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Abstract. The surrogate data method, classically used for non-linearity tests,
amounts to the use of some constrained noise providing a reference for statistical
testing. It is revisited here as a method for stationarization and this feature
is put forward in the context of non-stationarity testing. The stationarization
property of surrogates is first explored in a time–frequency perspective and used
for devising a test of stationarity relative to an observation time. Then, more
general forms of surrogates are developed, directly in time–frequency or mixed
domains of representation (ambiguity and time-lag domains included), and it is
shown how they allow for other tests of non-stationary features: detection of
the existence of a transient in some noise; assessment of non-stationary cross-
correlations.
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1. Introduction

When dealing with experimental data, making a distinction between stationary and
non-stationary behaviors is often an important pre-processing step that may condition
any subsequent analysis or modeling. Whereas the concept of stationarity (in short,
independence of statistical properties with respect to some absolute time) seems to be
unambiguous, its practical use turns out to be more subtle, with additional implicit
assumptions regarding, e.g., observation scales and a need for statistical criteria of decision
aimed at assessing the significance of observed fluctuations over time (or space) in a
single observation. There have not been many works devoted to this question. In the
statistical literature, stationarity tests have been proposed; see for instance [1, 2]. Some
deal only with restrictive, parametric forms of non-stationarity (e.g., existence of trends,
or variance evolution). Others use some specific assumption on the data (e.g., in [3]–
[5]), or a parametric modeling [6], which is not generally adapted. Some studies have
been focused on the testing of stationarity of a system using a reconstruction of the
dynamics in an embedding state space where the lack of stationarity is associated with
a change of recurrence times (or maps) [7]–[9]. This loss of recurrence is found practical
as the basis of a stationarity test for signals that are outputs of dynamical systems, but
operating the test is not straightforward and it is not easy to adapt it for large classes
of signals. Another group of studies have put forward the concept of local stationarity
of signals. The context is then more the detection of changes and segmentation of the
signal in local stationary pieces [10]–[12]. The questions of testing more general forms of
stationarity, for large classes of signals, have not been studied much. They have recently
been revisited [13, 14], in a framework combining a time–frequency perspective [15] with
a new use of the well-known technique of surrogate data [16, 17]. A main original feature
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of this work is to advocate the use of some empirical ingredient derived from the data to
avoid having to resort to specific assumptions on the kind of stationarity that is tested, or
on the nature of the signals. With the objective of testing stationarity, a basic ingredient
is to introduce some ‘controlled noise’ in the problem so as to empirically characterize,
in a data-driven way, the null hypothesis of stationarity. This will be the role given here
to surrogates. Another original feature, which is the contribution in the last section of
this article, is to propose new methods for directly designing surrogate data in the time–
frequency framework—a possibility that has not been explored previously in the classical
literature on surrogate data.

After recalling the classical method of surrogates, its new interpretation as a
stationarization method is put forward in section 3. In section 4, a stationarity test
framework using surrogates already put forward in [13] is outlined. An application
to experimental data is proposed in section 5. Then, new variations are developed
in section 6, introducing new versions of surrogates in time–frequency domains and
devising methods using them for transient detection and non-stationarity cross-correlation
assessment. A conclusion will then be drawn.

2. Revisiting surrogate data

Surrogates were first introduced by Theiler and co-authors [16] as a complement to
statistical methods that test for non-linearity. This is a technique of resampling that
creates new time series directly by manipulating the data. The leading idea is that, when
facing experimental data and given a specific test of non-linearity of the system producing
the data, one needs to assess statistically that some evidence for non-linearity is not a
mere artifact of random statistical fluctuations. More precisely, one needs to find a way to
obtain statistical knowledge about the null hypothesis of linearity, and derive from that a
significant threshold for its rejection. Surrogate time series are obtained as new samples
constrained to satisfy the null hypothesis, here linearity of the system, and keeping at the
same time other relevant properties of the signals [17, 18].

A simple and elegant version of surrogates satisfying these properties was proposed
in [16]. Second-order statistics of the original signal are kept but all other properties,
specifically higher order statistics, are randomized. Given that correlations are the Fourier
transforms of the spectrum (by the Wiener–Khintchin theorem), it turns out that keeping
the spectrum of the signal (which is the squared amplitude of the direct Fourier transform)
fulfils the constraint. In practice, given the original data x(t), one first takes the Fourier
transform X(f) = (Fx)(f) =

∫
e−i2πtfx(t) dt. The magnitude of X(f) is kept unchanged

while its phase is replaced by a random one ϕf , i.i.d. and uniformly distributed over
[−π, π]. The inverse Fourier transform of this randomized distribution gives a surrogate
time series:

s(t) =

∫
ei2πtf |X(f)| eiϕf df. (1)

This simple procedure for surrogate data is efficient in many situations. This procedure
is illustrated in figure 1. Many variations have been proposed since then. The review [17]
gives a survey of the various surrogate techniques that have been proposed and improved
along the years. For instance, one is aimed at preserving additional constraints such as
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Figure 1. Surrogate. From left to right: original signal, its Fourier transform (top:
phase, bottom: magnitude), the same after phase randomization, the surrogate.

the probability distribution [18]; another one was proposed for multivariate data, keeping
the cross-spectrum of the data [19].

In this work, we propose to revisit surrogates in a less classical way, namely the use
related to the property of stationarity.

3. Stationarization via surrogates

The theoretical definition of stationarity refers to a strict invariance of statistical
properties under all and every time shift. In practical situations, this concept is loosely
relaxed so as to encompass stationarity over some limited interval of observation, and
deterministic stationarity (periodicity) as well as random stationarity. This agrees with
the physical intuition associated with this notion. In order to test this property, the null
hypothesis of stationarity is built directly from the data. More precisely, we want to
construct a family of stationarized time series from the observation, each of them having
a global frequency spectrum that exactly identifies with that of the data, while also
being reproduced locally. Indeed, for the same spectrum density, ‘non-stationary’ signals
differ from ‘stationary’ ones by temporal structures encoded in the spectrum phase. The
simple surrogates of [16] are an adequate solution because one scrambles those temporal
structures and keeps only the time-averaged spectrum as a constraint, hence stationarizing
the signal.

Note that, to our knowledge, there seems to have been no or little consideration of
the stationarizing property of surrogate data and, more precisely, of its possible use in the
context of tests for stationarity. In a converse manner, Keylock studied in [20] surrogates
constrained to retain the non-stationary of the signal, only evoking the possibility of using
surrogates for stationarity testing.

A general framework for exhibiting this stationarizing property is the time–frequency
perspective (see, e.g., [15]). Given a signal x(t), an estimate of the time-varying spectrum
at time t is given by the multitaper spectrogram [21]:

Sx,K(t, f) =
1

K

K∑

k=1

∣∣∣∣
∫ +∞

−∞
x(s) hk(s − t) e−i2πfs ds

∣∣∣∣
2

, (2)

with K short-time windows hk(t) chosen as the K first Hermite functions. With K = 1,
one recovers the well-known spectrogram which is the squared magnitude of the short-term
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Figure 2. Surrogates in time–frequency domains. Top: a non-stationary signal
and two representative surrogates, with their common time-averaged spectrum
on the far right. Bottom: multitaper spectrogram of the signals. One sees that
for surrogates, structures are destroyed and one recovers a time-varying spectrum
that fluctuates around the mean stationary spectrum (displayed on the right).
Spectrograms are color coded (red for large values, blue for zero). Parameters:
K = 5; 512 points in time and frequency.

Fourier transform of x with window h1. The advantage of the multitaper approach is
that it provides a better estimate of the Wigner–Ville spectrum for stochastic processes,
whereas it is a reduced interference distribution for deterministic signals. Indeed, the mean
over K tapers results in reduced estimation variance without some extra time averaging
that would be inappropriate in a non-stationary context. The choice of K was studied
thoroughly in [22]. Here, averaged spectrograms are needed, so K should be larger than
1, but the value is not critical.

Figure 2 illustrates the result of this stationarization via surrogates. For a given
(non-stationary) signal, one sees that its time–frequency distribution of power (estimated
by a multitaper spectrogram) displays a clear organized structure and evolution along
time, here a modulation both in amplitude and frequency. In contrast, a surrogate drawn
from this signal reveals no specific structure in time: its spectrogram shows fluctuations,
yet all seem to be around a mean stationary behavior as seen in the (ensemble-averaged)
spectrogram displayed on the right. These are evidences of stationarity.

4. Stationarity testing with surrogates

Using surrogates to characterize the null hypothesis of stationarity, a test was proposed
in [13] that amounts, in a time–frequency setting, to comparing local features versus global
ones obtained by marginalization over time, relatively to a chosen observation scale. Using
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a time–frequency framework with the objective of probing local ranges of stationarity
is not new; it was used for instance for change detection [10, 11] and segmentation of
stationary regions [12]. Contrasting global and local time–frequency features were also
already present in [23, 24]; the novel feature of [13] is formalizing the idea for hypothesis
testing by combining it with surrogates. First we recall this work and the next section
will extend it and develop variations around this general methodology testing for some
hypothesis related to (non-)stationary behaviors.

The principle of the test is contrasting instantaneous spectral features with global,
time-averaged ones. In practice, multitaper spectrograms are evaluated at N time
positions {tn, n = 1, . . . , N}, with a spacing tn+1 − tn which is a fraction of the width
of the K windows hk(t). The number of tapers K is chosen between 5 and 10; the trade-
off here is between smoothed estimates and the computational cost when K increases (the
cost is linear in K). The method was validated in [13] with K as small as 5. The local
contrast is computed as

c(x)
n := κ (Sx,K(tn, ·), ⟨Sx,K(tn, ·)⟩n=1,...,N) , (3)

where κ is some suitable spectral distance. Studies in [13] have shown that a combination
of a Kullback–Leibler distance with a log-spectral deviation offers a good measure of
contrast in many situations. This distance reads as

κ (G, H) =

(
1 +

∫ ∣∣∣∣log
G(f)

H(f)

∣∣∣∣ df

)
·
∫ (

G̃(f) − H̃(f)
)

log
G̃(f)

H̃(f)
df, (4)

where G̃ and H̃ are normalized versions of the spectrum. The fluctuations in time of these
divergences c(x)

n , computed as variances, give the test statistics:

Θ1 = L
(
c(x)
n , ⟨c(x)

n ⟩n=1,...,N

)
:=

1

N

N∑

n=1

(
c(x)
n − ⟨c(x)

n ⟩
)2

. (5)

The distribution of the null hypothesis is provided by the same exact operation applied
to a collection of the surrogates sj:

{
Θ0(j) = L

(
c(sj)
n , ⟨c(sj)

n ⟩n=1,...,N

)
, j = 1, . . . , J

}
. (6)

From this distribution, a one-sided test is derived where the threshold γ is obtained
empirically from the null hypothesis built by the surrogates, after the specification of
some false alarm percentage:

{
Θ1 > γ : ‘non-stationarity’;
Θ1 < γ : ‘stationarity’.

(7)

Figure 3 illustrates the different steps of the test on some signal. One sees that it works
well in differentiating non-stationary from stationary signals, the surrogates belonging to
the class of stationary signals per construction. Note that a variant of the statistical
test, using a one-class support vector machine instead of equations (3)–(7) to learn the
stationary statistics, was proposed in [14]. More variations of the test are possible; our
focus here is to show how one can adapt this framework to situations where other methods
of surrogates are needed.
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Figure 3. Stationarity test. From top to bottom: signal, multitaper spectrogram,
local contrast cn, and statistics of the test. Left: original (non-stationary) signal;
right: stationary surrogate. Last row: the distribution of Θ0(j) is displayed
in gray (fitted with a Gamma law [13]). One sees that Θ1 (the green line) is
an outlier for the distribution on the left, and is inside the distribution for a
stationary signal (on the right). Parameters: K = 5, J = 50.

5. Application of the stationarity test to experimental data

Let us show how the proposed method applies to experimental data. An example
is taken here from experiments in dynamic light scattering used to investigate the
internal dynamics of a living cell nucleus [26]. The reader is referred to [26] for the
experimental set-up and the biological motivations. The measured raw signal is the
scattered light intensity recorded as a function of time. A specific problem is that
this raw signal display modulations at several timescales at once: slow modulations
over several tens of seconds, short duration bursts around 7 s to 10 s, and fast
fluctuations (see figure 4, top left). Hence, two aims are relevant: (1) automatically
find the timescales of non-stationarity to extract them from the signal; (2) decide
when the remaining fluctuations can be well-modeled by a stationary light scattering
process, so that a well-defined auto-correlation function can be estimated. This auto-
correlation function is indeed interesting because it was observed to be relevant to
the internal dynamics of the nucleus in [26]. Those questions cannot be answered
using stationarity tests from statistical literature (e.g., [1, 2]), due to the complexity
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Figure 4. Test of stationarity of dynamic light scattering. Data from [26]: SHEP
cell in the G1 phase; the acquisition frequency is 103 Hz. Top left: raw scattering
intensity and moving average ⟨I(t)⟩T of the signal for T = 1 s (black) and
15 s (red; baseline B0 removed). Bottom left: result of the stationarity test
for I(t) according to window width (threshold γ for stationarity in black; test
statistics Θ1 in blue). Top right: fluctuations I(t) − ⟨I(t)⟩T , and (renormalized)
fluctuations R(t) (for B0 here). Bottom right: result of the stationarity test for
R(t) (threshold in black), for different fixed baselines B (red: B0−600, blue: B0,
magenta: B0 + 300). Only with the correct one, B0, does the test validate that
the fluctuation is stationary for almost all analysis scales.

of the data that are not amenable to a priori modeling. Neither is it a question of
segmenting the data in stationary pieces, but more of finding hierarchical scales of non-
stationarity.

First, the stationarity test described in the previous section is applied to a signal
of dynamic light scattering observed for 90 s (SHEP cell in the G1 phase; acquisition
frequency is 103 Hz). The width of the analysis window in equation (2) is changed
from 1 to 35 s and the stationarity test is repeated for each width. Hence this analysis
takes the meaning of a stationarity test relative to the timescales of representation (and
observation). The result is reported in figure 4, left column. There appear two regions
of non-stationarity: one for scales larger than 32 s, and one from 6 to 15 s roughly. This
validates an empirical conclusion of [26]: there exist slow modulations in the signal for
scales around 10 s, and for scales larger than 30 s.

doi:10.1088/1742-5468/2009/01/P01001 8

http://dx.doi.org/10.1088/1742-5468/2009/01/P01001


J.S
tat.M

ech.
(2009)

P
01001

Stationarization via surrogates

The second step is then to assess the stationarity of the fluctuating scattering signal,
once the modulations are removed. For that, the signal is normalized as

R(t) =
I(t) − ⟨I(t)⟩T
⟨I(t)⟩T − B

, (8)

where ⟨I(t)⟩T is the moving average of I(t) over T , and B is the baseline of the signal.
The smoothing time T is fixed to 1 s here, so as to be certain that the non-stationarity
evidenced by the first part of the analysis is accounted for in the slow modulation ⟨I(t)⟩T .
Unfortunately, the correct value of the baseline, B0, is not known beforehand. The
stationarity test gives the possibility of estimating it. Indeed, the property of stationarity
is recovered for the fluctuations I(t) − ⟨I(t)⟩T only if normalized properly by the correct
instantaneous mean intensity ⟨I(t)⟩T−B0. In figure 4, right column, we show how choosing
the correct baseline B0 provides a proper stationary signal for almost all widths of the
analysis window (i.e., the representation timescale), whereas for an incorrect baseline,
non-stationarity is still detected.

This example shows the potentiality of the proposed method as a tool for empirical
data analysis. Here, the method was found to be efficient for ascertaining the existence
of hierarchical scales or modulations, and disentangling their effects.

6. Surrogates in more general time–frequency contexts

Simple classical surrogates are often sufficient for probing the null hypothesis of
stationarity. However, there exist situations where more refined schemes for surrogates
are needed. In a sense, as seen in section 3, drawing surrogates amounts to keeping
only the average spectrum of the original signal and imposing no further constraint. In
other contexts, here for transient detection or cross-correlation analysis, this method
is outperformed by ones acting directly in a time–frequency domain, so as to preserve
features apparent in such a representation beside the averaged, marginal spectrum. The
purpose of the current section is specifically aimed at defining constraints directly in the
time–frequency plane and proposing surrogate methods that satisfy them.

6.1. Time–frequency surrogates

Time–frequency distributions are only one possible representation of the evolution in
time of the energetic content of a signal, as it is well known from general lectures on
the subject (e.g., the reader is referred to [15]). For instance, there is equivalence of the
content displayed in three of the usual domains of representation:

(i) the time-lag domain, where the correlation is usually defined: Cx(t, τ) = E{x∗(t −
τ/2)x(t + τ/2)};

(ii) the time–frequency domain, which is the Fourier transform (over lag τ) of
the correlation, providing the time-varying Wigner–Ville spectrum: Wx(t, f) =∫

E{x∗(t − τ/2)x(t + τ/2)} e−i2πft dτ ;

(iii) the ambiguity domain, which is the Fourier transform of correlation over the time
variable t: Ax(ξ, τ) =

∫
E{x∗(t − τ/2)x(t + τ/2)} ei2πξt dt.

doi:10.1088/1742-5468/2009/01/P01001 9
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Equivalent definitions exist for the cross-correlations, time-varying cross-spectrum and
cross-ambiguity, by changing the first x in the other signal y. Classical surrogates
manipulate the direct data in a linear way. We propose here to build surrogates in the
2D domains, via a direct phase randomization of the 2D representation.

For instance, if one needs to test for the significance of some feature of Wx in the time–
frequency domain, the adaptation mutatis mutandis of the surrogate technique reads as
follows: (i) do the (2D) Fourier transform of Wx (or its estimate through the multitaper
spectrogram (2)) which is the ambiguity domain; (ii) keep its amplitude and replace the
phase by an admissible phase, obtained as the phase of a realization of the ambiguity
function of a white noise; (iii) come back into the time–frequency domain by inverting
the Fourier transform. The constraint preserved in this method is the magnitude of the
ambiguity, which is known to be associated with the correlations and the geometry of the
time–frequency distribution [15].

A second constraint is meaningful for representations in the time–frequency domain:
as it is of energetic, or quadratic, nature, one may expect it to satisfy a positivity
constraint. The theoretical study of the positivity is beyond the scope here; however
it is worth mentioning that the Wigner–Ville spectrum does not satisfy it [15]. This an
additional motivation for the use of a smoothed estimate such as spectrograms which are
always positive. For a fair comparison with spectrograms, the additional constraint for
the surrogates is the positivity of the resulting representation. This is not ensured by
the previous procedure. Following the lead of [17, 18], we propose an iterative method
that was first presented in [25], which asymptotically corrects the representation toward
positivity. Namely, the iterative algorithm from step n to step n+1 is sketched as follows:

(i) take the positive part (S(n)(t, f))+ of the time–frequency surrogate;

(ii) compute the ambiguity under positivity constraint: Ã(n)(ξ, τ) = F−1
t Ff(S(n)(t, f))+;

(iii) form the new ambiguity as A(n+1) = |Ã(n)| ei(arg A(n)+δϕ(n)), hence keeping the
magnitude and adjusting the phase by some δϕ(n) (more on this later on);

(iv) compute the new time–frequency surrogate: S(n+1)(t, f) = FξF−1
τ (A(n+1)(ξ, τ)),

until the positivity constraint is approximatively satisfied (given an a priori threshold
on the negative amount in S(n+1)(t, f)). The correction in phase may be operated
in two different manners. The first one is a gradient descent method where δϕ(n) =
λ(arg Ã(n) − arg A(n)) (with some λ < 1); this results in convergence of the iterations. A
second method is to use a random correction of the phase by adding δϕ(n) = λn arg(Aw(n))
where w(n) is a newly synthesized white noise at step n and λ < 1. This method is similar
to a simulated annealing convergence and is found to perform particularly well in practice.

6.2. Detection of transients

The aforementioned method for synthesizing time–frequency surrogates constrained in
the ambiguity domain and positive is used with the objective of transient detection.
The question is how to assess the level of significance of a ‘time–frequency’ patch in
a fluctuating background. Testing against a null hypothesis of classical surrogates is
inappropriate because, as is apparent in figure 5, the extent of time–frequency patches
depends only on the marginal spectrum. This is more a characteristic of a specific
geometry in the time–frequency domain, which is encoded in the ambiguity domain.
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Figure 5. Transient detection. The detection test is applied to a chirp embedded
in a white Gaussian noise with several SNR (−24, 0 and 24 dB). From top to
bottom: TFD of the signal with noise, TFD surrogate with positivity constraint;
statistics for the test (Rényi entropy of order 3): (blue) vertical bar for the signal,
(black) histogram for the surrogates.

A test for the existence of a statistically significant transient is designed following the
structure of the test of stationarity. The test statistics used here is the Rényi entropy
of the time–frequency distribution [27]. Indeed, the entropy is relevant as a measure for
estimating signal complexity and randomness in the time–frequency plane. It also roughly
counts the number of components in a signal. Entropy of order α > 0 of a time–frequency
distribution S is defined as follows:

Rα(S) =
1

1 − α

∫ ∫ (
S(t, f)∫ ∫

S(t, f) dt df

)α

dt df. (9)

Note that Shannon entropy appears as α → 1. For a pure random signal, one expects
a high entropy value; if a signal contains a transient, the resultant organization in the
time–frequency domain should induce a smaller entropy.

An example of the result from the proposed detection test is shown in figure 5. A
transient signal is embedded in white Gaussian noise for several SNR. The null hypothesis
of the test is obtained using a collection of positive, time–frequency surrogates from the
original noisy data. The statistics Θ is the Rényi entropy of order 3, which was found
suitable (and numerically stable) in [27]. One sees that the chosen statistics is sensitive
to the existence of a transient when it appears meaningfully above the fluctuation level

doi:10.1088/1742-5468/2009/01/P01001 11
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(SNR of 0 or 24 dB). For SNR = −24 dB, the transient is not significant in the noise and
the test tells us so.

6.3. Detection of non-stationary cross-correlations

A second variation on non-stationary tests is the assessment of the existence and evolution
of cross-correlations in multivariate data. Here the principle is mapped out from the test
of stationarity and relies on a contrast between the local cross-correlations and the global
(time-averaged) ones. We then compare the result obtained with the corresponding one
using a collection of surrogates.

The difficulty here is selecting a relevant null hypothesis. Three candidates are
compared in the following. First, individual and independent surrogates of the signals
can be used, hence preserving only the marginal spectrum of each signal. Second, one
may rely on the multivariate formulation of original surrogates for a signal, that keeps
the marginal cross-spectrum [19], and hence the averaged cross-correlations. Despite this
improvement, it does not keep the ‘geometrical’ structure of the quadratic distribution
in the time-lag plane. The third proposition is to directly design time-lag surrogates for
the cross-correlations, using the method of section 6.1 via a Fourier phase randomization
of the 2D cross-correlations. Note that in this case, positivity is neither necessary nor a
relevant constraint.

The chosen local measure of contrast is here the kurtosis of the divergence between
local and averaged cross-correlations. Then, the variance of this contrast gives the
statistics for the test. Figure 6 shows the result of the procedure for the correlated signals
displayed at the top of the figure, depending on the type of surrogate that is used for the
null hypothesis. One sees that independent or multivariate surrogates do not perform well
for discerning the existence of significant cross-correlation patches. In contrast, 2D time-
lag surrogates, preserving the mean geometric structure in the time-lag domain appear
to provide a more relevant null hypothesis. This illustrates the potential interest of these
2D surrogates.

7. Conclusion

Time–frequency surrogates are introduced here as noises that are controlled and
constrained to follow several properties of a given signal: the time-averaged spectrum for
usual surrogates, or other constraints such as on the magnitude in the ambiguity domain
and positivity are accessible by direct synthesis of 2D surrogates. The interesting property
of stationarization that surrogates possess was stressed and its usefulness was illustrated
using several variants of statistical testing for non-stationary features. This work is a step
toward the use of these specific controlled noises in the context of non-stationary analysis.

A final word is that all stationarization techniques considered in this work involve
some randomization, here in the Fourier domain of the signal or its representation in
a suitable domain. An open issue in this use of controlled noise as an ingredient for
statistical testing is the question of possible relationships with other resampling plans, such
as bootstrap, jackknife, and cross-validation ones [28]. This question surfaces naturally
and will be addressed in future works.
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Figure 6. Non-stationary cross-correlations. Top (from left to right): original
signals with non-zero cross-correlation (displayed underneath: mainly a time-
varying sinusoidal delay), the spectrogram of one of them, two independent
surrogates and the spectrogram of one of them. Second line: cross-correlations
of original surrogate and of surrogates (independent, multivariate or in the time-
lag domain from left to right). Third line: local contrast (measured here with
kurtosis of the difference between the estimate of the cross-correlation and the
time-averaged one). Bottom: PDF of the test statistics Θ0 from the different
versions of surrogates, and the statistics Θ1 for the original signals (vertical bar).
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