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Abstract—A complete evaluation of first-order, second-order
and mixed derivatives is proposed for both the (log-)magnitude
and the phase of a given Short-Time Fourier Transform (STFT),
leading to equivalent expressions based on additional STFTs
with specific windows. Consequences are drawn in terms of
phase-magnitude relationships, resulting in new formulations of
time-frequency techniques such as reassignment, as well as new
insights in the structure of admissible STFTs in some special
cases.

Index Terms—Time-frequency, Short-time Fourier transform,
phase, magnitude, reassignment.

I. INTRODUCTION

THE Short-Time Fourier Transform (STFT) and the asso-
ciated spectrogram are widely used techniques to analyze

a signal jointly in time and frequency. In order to circumvent
some of the limitations of such approaches that are due to the
necessary choice of a short-time window, techniques such as
reassignment have been proposed, based on some (explicit or
implicit) use of the STFT phase information that is usually
discarded when using the (magnitude-based) spectrogram.
However, A valid STFT is not any 2D complex function of
time and frequency: it is therefore the purpose of this Letter to
explore further some of the links that exist between its phase
and magnitude. A number of results are already available
in the literature. We propose here to extend and interpret
them in a more exhaustive way. More precisely, the Letter
is organized as follows: in Section II, we explicitly evaluate
first-order, second-order and mixed derivatives of both the log-
magnitude and the phase of a given STFT, and we derive
implicit companion expressions based on STFTs with specific
windows. Section III restricts the discussion to the important
case of Gaussian windows for which strongly constrained
relationships between phase and magnitude are established. Fi-
nally, Section IV is dedicated to interpretations of such results
in terms of admissibility, analysis (reassignment), processing
(“transient vs. tone” detection) and structure of a STFT around
its zeros. Some open questions are outlined in the Conclusion.

Copyright (c) 2012 IEEE. Personal use of this material is permitted. How-
ever, permission to use this material for any other purposes must be obtained
from the IEEE by sending a request to pubs-permissions@ieee.org.

F. Auger is with LUNAM Université, IREENA, CRTT, BP 406,
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II. STFT DERIVATIVES

Given an analysis window h(t), the Short-Time Fourier
Transform (STFT) of a signal x(t) is a complex-valued
function that can be defined as

Fh
x(t, ω) = eȷωt/2

∫ +∞

−∞
x(u)h∗(t− u) e−ȷωu du (1)

= Mh
x(t, ω) e

ȷΦh
x(t,ω), (2)

where Mh
x(t, ω) and Φh

x(t, ω) respectively stand for its mag-
nitude and its phase. Following the convention used in [1],
the above definition includes a pure phase term whose origin
comes from the use of the Weyl operator and whose main
purpose is to end up with more symmetrical expressions in the
following developments. Without this term, the phase of the
STFT is equal to φh

x(t, ω) = Φh
x(t, ω)−ωt/2, and expressions

involving this phase can easily be deduced from the results
presented below.

In the spirit of the so-called “dynamic signal” introduced
in [2], it can be convenient to switch from the STFT to its
complex logarithm1, and to consider the derivatives of both
real and imaginary parts of this quantity. Doing so, it is easy
to establish that

∂

∂t
log(Mh

x(t, ω)) = Re

(
FDh
x (t, ω)

Fh
x(t, ω)

)
(3)

∂Φh
x

∂t
(t, ω) = Im

(
FDh
x (t, ω)

Fh
x(t, ω)

)
+

ω

2
, (4)

where Dh(t) = dh
dt (t). Introducing in a similar way the

window Th(t) = t h(t), we immediately get the companion
expressions:

∂

∂ω
log(Mh

x(t, ω)) = −Im

(
FTh
x (t, ω)

Fh
x(t, ω)

)
(5)

∂Φh
x

∂ω
(t, ω) = Re

(
FTh
x (t, ω)

Fh
x(t, ω)

)
− t

2
. (6)

It should be noticed that the introduction of the windows
Dh(t) and Th(t) was instrumental in the reformulation (dis-
cussed in [3], [4]) of the reassignment operators initially intro-
duced in [5]. In this context however, only the expressions of
the (first-order) phase derivatives were obtained and effectively
used.

Now, if we interest ourselves to derivatives of higher order
[6], we can define the new window D2h(t) = d2h

dt2 (t) and

1Throughout this paper, the signal is supposed to be properly normalized
so that Mh

x(t, ω) is an adimensional quantity.
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establish that

Ztt(t, ω) =
1
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−
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1
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x
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x
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)2

(7)

=
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x (t, ω)

Fh
x(t, ω)

−
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x (t, ω)
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x(t, ω)

)2

, (8)

from which we deduce that

∂2

∂t2
log(Mh

x(t, ω)) = Re (Ztt(t, ω)) (9)

∂2Φh
x

∂t2
(t, ω) = Im (Ztt(t, ω)) . (10)

Introducing similarly the window T 2h(t) = t2 h(t), we get

Zωω(t, ω) =
1
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(12)

and, therefore,

∂2

∂ω2
log(Mh

x(t, ω)) = Re (Zωω(t, ω)) (13)

∂2Φh
x

∂ω2
(t, ω) = Im (Zωω(t, ω)) . (14)

Finally, mixed partial derivatives can be obtained as well.
This requires the introduction of the mixed window defined
as TDh(t) = t dh

dt (t), leading to

Ztω(t, ω) = −ȷ
1
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and
∂2

∂t∂ω
log(Mh

x(t, ω)) = −Im (Ztω(t, ω)) (17)

∂2Φh
x

∂t∂ω
(t, ω) = Re (Ztω(t, ω)) . (18)

It has to be noted that Eqs. (10), (14) and (18) appear in
[7]. These results are supplemented here by Eqs. (9), (13) and
(17) giving the second-order partial derivatives of the STFT
log-magnitude.

III. THE GAUSSIAN CASE

While the results obtained in the previous section are
quite general and hold true for any admissible window, it
turns out that much simpler expressions can be obtained
in the Gaussian case, leading eventually to direct explicit
relationships connecting the magnitude and the phase of the
corresponding STFTs. In practical applications, such a window
is of particular interest, since it provides an optimal time-
frequency resolution in the Heisenberg-Gabor sense. More
precisely, if the short-time window is chosen as a unit-energy
Gaussian function with a given time-width λ,

h(t) = λ−1/2π−1/4e−t2/(2λ2) (19)

it directly follows its definition that

Dh(t) = −λ−2 Th(t) (20)
D2h(t) = −λ−2 h(t) + λ−4 T 2h(t) (21)
TDh(t) = −λ−2 T 2h(t). (22)

By linearity, the identities shown above for the windows
carry over to the associated STFTs, allowing for the combina-
tion of the four equations (3) to (6) into one system of only
two equations, namely:

∂Φh
x

∂t
(t, ω) = λ−2 ∂

∂ω
log(Mh

x(t, ω)) +
ω

2
(23)

∂Φh
x

∂ω
(t, ω) = −λ2 ∂

∂t
log(Mh

x(t, ω))−
t

2
. (24)

This means that, in the case of a Gaussian window, the
phase and the log-magnitude of a STFT strongly depend on
each other (via their partial derivatives). Differentiating the
expressions above with respect to both t and ω leads to the
four equations

∂2Φh
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Combining them pairwise, we finally end up with the two
remarkable identities

λ2 ∂2

∂t2
log(Mh

x(t, ω)) + λ−2 ∂2

∂ω2
log(Mh

x(t, ω)) = −1(29)

λ2 ∂2Φh
x

∂t2
(t, ω) + λ−2 ∂2Φh

x

∂ω2
(t, ω) = 0. (30)

IV. INTERPRETATIONS

A. STFT admissibility

Up to a rescaling governed by the time-width λ of the
Gaussian window, equations (29) and (30) show that, for
a complex-valued function of time and frequency to be an
admissible STFT, its log-magnitude and phase must satisfy a
necessary condition that takes the form of a Poisson/Laplace-
like equation. Indeed, in the “circular” case where λ = 1, we
obtain exactly

∆log(Mh
x(t, ω)) = −1 and ∆Φh

x(t, ω) = 0. (31)

Whereas Eqs. (23) and (24) explicitate how the magnitude and
the phase of a valid STFT are coupled, Eq. (31) (and, more
generally, Eqs. (29) and (30)) show that such quantities cannot
be arbitrarily specified by themselves either.
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B. Spectrogram reassignment
One major use of STFT phase derivatives is the spectrogram

reassignment. Whereas the method initially relied directly
on the phase to compute the time and frequency reassigned
locations as [5]

t̂x(t, ω) =
t

2
− ∂Φh

x

∂ω
(t, ω) (32)

ω̂x(t, ω) =
ω

2
+

∂Φh
x

∂t
(t, ω), (33)

the re-interpretation proposed in [3] has led to an implicit
evaluation that avoids the explicit computation of phase deriva-
tives, exploiting the equivalent expressions given in (4) and
(6). What results from the derivations conducted above is that
a third possibility is offered in the Gaussian case, according
to which the reassignment process can be carried out on the
basis of only knowledge of the STFT magnitude:

t̂x(t, ω)− t = λ2 ∂

∂t
log(Mh

x(t, ω)) (34)

ω̂x(t, ω)− ω = λ−2 ∂

∂ω
log(Mh

x(t, ω)). (35)

Reassignment operators derived from the STFT magnitude,
such as those already studied in [8], are therefore strictly
equivalent to the traditional operators in the Gaussian case.

Eqs. (34) and (35) also show that the reassignment vector,
defined as rhx(t, ω) = (t̂x(t, ω)− t, ω̂x(t, ω)− ω)t satisfies

rhx(t, ω) =

(
λ2 0

0 λ−2

)
∇ log(Mh

x(t, ω)), (36)

thus generalizing a result given in [1] in the case where λ = 1,
and which was the starting point of the so-called “differential
reassignment”. To be more precise about this point, we can
go back to Eqs. (23) and (24) with λ = 1 and establish that

∂Φh
x

∂t

(
∂

∂t
logMh

x +
t

2

)
+

∂Φh
x

∂ω

(
∂

∂ω
logMh

x +
ω

2

)
= 0.

(37)
Recalling that, thanks to the Bargmann factorization [9], any

STFT with a “circular” (i.e., λ = 1) Gaussian window admits
the decomposition

Fh
x (t, ω) = Fh

x (t, ω) e
−(t2+ω2)/4, (38)

the equation above (37) can be equivalently rewritten as

∇Φh
x.∇ log(Mh

x) = 0, (39)

with Mh
x(t, ω) = |Fh

x (t, ω)| = Mh
x(t, ω) e

(t2+ω2)/4. (40)

It thus appears that isocontours of the phase and of this
modified log-magnitude are orthogonal, which is another way
of characterizing the analyticity of Fh

x (t, ω) when consid-
ered — with an abuse of notation — as a function of the
complex variable z = ω + ȷt. Indeed, it can be directly
observed that, in the case where λ = 1, Eqs. (23) and (24)
can be re-expressed as Cauchy conditions [10] on the pair
(log(Mh

x(t, ω)),Φ
h
x(t, ω)):

∂Φh
x

∂t
(t, ω) =

∂

∂ω
log(Mh

x(t, ω)) (41)

∂Φh
x

∂ω
(t, ω) = − ∂

∂t
log(Mh

x(t, ω)). (42)

Those relations between partial derivatives give an explicit
form to the strong coupling that exists, in the Gaussian case,
between phase and magnitude. In the context of reassignment,
this complements the final outcome of the process (getting
a squeezed distribution) by the way it is achieved (moving
values along trajectories pointing towards local maxima).

In this respect, it is worth mentioning that a new variant of
reassignment has recently been introduced [11]. It is referred
to as “Levenberg-Marquardt reassignment”, in reference to
an adjustable root finding algorithm. This process consists in
moving each value of the spectrogram one step towards the
nearest ridge [12] of the signal, from the point (t, ω) where
it is computed to the point (t̃x, ω̃x) deduced from the second-
order single and mixed derivatives of the STFT phase(

t̃x(t, ω)

ω̃x(t, ω)

)
=

(
t

ω

)
−
(
∇tRh

x(t, ω) + µ I2
)−1

Rh
x(t, ω)(43)

Rh
x(t, ω)=−rhx(t, ω) =

(
∂Φh

x

∂ω (t, ω) + t
2

−∂Φh
x

∂t (t, ω) + ω
2

)
(44)

∇tRh
x(t, ω)=

(
∂Rh

x

∂t
(t, ω)

∂Rh
x

∂ω
(t, ω)

)
(45)

=

∂2Φh
x

∂t∂ω (t, ω) +
1
2

∂2Φh
x

∂ω2 (t, ω)

−∂2Φh
x

∂t2 (t, ω) −∂2Φh
x

∂t∂ω (t, ω) +
1
2

(46)

where µ ∈ IR+ and I2 is the two-dimensional identity
matrix. The extra parameter µ allows to choose the degree
of concentration of the resulting distribution. For example, a
reduced squeezing may be desiderable to increase robustness
of reassigned distributions to random noise. In the Gaussian
case, Eqs. (25)-(28) allow to deduce (t̃x, ω̃x) from the STFT
magnitude:

Rh
x(t, ω)=−

(
λ2 0

0 λ−2

)
∇ log(Mh

x(t, ω)) (47)

∇tRh
x(t, ω)=−

(
λ2 0

0 λ−2

)
∇∇t log(Mh

x(t, ω)) (48)(
t̃x

ω̃x

)
−

(
t

ω

)
=−
(
∇∇t log(Mh

x)− µΛ
)−1 ∇log(Mh

x)

with Λ=

(
λ−2 0

0 λ2

)
(49)

These additional results show that in the Gaussian case, the
Levenberg-Marquardt reassignment moves the spectrogram
values towards the maxima of the log-magnitude.

C. Transients and tones

Using the mixed derivative of the phase has been advocated
by some authors as a way of discriminating between short,
pulse-like transients and long, stationary-like tones [7], [6].
This can be easily formalized within the present framework by
reorganizing Eqs. (27) and (28) so as to get the two equivalent
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expressions:

∂2Φh
x

∂t∂ω
(t, ω) = −λ2 ∂2

∂t2
log(Mh

x(t, ω))−
1

2
(50)

= λ−2 ∂2

∂ω2
log(Mh

x(t, ω)) +
1

2
. (51)

It is clear from Eqs. (50) and (51) that the mixed derivative
of the phase estimates the local curvature of the STFT log-
magnitude along the time and frequency axes, and hence
is an indicator of the time and frequency variations of the
signal content. Considering idealized impulses (x(t) = δ(t))
and pure tones (x(t) = eȷω0t) as limiting examples, a direct
evaluation of either those equations leads to a value of the
mixed derivative tending to +1/2 and −1/2, respectively. The
main interest of this result is that it holds true regardless of
the time-width λ of the STFT (Gaussian) window.

D. STFT phase structure around zeros of the magnitude

In a recent work [13], a recurring pattern of the phase
derivative of the STFT has been observed around the zeros of
the transform. It consists in a singularity with a positive and
a negative peak at those points. Whereas this observation has
been supported by numerical simulations and some analytic
treatments in [13], a simple justification can be derived in
the Gaussian case, from phase-magnitude relationships argu-
ments. Indeed, it follows from Eqs. (41)-(42) that the phase
derivatives around zeros of the STFT are directly controlled
by the derivatives of the log-magnitude at those points. Zeros
of Fh

x(t, ω), Fh
x (t, ω), Mh

x(t, ω) and Mh
x(t, ω) are identical

and, following the argument outlined in [14], the analyticity of
Fh

x (z) = Fh
x (t, ω) guarantees a regular behavior of Mh

x(t, ω)
around any of its zeros zn = ωn+ȷtn. More precisely, the an-
alytic function Fh

x (z) that enters the Bargmann representation
(38) being an entire function of order at most 2, it admits (up
to some possible multiple zeros at the origin) a Weierstrass-
Hadamard factorization given by [15]

Fh
x (z) = eQ(z)

∏
n

(1− z̃n) exp
(
z̃n + z̃2n/2

)
, (52)

where Q(z) is a quadratic polynomial and z̃n = z/zn. It
follows from this factorization that, in the vicinity of its zeros,
the vanishing of the considered STFT is such that

Mh
x(t, ω) ∝ |1− z̃n| ∝

[
(ω − ωn)

2 + (t− tn)
2
]1/2

. (53)

When combined with the logarithms involved in (41)-(42), this
leads therefore to a universal form for the local divergence of
the associated phase derivatives, namely

∂Φh
x

∂t
(tn, ω)

∣∣∣∣
ω∼ωn

∼ (ω − ωn)
−1 (54)

∂Φh
x

∂ω
(t, ωn)

∣∣∣∣
t∼tn

∼ (tn − t)−1. (55)

More generally, according to Eqs. (41)-(42), the complete
structure of phase derivatives around zeros of the magnitude
can be generically approximated by plugging (53) within the
gradient of the log-magnitude. Among other things, this allows
to show that the mixed derivative goes to +∞ when z goes
to zn.

V. CONCLUSION

A complete evaluation of first-order, second-order and
mixed derivatives has been proposed for both the phase and the
(log-)magnitude of a given STFT, leading to equivalent expres-
sions based on additional STFTs with specific windows. This
led to a number of phase-magnitude relationships that may
offer new ways of addressing time-frequency analysis (e.g.,
reassignment) or processing (e.g., transient vs. tone detection)
problems. Some issues are however still left open and would
need further study. For instance, generalizations of the results
discussed in Sections IV-A and IV-D—that are known to hold
beyond the Gaussian case [13]—would be interesting. At a
more fundamental level, it would be worth investigating under
which additional conditions the necessary conditions (23)-(24)
or (29)-(30) would be sufficient for making of a 2D complex
function of time and frequency an admissible STFT.
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