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Huang’s data-driven technique of Empirical Mode Decomposition (EMD) is applied to15
the versatile, broadband, model of fractional Gaussian noise (fGn). The experimental
spectral analysis and statistical characterization of the obtained modes reveal an equiva-17
lent filter bank structure which shares most properties of a wavelet decomposition in the
same context, in terms of self-similarity, quasi-decorrelation and variance progression.19
Furthermore, the spontaneous adaptation of EMD to “natural” dyadic scales is shown,
rationalizing the method as an alternative way for estimating the fGn Hurst exponent.21
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1. Introduction

Empirical Mode Decomposition (EMD) has been recently pioneered by Huang25

et al.3 for adaptively decomposing signals in a sum of “well-behaved” AM–FM
components. The technique has already been applied with success in a host of27

applications2,3,9,13,16 but, albeit quite simple in its principle, it lacks theoretical
fundamentals. Indeed, EMD is basically the output of an iterative algorithm: as29

such, it admits no analytical definition and, up to now, the only way of better
understanding the technique has been to resort to extensive numerical simulations31

in well-controlled situations. The present study adopts this perspective, and its
main objective is to get a detailed statistical knowledge of the EMD behavior when33

it is applied to broadband noise.

∗On leave at IST-ISR, Av. Rovisco Pais, 1049–001 Lisbon, Portugal.
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More precisely, the paper is organized in two main parts. In the first part1

(Sec. 2), basics of EMD are presented, the algorithm is described, some exam-
ples are given and (dis-)similarities with wavelet decompositions are qualitatively3

underlined. In the second part (Sec. 3), EMD is specifically applied to the versatile,
broadband, model of fractional Gaussian noise (fGn), evidencing a (spontaneous)5

decomposition resembling those involved in wavelet decompositions in the same
context. Statistical properties of EMD modes are investigated further in terms7

of zero-crossings, marginal statistics and variance-covariance, suggesting an EMD-
based estimation of the fGn Hurst exponent which is quantitatively compared to9

the more classical wavelet-based approach. Some complements to the present study
and suggestions for future works are finally discussed in Sec. 4.11

2. Empirical Mode Decompositions

2.1. EMD basics13

The simplest model for an oscillatory waveform x(t) is given by circular functions
of the type a cos 2πf0t, or combinations of them. Such “Fourier modes” are of par-15

ticular interest in the case of stationary signals and linear systems, since they are
eigenfunctions of linear time-invariant operators. However, many physical situa-17

tions are known to undergo nonstationary and/or nonlinear behaviors, thus calling
for more elaborate and more meaningful representations. In this respect, one can,19

e.g., think of representing signals in terms of amplitude and frequency modulated
(AM–FM) components such that21

x(t) =
K∑

k=1

ak(t) cosϕk(t). (2.1)

The rationale for such a modelling is to compactly encode possible nonstationari-23

ties in a time variation of the amplitudes and frequencies of Fourier-like modes. More
generally, signals may also be generated by nonlinear systems for which oscillations25

are not necessarily associated with circular functions, thus suggesting decomposi-
tions of the form27

x(t) =
K∑

k=1

xk(t), (2.2)

where the components xk(t) may present both amplitude variations and non-29

harmonic, time-varying, oscillations, while being “independent” of each other in
some way.31

Empirical Mode Decomposition (EMD)3 is a technique which has been designed
primarily for obtaining representations of this type in the case of signals which are33

oscillatory (possibly nonstationary and/or generated by a nonlinear system), in
some automatic, fully data-driven, way. In a nutshell, the starting point of EMD is35
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signal = slow oscillation ... + fast oscillation

Fig. 1. A schematic illustration of the EMD idea. The original signal (thick line in (a)) is viewed
as the superposition of a slow oscillation (b) and a fast oscillation (c), the slow oscillation being
obtained as the mean of two envelopes passing through the signal extrema. Once the slow oscilla-
tion has been identified, it can be considered as a new signal onto which the same procedure can
be applied.

to consider oscillatory signals at the level of their local oscillations and to formalize1

the idea that:

“signal = fast oscillations superimposed to slow oscillations,”3

and to iterate on the slow oscillations component considered as a new signal.
More precisely (see Fig. 1), if we look at the evolution of a signal x(t) between5

two consecutive local extrema (say, two minima occurring at times t− and t+), we
can heuristically define a (local) “high-frequency” part {d(t), t− ≤ t ≤ t+}. This7

detail d(t) corresponds to the oscillation terminating at the two minima and passing
through the maximum which necessarily exists in between them. For the picture to9

be complete, we also identify the corresponding (local) “low-frequency” part m(t),
or local trend, so that we have x(t) = m(t) + d(t) for t− ≤ t ≤ t+. Assuming that11

this is done in some proper way for all the oscillations composing the entire signal,
we get what is referred to as an Intrinsic Mode Function (IMF) as well as a residual13

consisting of all local trends. The procedure can then be applied to this residual,
considered as a new signal to decompose, and successive constitutive components15

of a signal can therefore be iteratively extracted. The only definition of such a so-
extracted “component” is that it is locally (i.e. at the scale of one single oscillation)17

in the highest frequency band.
Given a signal x(t), the effective algorithm of EMD can therefore be summarized19

as the following main loop3:

(1) identify all extrema of x(t),21

(2) interpolate between minima (respectively maxima), ending up with some “enve-
lope” emin(t) (respectively emax(t)),23

(3) compute the average m(t) = (emin(t) + emax(t))/2,
(4) extract the detail d(t) = x(t) − m(t),25

(5) iterate on the residual m(t).
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In practice, the above procedure has to be refined by a sifting process, an inner1

loop that iterates steps (1) to (4) upon the detail signal d(t), until this latter can
be considered as zero-mean according to some stopping criterion.a Once this is3

achieved, the detail is considered as the effective IMF, the corresponding residual
is computed and only then, step (5) applies. Eventually, the original signal x(t) is5

first decomposed through the main loop as

x(t) = d1(t) + m1(t), (2.3)7

and the first residual m1(t) is itself decomposed as

m1(t) = d2(t) + m2(t), (2.4)9

so that

x(t) = d1(t) + m1(t)

= d1(t) + d2(t) + m2(t)
...

=
K∑

k=1

dk(t) + mK(t). (2.5)

By construction, the number of extrema decreases when going from one resid-
ual to the next, thus guaranteeing that the complete decomposition is achieved in11

a finite number of steps (typically, K is at most O(log2 N) for N data points).
Moreover, the whole decomposition being only based on elementary subtractions,13

it obviously allows for a perfect reconstruction of the initial signal x(t), given the
collection of details {dk(t), k = 1, . . . , K} and the residual mK(t).15

Modes and residuals have been heuristically introduced on “spectral” argu-
ments, but this must not be considered from a too narrow perspective. First, it17

is worth stressing the fact that, even in the case of harmonic oscillations, the high
versus low frequency discrimination mentioned above applies only locally and cor-19

responds by no way to a pre-determined sub-band filtering. Indeed, selection of
modes rather corresponds to an automatic and adaptive (data-driven) time-variant21

filtering. In this direction, Fig. 2 shows an example, where a signal composed of two
AM–FM components significantly overlapping in time and frequency is successfully23

decomposed by the method.
Another example that puts emphasis on the potentially “non-harmonic” nature25

of EMD is given in Fig. 3. In this case, the analyzed signal is composed of a “low
frequency” triangular waveform to which is superimposed a “middle frequency”27

sine wave whose amplitude is quickly (linearly) decaying and a “high frequency”

aIt is not the purpose of this paper to address algorithmic issues which have been considered in
some detail elsewhere.3,12 Let us just mention that the main reason for which a proper IMF has to
be zero-mean is that this is a pre-requisite for its AM–FM demodulation with Hilbert transform
techniques, a post-processing aspect of EMD that will not be considered here.
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Fig. 2. An example of EMD-based time-variant filtering. A signal consisting in the superposition
of two amplitude modulated linear chirps is represented in the time-frequency plane (a), revealing
an overlap of the two components in both time and frequency. The EMD of this signal ends up
with essentially two IMF’s whose time-frequency signatures (b), (c) directly correspond to each
of the components. (All time-frequency transforms are reassigned spectrograms.)
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Fig. 3. An example of an EMD-based “non-harmonic” decomposition. The original signal (top
diagram) is decomposed into three main components revealing both linear and nonlinear oscil-
lations (one sine wave (IMF 2) and two triangular waveforms (IMFs 1 and 3)), together with
possible amplitude modulations.

triangular waveform whose amplitude is slowly (linearly) growing. Both linear and1

nonlinear oscillations are effectively identified and separated by EMD, whereas any
“harmonic” analysis (Fourier, wavelets, . . . ) would end up in the same context with3

a much less compact and physically less meaningful decomposition.

1st Reading



August 24, 2004 16:45 WSPC/181-IJWMIP 00056

6 P. Flandrin & P. Gonçalvès

2.2. EMD versus wavelets: A qualitative appreciation1

The brief EMD description sketched above is somehow reminiscent of wavelet
analysis,10 at least in the sense that it corresponds to an iterative decomposition3

scheme aimed at progressively scrutinizing coarser and coarser scales in a signal.
In parallel with what has been said on the basic idea underlying EMD, we can say5

that the starting point of a wavelet decomposition is to formalize the idea that:

“signal = high-frequency detail superimposed to low-frequency approximation,”7

and to iterate on the approximation considered as a new signal.
The way this decomposition is conventionally achieved consists in a repeated9

application of two filtering operations. First, a high-pass (respectively low-pass)
filter extracts the detail (respectively approximation) part of the signal by identi-11

fying it as the one which lives in the highest (respectively lowest) frequency band.
Second, the very same filters are applied to the approximation considered as a new,13

full-band, signal after a decimation by a factor of two. Compared to EMD, the two
main differences are (i) that splitting the signal is achieved, at each step of the15

decomposition, on a pre-determined spectral basis, and (ii) that the use of linear
time-invariant filters precludes the possibility of adapting to local variations of the17

oscillations.
However, wavelet decompositions present the advantage of being based on solid19

and well-understood theoretical foundations, and to be equipped with extremely
efficient fast algorithms. This of course contrasts with the present situation of EMD,21

whose definition is only given as the output of an algorithm, and which clearly lacks
from a well-established theory.23

3. EMD Analysis of Broadband Noise

In order to better compare EMD and wavelet analysis, an empirical way is to resort25

to extensive simulations in situations that are already well-documented from the
point of view of wavelets, and which are expected to reveal specific features of EMD27

in terms of hierarchical extraction of components in a fluctuating signal. One such
situation is provided by scaling processes for which wavelets are known to be a29

naturally fitted analysis tool.1

3.1. The model of fractional Gaussian noise31

Fractional Gaussian noise (fGn)4,11 is a generalization of ordinary white noise, and
it is a versatile model for broadband noise dominated by no particular frequency33

band. It is intrinsically a discrete-time process, which is expressed as the increment
process of fractional Brownian motion (fBm), the latter being the only self-similar35

Gaussian process with stationary increments. As a consequence, the statistical prop-
erties of fGn are entirely determined by its second-order structure, which turns out37

to depend only on one single scalar parameter H , referred to as its Hurst expo-
nent. More precisely, {xH [n], n = . . . ,−1, 0, 1, . . .} is said to be a fGn of index H39
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(with 0 < H < 1) if and only if it is a zero-mean Gaussian stationary process whose1

autocorrelation sequence rH [k] := E{xH [n]xH [n + k]} reads:

rH [k] =
σ2

2
(|k − 1|2H − 2|k|2H + |k + 1|2H

)
. (3.1)3

As is well known, the special case H = 1/2 reduces to (discrete-time, uncorre-
lated) white noise, whereas other values induce nonzero correlations, either negative5

when 0 < H < 1/2 or positive when 1/2 < H < 1 (long-range dependence). Taking
the discrete Fourier transform of (3.1), we readily get that the power spectrum7

density of fGn expresses as:

SH(f) = C σ2 |ei2πf − 1|2
∞∑

k=−∞

1
|f + k|2H+1

, (3.2)
9

with |f | ≤ 1/2. If H �= 1/2, we have SH(f) ∼ Cσ2 |f |1−2H when f → 0, making
of fGn a convenient model for power-law spectra at low frequencies. From this11

spectral perspective too, the particular value H = 1/2 delineates two domains with
contrasted behaviors. In the regime 0 < H < 1/2, we have SH(0) = 0 and the13

spectrum is high-pass. On the contrary, within the range 1/2 < H < 1, we have
SH(0) = ∞, with a “1/f”-type spectral divergence (sometimes referred to as an15

“infrared” catastrophe). In both situations, it has to be noted that the power-law
form of the spectrum, although not exactly verified, is fairly well approximated over17

most of the Nyquist frequency band. In other words, we have a quasi-linear relation
in log–log coordinates:19

log SH(f) ≈ (1 − 2H) log |f | + C (3.3)

for most frequencies −1/2 ≤ f ≤ 1/2.21

3.2. EMD equivalent filter banks

We will here report on extensive simulations that have been carried out on fGn23

processes, with H = 0.1, 0.2, . . . , 0.9. The data length has been typically set to
N = 512 and, for each value of H, J = 5000 independent sample paths of fGn25

have been generated via the Wood and Chan algorithm.14 It is worth mentioning
that the present study, whose first results have been proposed in Ref. 6, generalizes27

therefore the one conducted independently in Ref. 15 for white noise only (H = 0.5)
and will support consistently the findings reported in this case.29

EMDs have been computed for all sample paths
{
x

(j)
H [n]; n = 1, . . . , N

}
(with

j = 1, . . . , J), resulting in a collection of IMFs referred to as
{
d
(j)
k,H [n]; n =31

1, . . . , N
}
. The maximum number of those IMFs proved to vary from one real-

ization to the other, but none of them ended up with less than seven modes. This33

value has therefore been retained in the study as the maximum considered number
of modes (k = 1, . . . , 7).35
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Given the so-obtained data set, a spectrum analysis has been carried out mode1

by mode, on the basis of the estimated power spectrum density (PSD) given by

Ŝk,H(f) :=
N−1∑

m=−N+1

r̂k,H [m] w [m] e−i2πfm, |f | ≤ 1/2, (3.4)
3

where w[n] is a Hamming taper, and

r̂k,H [m] =
1
J

J∑
j=1


 1

N

N−|m|∑
n=1

d
(j)
k,H [n] d(j)

k,H [n + |m|]

 , |m| ≤ N − 1 (3.5)

5

is the ensemble average (over the J realizations) of the empirical estimates of the
autocorrelation function. The result of this spectrum analysis is plotted in Fig. 4,
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Fig. 4. IMF power spectra in the case of fractional Gaussian noise. The logarithm of the estimated
power spectrum densities (log-PSD) is plotted as a function of the logarithm of the normalized
frequency for the first 7 IMFs. For each of the nine values of the Hurst exponent H (from 0.1 to
0.9), the spectral estimates have been computed on the basis of 5000 independent sample paths of
512 data points. Theoretical PSDs of the full processes are superimposed as dashed-dotted curves.
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whose graphs reveal a number of striking features:1

(1) whatever the value of the Hurst exponent H , the behavior of the first IMF
(thick line) contrasts with that of the other modes in the sense that, in a first3

approximation, it presents the characteristics of a high-pass filter, while the
modes of higher order are much more of a band-pass nature. The (roughly half-5

band) high-pass character of the first mode has however to be tempered by the
fact that the maximum attenuation in the stop-band is no more than 10 dB7

(as compared to the maximum which occurs at the Nyquist frequency 1/2),
thus corresponding to a non-negligible contribution in the lower half-band in9

“ultraviolet” situations (H < 1/2).
(2) when varying H from 0.1 to 0.9, the spectrum of the last IMF (k = 7) is11

progressively turned from band-pass to more and more low-pass, in accordance
with the increasing predominance of low frequencies (“infrared catastrophe”).13

(3) in the same respect, but more generally, the energy balance between the dif-
ferent modes reflects quite well the behavior of the global spectrum (superim-15

posed dashed-dotted curve) described by Eq. (3.2): flat spectrum when H = 1/2
(white noise) and increasing (respectively decreasing) power-law spectrum when17

H < 1/2 (respectively H > 1/2).
(4) for the indices k = 2 to 6 corresponding to band-pass IMFs, the spectra all19

look quite the same, up to some shifts in abscissa and ordinate, in a surprising
reminiscence of what is currently observed in wavelet decompositions.5,1021

This last observation prompts one to consider in greater detail how the different
spectra are related to each other, for a given H . To this end, one can make use23

of the very specific structure of IMFs, according to which all extrema appear as a
succession of minima and maxima with one and only one zero-crossing in between25

them. Measuring the average number of zero-crossings in a mode is therefore a
meaningful way of having access to its mean frequency. A graphical representation27

of the average number of zero-crossings zH [k] as a function of the IMF number k

is plotted in Fig. 5, suggesting a functional relation of the form:29

zH [k] ∝ ρ−k
H , (3.6)

with ρH very close to 2.31

A more precise check of the relation (3.6) is detailed in Table 1, where the
estimated scaling factor ρH is the direct by-product of the slope measurement33

obtained from a linear fit in the semi-log diagram log2 zH [k] versus k, k = 2 to 6.
Up to a slight dependence on H , one can observe that the average number of35

zero-crossings is, in a first approximation, divided by 2 when going from one IMF
to the next. Based on this result, we can even go further and check for a possible37

self-similarity in the “filter bank” structures of Fig. 5. Restricting to the band-pass
IMFs (k = 2 to 6), self-similarity would mean that39

Sk′,H(f) = ρ
α(k′−k)
H Sk,H

(
ρk′−k

H f
)

(3.7)

1st Reading



August 24, 2004 16:45 WSPC/181-IJWMIP 00056

10 P. Flandrin & P. Gonçalvès
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Fig. 5. IMF average number of zero-crossings in the case of fractional Gaussian noise. For a sake
of readability, only the curves corresponding to the extreme indices H = 0.1 (circles) and H = 0.9
(squares) have been plotted in the diagram, all the other considered cases (H = 0.2, 0.3, . . . , 0.8)
leading to regularly intertwined similar curves (see Table 1). The superimposed full lines corre-
spond to linear fits within the IMF range k = 2 to 6.

Table 1. IMF average number of zero-crossings in the case of fractional Gaussian noise.

H 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

slope −0.962 −0.972 −0.983 −0.994 −1.01 −1.02 −1.04 −1.06 −1.08
ρH 1.95 1.96 1.98 1.99 2.01 2.03 2.06 2.08 2.11

for some α and any k′ > k ≥ 2. As a consequence, the power spectra of all IMFs1

should collapse onto a single curve, when properly renormalized. Such a collapse via
renormalization can indeed be observed in Fig. 6, obtained with the specific choice3

α = 2H − 1. Even if some low frequency discrepancies can be observed (especially
when H < 1/2), these diagrams support the claim that, in a first approximation,5

EMD acts on fGn as a dyadic filter bank of constant-Q band-pass filters.

3.3. IMF marginal statistics7

Although fGn is a Gaussian process, the highly nonlinear structure of EMD cannot
a priori guarantee that fGn IMFs are themselves Gaussian. This, however, turns9

out to be true (except for the first, high-pass, mode), as illustrated in Fig. 7. More-
over, not only the modes are Gaussian, but they also evidence a general form of11

self-similarity consistent with the one related to the second-order properties dis-
cussed previously: the probability density functions (PDFs) p(dk,H) of the different13

modes {dk,H ; k = 2, . . . , 6} can all be deduced one from the other through the
renormalization equation:15

p(dk′,H) = βk′−k
H p

(
βk′−k

H dk,H

)
, (3.8)
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Fig. 6. Renormalized IMF spectra in the case of fractional Gaussian noise. For each value of H,

the band-pass IMFs (k = 2 to 6) of Fig. 4 are plotted after the renormalization given by Eq. (3.7)
with α = 2H − 1, and the values of ρH listed in Table 1.

with βH := ρH−1
H (the bottom row of Fig. 7 is displayed on a semilogarithmic scale,1

so as to better appreciate the Gaussianity of the superimposed IMFs, characterized
by a parabola).3

As is apparent in the top row of Fig. 7, the PDF of the first IMF is not Gaussian
but bimodal. This shape can be simply justified in the white noise case (H = 1/2)5

by the following argument. If we label by p+(x) and p−(x), respectively, the PDFs of
(Gaussian) white noise maxima and minima, it is easy to show that they express as:7

p±(x) =
[
1
2
±
(

1
2
− erf(x)

)]2
γ(x), (3.9)

with9

γ(x) =
1√
2π

e−x2/2 (3.10)
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Fig. 7. IMF probability density functions in the case of fractional Gaussian noise. Top row: PDFs
of the first 7 IMFs displayed on a linear scale, for three values of H. Bottom row: the corresponding
PDFs of the IMFs of indices k = 2 to 6 on a semi-logarithmic scale, after the renormalization
of Eq. (3.8). Actual values are plotted as dots, while the superimposed thick lines correspond to
their Gaussian fits.

the normalized Gaussian PDF, and1

erf(x) :=
∫ +∞

x

γ(θ) dθ (3.11)

the corresponding error function.3

We have seen that, in a first approximation, the first IMF is a high-pass filtered
version of the input signal. Since, by construction, EMD only retains positive max-5

ima and negative minima, this amounts to say that, in the white noise case, the
PDF of the first IMF is essentially given by p∗(x) := max(p−(x), p+(x)). Figure 87

shows that this simplified model reproduces the main structure of the actual PDF,
with furthermore a good agreement even in the cases where H �= 1/2.9

3.4. EMD-based Hurst exponent estimation

Given the self-similar relation (3.7) for PSDs of the band-pass IMFs, we can deduce
how variance should evolve as a function of the IMF number. Assuming that (3.7)
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Fig. 8. Log-probability distribution function of the first IMF in the case of fractional Gaussian
noise. The full line corresponds to the simplified model in the white noise case H = 0.5, whose
actual values are plotted as circles. Crosses and triangles correspond, respectively, to the correlated
cases H = 0.2 and H = 0.8. All PDFs have been normalized to be of unit area.

holds for any k′ > k ≥ 2, with α = 2H − 1, we have indeed

VH [k′] := var dk′,H [n]

=
∫ 1/2

−1/2

Sk′,H(f) df

= ρ
α(k′−k)
H

∫ 1/2

−1/2

Sk,H(ρk′−k
H f) df

= ρ
(α−1)(k′−k)
H VH [k], (3.12)

thus leading to1

VH [k] = C ρ
2(H−1)k
H . (3.13)

The IMF variance is therefore expected to be an exponentially decreasing func-3

tion of the IMF index, with a decay rate which is a simple linear function of the
Hurst exponent H . An experimental evidence for this behavior is reported in Fig. 9,5

where the (energy-based) empirical variance estimate

V̂H [k] :=
1
J

J∑
j=1

(
1
N

N∑
n=1

(
d
(j)
k,H [n]

)2) (3.14)
7

has been plotted as a function of the index k in a semi-log diagram (in base 2).
In accordance with the logarithmically linearized version of (3.13), it appears that9

straight lines can be fitted to the different curves, with a slope κH such that the
estimated Hurst exponent Ĥ reads11

Ĥ = 1 +
κH

2
. (3.15)

However, it has to be noticed that the predicted relationship (3.13) only holds13

for IMF indices k > 1, with furthermore an increased discrepancy for smaller H ’s
(typically, the model reasonably fits the data for H > 1/4).15
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Fig. 9. Estimated IMF log2-variance in the case of fractional Gaussian noise. The actual values

of the empirical (energy-based) variance estimates are reported in dotted lines for the different
values of the Hurst exponent H, together with error bars corresponding to the standard deviations
associated with the 5000 realizations run in the study. The mean value of the estimated Hurst
exponents are also given, based on weighted linear fits within the IMF indices range k = 2 to 6.
For a sake of better readability, all curves have been arbitrarily shifted along the vertical axis to
avoid overlapping.

3.5. EMD versus wavelets: A quantitative comparison1

In order to better appreciate the possibility of estimating H from a slope in a
diagram “log-energy versus IMF index,” and moreover to compare with wavelet-3

based techniques, it is important to not only consider the variance evolution through
modes, but also the possible correlations which may exist within modes and between5

them. In fact, it is well known that one of the main features of dyadic wavelet
decompositions (WD) is to approximately decorrelate most processes (even those7

with slowly-decaying correlations such as long-range dependent processes, e.g., fGn
with H > 1/2), thanks to a tuning parameter which is the number of vanishing9

moments of the analyzing mother wavelet.1 No such tuning parameter exists for
EMD, and it is worth investigating the resulting correlation structure when applied11

to fGn.
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To do so, two approaches have been followed. In the first one, we considered a1

mere generalization of the previous variance study by computing, for each value of
the Hurst exponent H , the full variance-covariance matrix defined by3

CH [k, k′] := E dk,H [n] dk′,H [n]. (3.16)

From a practical point of view, this quantity has been estimated by5

ĈH [k, k′] :=
1
J

J∑
j=1

(
1
N

N∑
n=1

d
(j)
k,H [n] d(j)

k′,H [n]

)
(3.17)

on the basis of 100 independent realizations, for a data size N = 2048 and IMF7

indices k and k′ varying from 1 to 6. Figure 10 presents the obtained normalized
result ĈH [k, k′]/ĈH [1, 1]. As expected, one recovers along the main diagonal (i.e.9

for k = k′) the behavior reported in Fig. 9, since ĈH [k, k] = V̂H [k]. The new feature
is that the estimated covariance falls off quickly when moving away from the main11

diagonal, thus indicating a low level of inter-modes correlation. This observation
does not apply however to the first IMF which evidences (in the first row and the13

first column) a non-negligible amount of correlation with higher-order modes, in
clear accordance with the specific low-pass tail reported in Fig. 4. In good agreement15

with Fig. 4 too, we can see that correlations induced by the first IMF are enhanced
for low values of H , i.e. those for which the contribution of IMF 1 prevails at low17

frequencies.

H = 0.1 H = 0.2 H = 0.3

H = 0.4 H = 0.5 H = 0.6

H = 0.7 H = 0.8 H = 0.9

Fig. 10. Estimated IMF variance-covariance matrix in the case of fractional Gaussian noise. For
each value of the Hurst exponent H, the graph displays the quantity |ĈH [k, k′]/ĈH [1, 1]| on a
logarithmic gray scale with a dynamic range of 10 dB, IMF indices 1 ≤ k, k′ ≤ 6 running from
top to right and from top to bottom.
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In a second approach, we focused on band-pass IMFs only (k > 1) and evaluated1
the two-dimensional correlation function

DH [k′, n′] := E dk,H [n] dk+k′,H [n + n′] (3.18)3

by means of the averaged empirical estimate

D̂H [k′, n′] :=
1
J

J∑
j=1


 1

NK

K−|k′|∑
k=2

N−|n′|∑
n=1

d
(j)
k,H [n] d(j)

k+|k′|,H [n + |n′|]

 , (3.19)

5

with |n′| ≤ N − 1 and |k′| ≤ K − 2, where K stands for the largest IMF
index minus 1, so as to disregard the residual. The result of this two-dimensional7

correlation function of the full IMF matrix, considered as a two-dimensional field,
is displayed in Fig. 11.9

As for detail sequences at different scales in wavelet decompositions, the graph
evidences that modes with different indices are almost uncorrelated. The only11
significant values of D̂H [k′, n′] correspond to k′ = 0, i.e. to intra-scale correlations,
with a correlation decay which becomes slower as H is increased.13

In terms of estimation of the Hurst exponent H , based on the assumed relation
(3.15) with the slope κH deduced from (3.14), the consequences of this behavior are15
twofold. First, because of the nonzero intra-scale correlations, the variance estimate

H = 0.1 H = 0.2 H = 0.3

H = 0.4 H = 0.5 H = 0.6

H = 0.7 H = 0.8 H = 0.9

Fig. 11. Two-dimensional correlation function of the full IMF matrix, considered as a two-
dimensional field, in the case of fractional Gaussian noise. For each value of the Hurst exponent
H, the graph displays the quantity |D̂H [k′, n′]| on a linear gray scale (from white for the mini-

mum to black for the maximum). The horizontal (respectively, vertical) axis corresponds to time
(respectively, IMF index) lags.
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V̂H [k] given in (3.14) is expected to be largely fluctuating, especially for large Hurst1

exponents H and large IMF indices k. Second, the negligible inter-scale correlations
allows nevertheless for an estimation of the slope κH from a weighted linear regres-3

sion in the semi-log diagram log2 V̂H [k] versus k. As far as the variability of the
variance estimate is concerned, Fig. 9 gave a rough, second-order, indication on5

the basis of the observed standard deviation. A more complete appreciation can
be gained from Fig. 12 where, in three typical cases (H = 0.2, 0.5 and 0.8), the7

experimental mean, median and various confidence intervals have been reported,
together with the fitted model deduced from (3.13) as:9

log2 VH [k] = log2 V̂H [2] + 2(H − 1)(k − 2) log2 ρH (3.20)

for k ≥ 2. This series of simulations (which has been carried out on 10000 real-11

izations of 2048 data points in each case) evidences larger and larger fluctuations
for modes of larger and larger indices, in agreement with (and generalization of)13

the findings reported in Ref. 15 for the only case of white noise. Moreover, the
skewed (marginal) distribution of these “modegrams” reveal a better agreement15

when fitting the linear model (3.20) with the median rather than the mean of the
realizations.17
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Fig. 12. Experimental “modegrams” in the case of fractional Gaussian noise. For the three consid-
ered values of the Hurst exponent, statistical characteristics (mean, median, confidence intervals)

of the logarithm of the estimated EMD variance have been plotted as a function of the IMF index,
together with the linear model given by (3.20).
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Table 2. EMD versus wavelets (Daubechies 4): estimation of the Hurst exponent H in the case
of fractional Gaussian noise.

H 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ĤEMD 0.253 0.310 0.367 0.441 0.521 0.612 0.697 0.798 0.898
σEMD 0.070 0.072 0.070 0.075 0.074 0.074 0.079 0.081 0.091

ĤW −0.071 0.117 0.261 0.386 0.502 0.610 0.715 0.819 0.920
σW 0.054 0.052 0.054 0.054 0.052 0.052 0.052 0.052 0.052

Table 3. EMD versus wavelets (Daubechies 4): estimation of the Hurst exponent H in the case
of fractional Gaussian noise superimposed to a cubic trend.

H 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ĤEMD 0.297 0.347 0.399 0.467 0.541 0.626 0.711 0.809 0.908
σEMD 0.074 0.073 0.073 0.079 0.077 0.079 0.082 0.085 0.094

ĤW −0.071 0.117 0.261 0.386 0.502 0.610 0.715 0.819 0.920
σW 0.054 0.052 0.054 0.054 0.052 0.052 0.052 0.052 0.052

A quantitative comparison has been carried out between EMD and wavelets1
(Daubechies 4 in the present case), based on a data set of J = 1000 realizations of
N = 1024 points each. The result, given in Table 2, shows that the two procedures3

behave quite the same (with respect to mean and standard deviation), with an
equal difficulty for dealing with small values of H in the case of data with a small5

number of samples.
Finally, a second series of experiments has been carried out on the very same7

data set {x(j)
H [n]; j = 1, . . . , J}, after superimposition of a cubic trend according to:

y
(j)
H [n] :=

x
(j)
H [n]√
varxH

+ 20
(

n

N
− 1

2

)3

, n = 1, . . . , N. (3.21)
9

As is well-known, the number of vanishing moments Nψ = 4 of the used wavelet
is high enough to guarantee that the wavelet decomposition is following the super-11

imposed cubic trend,1 and this can be checked by comparing the last two lines of
Tables 2 and 3. As far as EMD is concerned, the trend is mostly captured by the13

residual, i.e. the IMF of largest index. Estimating therefore H from the first 6 IMFs
only ends up with almost identical performance as compared to the no trend situ-15

ation, up to a slight increase in bias (due to the corruption by the trend at higher
indices) and variance (due to the use of less IMFs).17

4. Conclusion

By construction, EMD is based on no a priori filtering (even in a wide sense),19

but it rather selects, in a local, automatic and fully data-driven way, the “nat-
ural” scales at which a signal oscillates. When applied to stationary broadband21

processes, the main conclusion of the study reported here is that EMD achieves
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a decomposition on “intrinsic” modes (the so-called IMFs) whose effective spec-1

tra spontaneously organize as a constant-Q dyadic, wavelet-like, filter bank. This
striking property has received here a detailed statistical analysis which, however,3

could be complemented by companion studies operating, e.g., in the time domain
(equivalent impulse response7) rather than in the frequency domain. Whatever5

the domain considered for characterization, empirical findings about the statistics
of EMD in well-controlled situations is the pre-requisite for a possible use of the7

method in processing tasks such as, e.g., denoising (in the spirit of Wu’s study15)
or detrending.89

From a different perspective, the analysis has been carried out in a large, but
specific, class of broadband stochastic processes, namely fractional Gaussian noise.11

It would be worth following the present investigations in the case of less regular
models involving, e.g., mixtures of broadband and narrowband contributions. This13

is currently under investigation and will be presented in forthcoming publications.
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