three typical values of are displayed on this

figure for the sake of readability, it appears from more complete
experiments within the range that the observed
behavior is quite general and that the linear dependence of the
log-variance as a function of the mode index is only a gross
approximation when . In other words, a self-similar
model for the considered filter bank makes sense mostly for

, as expected from the approximated renormalization
collapse of Fig. 3. This is further supported by the bottom graph
of Fig. 4 in which we can observe, for the measured slope, a
good agreement with the model (5) when and a clear
deviation from it when .

III. CONCLUSION

We reported here on first numerical experiments aimed at
supporting the claim that, in the case of structured broadband
stochastic processes such as fractional Gaussian noise, the
built-in adaptivity of EMD makes it behave spontaneously as
a “wavelet-like” filter bank. An interesting by-product of this
interpretation is that EMD may offer a new way of analyzing
self-similar processes. Thorough comparisons (which are
beyond the scope of this letter) with other existing methods
are in progress. Let us just mention that benefits very similar
to those of wavelet-based methods are obtained when using

Fig. 4. IMF variance and estimation of the Hurst exponentH . (Top) The (base
2) logarithm of the average variance is plotted as a function of the IMF number,
for three typical values of the Hurst exponent [H = 0:2 (crosses), 0.5 (circles),
and 0.8 (squares)], with the corresponding linear fits andH estimates. (Bottom)
When plotted as a function of the Hurst exponentH , the IMF log-variance slope
p(H) is almost linear when H � 1=2, in accordance with the simplified model
p(H) = 2(H� 1) predicted by self-similarity and the approximation � = 2
(superimposed straight line).

EMD: in particular, the technique happens to naturally cope
with superimposed smooth trends.

From a more general perspective, the results presented here
clearly call for theoretical elements which would explain the
observed behaviors (e.g., the -dependence of the filter bank
structure), a task which is made difficult by the fact that EMD
does not admit an analytical definition. The purpose of the
present experimental study was to be a contribution aimed
at a better understanding of one specific aspect of EMD (the
way it decomposes broadband noise), filling somehow the gap
between a still nonexisting theory and the application of an
appealing method to real-world situations (e.g., see [6]).
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