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Abstract. The Lamperti transformation defines a one-to-one correspondence between
stationary processes on the real line and self-similar processes on the real half-line. Al-
though dating back to 1962, this fundamental result has further received little attention
until a recent past, and it is the purpose of this chapter to survey the Lamperti trans-
formation and its (effective and/or potential) applications, with emphasis on variations
which can be made on the initial formulation. After having recalled basics of the trans-
form itself, some results from the literature will be reviewed, which can be broadly
classified in two types. In a first category, classical concepts from stationary processes
and linear filtering theory, such as linear time-invariant systems or ARMA modeling,
can be given self-similar counterparts by a proper “lampertization” whereas, in a sec-
ond category, problems such as spectral analysis or prediction of self-similar processes
can be addressed with classical tools after stationarization by a converse “delampertiza-
tion”. Variations and new results will then be discussed by investigating consequences
of the Lamperti transformation when applied to weakened forms of stationarity, and
hence of self-similarity. Different forms of locally stationary processes will be consid-
ered this way, as well as cyclostationary processes for which “lampertization” will be
shown to offer a suitable framework for defining a stochastic extension to the notion of
discrete scale invariance which has recently been put forward as a central concept in
many critical systems. Issues concerning the practical analysis (and synthesis) of such
processes will be examined, with a possible use of Mellin-based tools operating directly
in the space of scaling data.

1 Introduction

In a seminal paper published in 1962 [19], J.W. Lamperti introduced key con-
cepts related to what is now referred to as self-similar processes. Among other
important results, he first pointed out the one-to-one connection which exists
between self-similar processes and stationary processes, via a transform which
essentially consists in a proper warping of the time axis. This result has often
been quoted in the literature (e.g., in [3], [30] or [34]), but rarely used and even
discussed per se. Notable exceptions are the contributions of Burnecki et al.
[8] who proved unicity, and of Nuzman and Poor [25,26] who explicitly (and
extensively) took profit of it for linear estimation issues concerning fractional
Brownian motion (fBm).

The transform that Lamperti initially pushed forward in 1962 has, since then,
been rediscovered from time to time, under different forms. For instance, Gray
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and Zhang re-established in [17] a weakened form of Lamperti’s theorem, upon
which they based a discussion on specific classes of self-similar processes, referred
to as multiplicative stationary processes. From a very close (yet independent)
perspective, Yazici and Kashyap advocated in [37] the use of a transform—which
indeed identifies to Lamperti’s—for constructing related classes of self-similar
processes referred to as scale stationary processes, a concept which had also
been briefly discussed and commented in [12]. More recently, Vidacs and Virtamo
proposed in [35,36] an original ML estimation scheme for fBm parameters, which
basically relies on a geometrical sampling of the data, i.e., on a pre-processing
guaranteeing a stationarization in the spirit of the Lamperti approach.
Recognizing both the importance of the Lamperti transform and the spar-
sity of its coverage in the literature, the purpose of this text is to offer a guided
tour of existing material in a unified form, and also to discuss new extensions.
More precisely, the text is organized as follows. In Section 2, basics of station-
arity and self-similarity are first recalled, and the Lamperti transform is intro-
duced. The ability of this transform to put self-similar and stationary processes
in a one-to-one correspondence is then proved, and a number of consequences
are detailed, with respect to covariances, spectra, long-range dependence and
scale-covariant generating systems for self-similar processes. Some examples and
applications are dealt with in Section 3, including either stationary processes
(random phase tones, Ornstein-Uhlenbeck, ARMA) and their self-similar coun-
terparts, or self-similar processes (fractional Brownian motion, Euler-Cauchy)
and their stationary counterparts. Section 4 is then devoted to variations on the
original approach, obtained by applying the Lamperti transform to weakened
forms of stationarity or self-similarity. Following a brief introduction of relevant
concepts such as multiplicative harmonizability or scale-invariant Wigner spec-
tra, special emphasis is put on the newly introduced notion of stochastic discrete
scale invariance which is shown to be the Lamperti image of cyclostationarity.

2 The Lamperti transformation

2.1 Stationarity and self-similarity

The notion of stationarity is basic in the study of many stochastic processes.
Heuristically, the idea of stationarity is equivalent to that of statistical invariance
under time shifts, and this concept has proven most useful in many steady-state
applications. From a different perspective, scale invariance (or self-similarity) is
also ubiquitous in many natural and man-made phenomena (landscape texture,
turbulence, network traffic, . ..). The underlying idea is in this case that a func-
tion is scale invariant if it is identical to any of its rescaled versions, up to some
suitable renormalization in amplitude.

To make these ideas more precise, let us first introduce two basic operations.

Definition 1 Given some number 7 € IR, the shift operator S, operates on
processes {Y (t),t € R} according to:

(SY)t) =Y+ 7). (1)
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Definition 2 Given some numbers H > 0 and A > 0, the renormalized dilation
operator Du,x operates on processes {X (t),t > 0} according to:

(DrAX)(t) == A\"H X(\b). 2)

Using these operators in the context of stochastic processes, and introducing

the notation “%” for equality of all finite-dimensional distributions, the defini-

tions of stationarity and self-similarity follow as:

Definition 3 A process {Y (t),t € R} is said to be stationary if

(S Y)(1),t e R} £ {Y(t),t € R} (3)
for any T € R.

Definition 4 A process {X (t),t > 0} is said to be self-similar of index H (or
“H-ss”) if
{(DraX)(8),1> 0} £ {X(2),¢ > 0} (4)

for any A > 0.

Such an equality holds in the usual sense for homogeneous functions propor-
tional to ¢ > 0, and it is useful to remark that, whenever {X(¢),t > 0} is
H-ss, then the modulated process {Xg(t),t > 0} such that

X (t) =t X(t) (5)

is (H + H')-ss.

Although Definition 4 puts no restriction on H, a limited range of values
may result from specific constraints. In particular, mean-square continuity and
non-degeneracy lead to the usually considered range 0 < H < 1 [30].

2.2 The transform

Definition 5 Given some number H > 0, the Lamperti transform Ly operates
on processes {Y (t),t € R} according to:

(LaY)(t) :=t7 Y (logt),t > 0, (6)

and the corresponding inverse Lamperti transform EI_Jl operates on processes
{X(t),t > 0} according to:

(L X)(t) :=e " X(e!),t € R. (7
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The Lamperti transform is invertible, which guarantees that (L' LgY)(t) =
Y (t) for any process {Y(t),t € R}, and (LaLy X)(t) = X (t) for any process
{X(t),t > 0}. We can however remark that, given two different parameters H;
and H,, we only have

(Ll Y)(t) = e -y (1), (8)
and, in a similar way, it is immediate to establish that

(L, LG X)(t) =t~ X (t). (9)

2.3 From stationarity to self-similarity, and back

Lemma 1 The Lamperti transform (6)-(7) guarantees an equivalence between
the shift operator (1) and the renormalized dilation operator (2) in the sense
that, for any A > 0:

[,I_{LDH,)\ﬁH = Slog,\- (10)

Proof — Assuming that {Y'(¢),t € IR} is stationary and using the Definitions 1,
2 and 5, we may write

(L Dualu?)(t) = (L' Dup) 7 ¥ (logt))
= L7 AVHO)HY (log At))
=e H(sHY (log As))s—et
=Y(t+1log))
= (Si0gAY) ().

O

This observation is the key ingredient for establishing a one-to-one connection
between self-similarity and stationarity. This fact is referred to as Lamperti’s
theorem and reads as follows [19] :

Theorem 1 If{Y (t),t € R} is stationary, its Lamperti transform {(LgY)(t),t >
0} is H-ss. Conversely, if {X(t),t > 0} is H-ss, its inverse Lamperti transform
{(£4'X)(t),t € R} is stationary.

Proof — Let {Y(t),t € IR} be a stationary process. Using Definition 3 and
Lemma 1, we have for any A > 0,

{Y(t),t e R} 4 {(Si0g2AY)(t) = (L' DALY (t),t € R} (11)

and it follows from Definition 4 that the Lamperti transform X (¢) := (LgY)(t)
is H-ss since J
{X(8),t >0} = {(DaX)(t),t > 0} (12)
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for any A > 0.
Conversely, let {X(t),t > 0} be a H-ss process. Using Definition 4 and
Lemma 1, we have for any A > 0,

{X(1),t > 0} £{(DupX)(t) = (LrSiogr Ly X)(#),t > 0} (13)

and it follows from Definition 3 that the inverse Lamperti transform Y (¢) :=
(L7 X)(t) is stationary since

{(Y(t),t € R} £ {(SigaY)(t),t € R} (14)
for any A > 0.
O

The Lamperti transform establishes therefore a one-to-one connection be-
tween stationary and self-similar processes, and it is worth noting that it is in
fact the unique transform to allow such a connection [8]. A graphical illustration
of this one-to-one correspondence is given in Figure 1.

Brownian motion
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Fig.1. A graphical illustration of Lamperti’s theorem — Whereas sample paths of
(nonstationary and self-similar) Brownian motion (top) reveal a time-dependence of
variance as a square-root function of time, their “lampertized” versions (bottom)
essentially lie within a band of constant width, in accordance with the stationarity
properties induced by the inverse Lamperti transform.
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Using (9), one can remark that, if {Y(¢),¢ € IR} is stationary, the transformed
process {(LI_{i,CHlY)(t),t € IR} cannot be stationary, unless H; = H,. In a
similar way, making use of the remark on processes as in (5), the composition
rule given in (8) shows that, if {X(t),t > 0} is H-ss, the transformed process
(L, Lt X)(t) is (H + Hy — Hy)-ss.

2.4 Consequences

Covariances and spectra As a direct consequence of Theorem 1, statistical
properties of self-similar processes can be inferred from those of their Lamperti
counterparts, and vice-versa. In particular, if we restrict to zero-mean second-
order processes and if we introduce the notation Rx(t,s) := IEX (¢)X (s), it is
straightforward to establish that, for any process {X(t),t > 0}, the covariance
function of its inverse Lamperti transform is given by:

RL;le(t, S) = eiH(t+s) Rx (et, es) (15)

for any ¢, s € R.
Conversely, for any process {Y(t),t¢ € IR}, the covariance function of its
Lamperti transform reads

R.,v(t,s) = (ts)? Ry (logt,logs) (16)

and, if Y (¢) happens to be stationary, we then have Ry (¢,8) = vy (t — s) (with
~y(.) a non-negative definite function), leading to:

Ry (t,s) = (ts)™ vy (log(t/s)). (17)
Two corollaries to Theorem 1 are therefore as follows:

Corollary 1 Any second-order H-ss process {X(t),t > 0} has necessarily a
covariance function of the form

Rx(t,s) = () ca(t/s) (18)
for any t,s > 0, with cg(exp(-)) a non-negative definite function.

In the specific case where H = 0, we recover this way the class of “mul-
tiplicative stationary processes” introduced in [17], whereas the more general
factorization given by (18) has been pointed out, e.g., in [12] and [37].

Corollary 2 Given a second-order H-ss process {X (t),t > 0}, the power spec-
trum density of its stationary counterpart (L' X)(t) is the Mellin transform of
the scale-covariant function cg given in Eq. (18).

Proof — Starting from (15) and using (18), it is immediate to establish that

Ry (t+7/2,t = 7/2) = cr(€"),
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from which it follows that the power spectrum density T’ ot x (f) of the inverse
Lamperti transform of X (t) is such that
+00
I‘Lglx(f) = RLI—{IX(t+T/2,t—7'/2)671.2”de7'

— 00

~+o0 .
= / cu(e) eI dr

—0o0

“+oo

= / cu ()6~ db
0

= (Meg)(i2n f),

with
“+oo

(MX)(s) == X ()t~ dt (19)
0

the Mellin transform [5].
O

Long-range dependence In the case of stationary processes, long-range de-
pendence (LRD), or long-memory, is usually associated with a slow power-law
decay of the correlation function [3] but, more generally, it may also be defined
as follows:

Definition 6 A second-order stationary process {Y (t),t € IR} is said to be
long-range dependent if its normalized correlation function

Fy (1) ==y (1)/7v(0) (20)

s not absolutely summable:

+oo
/0 Ay (7)) dr = oo. (21)

In the case of nonstationary processes, a generalization of this definition can
be given as follows [1,23]:

Definition 7 A second-order nonstationary process {X(t),t > 0} is said to be
LRD if its normalized covariance function
5 RX (ta 8)
Rx(t,s) := ;
X8 R, ) R, ) 72

18 such that

+oo
/ B (£t + 7)|dr = 0o (23)
0

for any fized t.
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Starting from (17), we get that

Reuy(t,s) = Ay (log(t/s)), (24)

and it follows from a direct calculation that a (nonstationary) H-ss process
{X(t),t > 0} will be LRD in the sense of Definition 7 if and only if its (stationary)
Lamperti counterpart is such that

/ 5.1 x (log 7)| dr = oo. (25)
1

Conversely, a stationary process {Y (t),t € IR} will be LRD in the sense of
Definition 6 if and only if its nonstationary (H-ss) Lamperti counterpart is such
that

/Oo Re,y (£, M) dA/A = o0, (26)

or, equivalently (since, from (24), we have R,y (t, M) = R,y (t,t/)) for any
A>0),

/1 R,y (M, 8)] dV/A = oo. (27)
0

Scale-covariant systems In classical linear system theory, it is well-known
that linear filters are those linear operators H which are shift-covariant, i.e.,
such that

HS: =SH (28)

for any 7 € IR. By analogy, it is natural to introduce systems which preserve
self-similarity, according to the following definition:

Definition 8 A linear operator G, acting on processes {X (t),t > 0}, is said to
be scale-covariant if it commutes with any renormalized dilation, i.e., if

GDu,x = DuG (29)
for any H >0 and any A > 0.

Proposition 1 If an operator G is scale-covariant, then it necessarily acts on
processes {X (t),t > 0} as a multiplicative convolution, according to

+oo
@X)0 = [ alt/s) X(s) s/, (30)

Proof — Let k(t, s) be the kernel of some operator G acting on processes { X (t),t >
0}. We then have, for any ¢ > 0,

+oo
(GDEAX)(t) = /0 k(t,s) A2 X (\s) ds

=)\ /m k(t,s/\) X (s)ds
0
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and oo
(D AGX)() = A-H / k(M 5) X (s) ds.
0

It follows that imposing the scale-covariance of G for any process X (t) (in
the sense of Definition 8) amounts to equating the two above expressions, and
thus to require that

k(t,s) =k(t/A, s/A)/A (31)
for any t,s > 0 and any A > 0. In particular, the specific choice A = s leads to
k(t,s) = k(t/s,1)[s =: g(t/s)/s, (32)
which concludes the proof.
O

Corollary 3 Scale-covariant operators preserve self-similarity.

Proof — Let (GX)(t) be the ouput of a scale-covariant system whose input
{X(t),t > 0} is H-ss. We then have from (4) and (29):

{(DrAGX)(t) = (GDAX)(2),t > 0} £ {(gX)(1),¢ > 0}, (33)
thus guaranteeing that {(GX)(t),t > 0} is H-ss.
O

Corollary 4 The Lamperti transform maps linear filters onto scale-covariant
systems.

Proof — The output {Z(t),t € R} of a linear filter 7 of impulse response h(.)
is given by the convolution

+oo
Z(t) == (HY)(t) = / h(t —s)Y(s)ds (34)
for any input process {Y (¢),t € IR}. Using (5), we may write
(LuZ)(t) =tH Z(logt)

=4t /+Ooh(logt—s)Y(s)ds
-
=l / h(log(t/v)) Y (log v) dv v
0
+oo
=/0 (t/v)™ h(log(t/v)) (LaY)(v) dv/v

_ / " Cah)/6) (La ) () dvfo
0
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and it thus follows that, when “lampertized,” the input-ouput relationship (34)
is transformed into

“+oo
(CaZ) () = / (Cah)(t/s) (CrrY)(s) ds/s, (35)

taking on the form of a scale-covariant system, according to (30).
O

Fourier transforming (34) leads to a product form for the input-output rela-
tionship of linear filters in the frequency domain:

(F2)(f) = (Fr)(F) (FX)(F), (36)

with F the Fourier transform operator, defined by

(FX)(f) := o X (t) e~ 27 Ft gt (37)

—0o0
In a very similar way, Mellin transforming (35) leads to a product form too,
as expressed by:

MLy Z)(s) = (MLyh)(s) (MLEY)(s). (38)

Continuing along this analogy, H-ss processes can be represented as the out-
put of scale-covariant systems, as stationary processes are outputs of linear fil-
ters. More precisely, stationary processes {Y(t),t € IR} are known to admit the
Cramér representation [28]

+oo
= [ ertiag(s), (39)

o0

with spectral increments d&(f) such that

Ed¢(f)dé(v) = 6(f — v) dSy (f) dv, (40)

and dSy (f) = Ty (f)df in case of absolute continuity with respect to the
Lebesgue measure. Stationarity being preserved by linear filtering, stationary
processes admit an equivalent representation as in (34):

+oo

V() = / h(t — 5) dB(s), (41)

—0o0

with IEdB(t)dB(s) = 02 §(t — s) dt ds, and therefore:

dSy (f) = o* [(Fh)(f)I df- (42)
Applying the Lamperti transformation to (41) ends up with the relation

+oo
(CaY)(t) = / (Cah)(t/5) (CdB)(s)]/s. (43)
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Comparing with (35), this corresponds to the output of a linear scale-covariant
system whose input is such that

E(LxdB)(t)(LrdB)(s) = IEt? dB(logt) s” dB(log s)
= o2 (ts)H 6(log(t/s)) dt ds
= o2 L §(¢ — 5) dt ds,

and it follows that

Proposition 2 Any H-ss process {X (t),t > 0} can be represented as the output
of a linear scale-covariant system of impulse response g(.):

“+oo
X(t) = / o(t/s)dV(s)/s, (44)

with
EdV (t)dV (s) = o® t*# 71 §(t — s) dt ds. (45)

Corollary 5 Given the representation (44), the covariance function of a H-ss
process {X (t),t > 0} can be expressed as in Eq. (18), with:

+oo
ca(\) =a* 2 /0 g(6) g(\g) do /o> 1, (46)

Corollary 6 Given the representation (44), the power spectrum density of the
stationary counterpart {(L5'X)(t),t € R} of a H-ss process {X(t),t > 0} is
given by

o1y (f) = 0® [(Mg)(H +i2n f)|*. (47)

One can remark that this result is in accordance with the fact that the Mellin
transform of a function g can be equivalently expressed as the Fourier transform
of its inverse Lamperti transform according to :

(FLE 9)(f) = (Mg)(H +i2nf). (48)

3 Examples and applications

Examples and applications of the Lamperti transformation can be broadly classi-
fied in two types. One can for instance be interested in “lampertizing” (according
to (6)) some specific stationary processes {Y (¢),t € IR} and constructing this
way classes of specific self-similar processes. From a reversed perspective, one
can use the inverse transform (7) for “delampertizing” self-similar processes and
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making them amenable to the large body of machineries aimed at stationary pro-
cesses. In this case, some desired operation 7 on H-ss processes {X(t),t > 0}
can rather be handled via the commutative diagram

2

X(t) — (TX)(®)
| T
inverse Lamperti Lamperti (49)
3 |

La X)) — (TLE X))
according to which the overall operation is decomposed as
T=LuTLy, (50)

where the companion operation 7 acts on stationary processes.

3.1 Tones and chirps

Besides white noise, maybe the simplest example of a stationary process is
Yo(t) := a cos(2m fot + ¢), (51)

with a, fo > 0 and ¢ € U(0,27). “Lampertizing” such a random phase “tone,”
i.e., applying (6) to (51), leads to

Xo(t) == (LuYy)(t) = at™ cos(2nfologt + ). (52)

The transformed process takes therefore on the form of a (random phase)
“chirp,” in the sense of, e.g., [9,22]. One can remark that Xo(t) = Re{a e’ m(t)},
with s = H +i27 fo and m,(t) := t° the basic building block of the Mellin trans-
form (see Figure 2).

3.2 Fractional Brownian motion

If we consider second-order processes {X (t),¢t > 0} which are not only H-ss but
also have stationary increments (or, “H-sssi” processes), it is well-known that
their covariance function is necessarily of the form

0.2

Rx(t,s) = o (B + 7 — |t — s?H) | (53)
with o2 := TEX2(1).

If we further assume Gaussianity and if we restrict to 0 < H < 1, we end
up with the only family of fractional Brownian motions (fBm) By (t) [20]. This
offers an extension of ordinary Brownian motion B(t) = By/2(t), known to have
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T
AWV AVVY VY

chirp

Fig. 2. Tones and chirps — The Lamperti transform of a pure tone (top) is a “chirp”
(bottom) with a power-law amplitude modulation and a logarithmic frequency mod-
ulation. Said in other words, the Lamperti transform maps the Fourier basis onto a
Mellin basis.

uncorrelated increments, to situations where increments may be correlated (neg-
atively if 0 < H < 1/2 and positively if 1/2 < H < 1).

Since fBm is H-ss, its covariance function (53) can be factorized according
to (18), with

0.2

2
By application of (15) to (53), the covariance function of the inverse Lamperti
transform {Yg(t) := (L' Bm)(t),t € R} expresses as

ca(A) = = M+ 277 (1 - 1= AP7)]. (54)

2
RYH(t,S) — e—H(H—S) % (eZHt + €2Hs _ |et _ es|2H) , (55)

and it is immediate to reorganize terms so that vy, (7) := Ry (t,t 4+ 7) reads:
Yy, (1) = 0 (cosh(H|r|) — 227~ [sinh(|7|/2)]*") . (56)

This stationary covariance function is plotted in Figure 3, as a function of
the Hurst parameter H. If we let H = 1/2 in (56), we readily get

Vyi () =07 e T2, (57)
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in accordance with the known-fact that the (Ornstein-Uhlenbeck) process whose
stationary covariance function is given by (57) is the Lamperti image of the ordi-
nary Brownian motion [30]. The stationary counterpart of fBm appears therefore
as a form of generalized Ornstein-Uhlenbeck (gOU) process.

gOU process (Lamperti-transformed fBm)

QTR

N

N
‘\‘:\\‘\\\‘“
N

autocorrelation

S
AR TR
W :
oy S0y,

LT
DALY
e S

20 0 Hurst parameter

delay

Fig. 3. Stationary covariance function of generalized Ornstein-Uhlenbeck processes
— “Delampertizing” fractional Brownian motion (fBm) ends up with a stationary
process, referred to as a generalized Ornstein-Uhlenbeck (gOU) process, whose covari-
ance function is plotted here as a function of the Hurst parameter H. It is worth
noting that this covariance decays exponentially fast for any H € (0,1), indicating
that gOU is always short-range dependent.

As a remark, it is worth noting that resorting to fBm increments rather
than to the self-similar process itself guarantees stationarity (and, hence, eases
further processing), but at the expense of facing long-range dependence (LRD)
when 1/2 < H < 1. In contrast, it follows from (56) that

2
Yy (1) ~ G (717 4 2He (T ox e min(LIHOT (58)

when 7 — oo, which means that the stationary counterpart of fBm is indeed
short-range dependent for any H € (0, 1), since its correlation function decreases
exponentially fast at infinity. This result is nevertheless consistent with the fact
that, according to (25), fBm itself is LRD in the sense of Definition 7 for any
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H € (0,1) since, for any 7,

/ Fyg (7)€ dr ~ / elt~minlHA=HIT g7 — o0, (59)

* Tx

As shown in [25,26], using the Lamperti transformation in the context of lin-
ear estimation of self-similar processes makes possible a number of manipulations
(such as whitening or prediction) which otherwise prove much more difficult to
handle. Indeed, it first follows from (58) that the power spectrum density of the
(stationary) Lamperti counterpart of fBm reads

0.2

TH 4 f?

r((1/2) +i2rf)|?
I'(H +i2rf)

Ty (f) (60)

Given this quantity, it becomes possible to get its spectral factorization and
to write Ty, (f) = |®4(f)|?, with &, (f) the transfer function of a causal filter.
(One can remark that, instead of the exact fBm, we could have considered its
(Barnes-Allan [2]) version {Bg(t),t > 0}, with

- 1 t
Bp(t) = =—————= t—s)T=124B(s). 61
wt) = T [, ¢ (5 (61)
This corresponds to an H-ss process (with nonstationary increments) that
admits a representation as in (44), with

_ v \Ho12 _
(where u(.) stands for the unit step function) and, as first established in [12],
it follows from Corollary 6 that the Lamperti counterpart {YV(t),t € IR} of
{By(t),t > 0} has a power spectrum density which turns out to exactly identify
with (60).)

Considering the above-mentioned factorization of (60) and using representa-
tions of H-ss processes as given by Proposition 2, it then becomes possible [25,26]
to re-derive representations formulz for fBm on a finite interval using a finite
interval of ordinary Bm (and vice-versa), as well as to get explicit prediction
formulz for fBm (including a new one for the case H < 1/2).

3.3 Ornstein-Uhlenbeck processes

The Ornstein-Uhlenbeck process {Yi,2(t),t € R} is solution of the Langevin
equation:

dY (t) + aY (t)dt = dB(t), (63)
with o = 1/2.
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Lamperti transforming the general Langevin equation (63), and using appro-
priate differentiation rules (as justified in [26]), we get

(LrdY)(t) = t? dY (logt)
= A+ d(Y(log t))
=t d(t " X (1))
== dX( ) — Ht= 771 X (t) dt]
=tdX(t) — H X (t) dt,

with X (t) := (LgY)(t). It thus follows that the H-ss process {X(t),t > 0} is
solution of
tdX(t) + (o — H) X(t)dt = dV (t), (64)
where dV (t) := (LgdB)(t) is such that IEdV (t)dV (s) = o? t2H+1 §(t — 5) dt ds,
and is thus covariance-equivalent to dV (t) := t7+1/2 dB(t).
Indeed, for a given a > 0, Ornstein-Uhlenbeck processes admit the integral
representation

Ya(t) = / " et gp(), (65)

—0o0

whose Lamperti transform reads
t
Xou(t) i= (LaYa)(t) = 7= / 5® dB(log 5). (66)
0
Noting that dB(logt) is covariance-equivalent to t~'/2dB(t), we end up with

t
Xonlt) =77 [ ot an(s), (67)

an expression which can be equivalently rewritten as

+o00
Xom(t) = / [(t/5)7=2 u(t/s — 1)) [s7+1/2 dB(s)]/s. (68)

We recognize in (67) the form resulting from the approach described in [24],
whereas (68) enters the framework of the general representation (44), with the
explicit identification g(8) := 87~*u(f — 1) and dV (t) := s#t1/2dB(t).

Given a > 0, the (Ornstein-Uhlenbeck) solution Y, (t) of the general Langevin
equation (63) is known to have a (stationary) covariance function «y,_(7) which
reads

Yy, (1) =0 e "), (69)

thus generalizing (57). It readily follows from (17) that the Lamperti transform
(66)-(68), solution of (64), admits the (nonstationary) covariance function

Rx, . (t,5) = 0 (ts) T g=olos(t/5)]

= ¢2 (min(t, s)) 7+ (max(t, s)) 2.
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Letting & = H in the above expression, we get Rx,, , (t,s) = (min(t, s))?#,
in trivial generalization of the ordinary Brownian situation, corresponding to
H = 1/2. In the special case where o = 1/2, it follows from the composition rule
(9) that the solution Xy /5 g(t) of (64) is given by

Xuj2,u(t) = (LaYip)(t) = (Luly,B)(t) = 7712 B(t), (70)

which, as expected, identifies to B(t) too if H = 1/2.

In the general case of arbitrary o and H, {X, m(t),t > 0} has been put for-
ward [24] as a versatile two-parameter model, in which H controls self-similarity
whereas a may be related to long-range dependence. Indeed, we know from
(69) that 4y, (1) = e®/"l, and it follows from Definition 7 and (25) that
{Xa,u(t),t >0} will be LRD if a < 1.

3.4 Euler-Cauchy processes

Whereas it is known that Brownian motion is not differentiable in the classical
sense, the Langevin equation is usually written as the stochastic (first-order)

differential equation

dy

E(t) +aY(t)=W(t), (71)
where the “white noise” W (t) (such that IEW (t) W(s) = o24(t — s)) plays
formally the role of a “derivative” for Brownian motion.

The interpretation of (71) is that Y (¢) is the output of a first-order linear
system whose input is white noise. As such, it may constitute a building block for
more complicated systems (with elementary sub-systems in cascade and/or in
parallel [18,23]), and it can also be generalized to higher orders, asin ARMA(p, q)
processes of the form

zpj an Y (1) = ij B W™ (1), (72)
n=0 n=0

with the notation Y (") (t) := (d"Y/dt™)(t).
Such (stationary) processes have (self-similar) Lamperti counterparts that
are solutions of a generalization of (64) [37].

Lemma 2 Let {Y (t),t € R} be a stationary process, with {X (t) := (LaY)(¢),t >
0} its Lamperti transform. Given a set of coefficients {an,n =0,...N}, one can
find another set of coefficients {a},,n = 0,... N} such that the Lamperti trans-
form of the linear process

N
Z(t) = Z o, Y (t) (73)
n=0
takes on the form

N
(LuZ)(t) = apt" XM (1) (74)
n=0
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Proof — From the definition and the linearity of the Lamperti transform, we
may write:

(LuZ)(t) =Y an (LaY ™))

n=0

N
= Z o tT Y (log t).

n=0

Tterating the differentiation rule

t 4 (v (10g1)),

vOm =t g

there exist coeflicients y;(n), functionnally dependent on the a,,’s, such that the
quantity Y (logt) admits an expansion of the form

(n)(
Y™ (log t) Z 75 (n dt, (Y (log 1)).
After a suitable re-organization of terms, we have therefore
(LuZ)(t Z bn tH+" — t—HX( 1)), (75)

with X (£) = (LxY)(t) and

N
On = ap Z'Yn(ﬂ)
j=n

The above expression (75) can be simplified further by remarking that

;t( Hx))=—Ht T X))+t T XxO@),

thanks to which there exist coefficients uy(n), functionnally dependent on the
d,’s, such that

DX 0) = 3 peln) - X ),
k=0

thus leading to the claimed result (74), with

ay, =08, Zuk(n)
k=0
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It follows from this Lemma that [37]

Proposition 3 The stationary ARMA process (72) has an H-ss Lamperti coun-
terpart, referred to as an Euler-Cauchy process, which is solution of an equation
of the form

P g
Dot XMy =" B, in W (1), (76)
n=0 n=0
with W (t) = tH+1/2 W (t) and t > 0.
Proof — The proof, which follows directly from the application of Lemma 2 to
both sides of (72), is completed by noting that (LgW)(t) = tf W (logt) has for
covariance function
E(LaW)(t) (LaW)(s) = o® (ts)™ 6(log(t/s))

= t?H§(t)s — 1)

=2 ?HH §(t — )

= EW(t) W (s),

with W (t) = t7+1/2 W (t).

4 Variations

Given Lamperti’s theorem, it is easy to develop variations on the same theme
by relaxing in some way the strict notion of scale invariance, or of stationarity.

4.1 Nonstationary tools

Multiplicative harmonizability In the case of nonstationary processes {Y (¢),t €
R}, a Cramér representation of the type (39) stills holds, but with non orthog-
onal increments:

Ed¢(f)dé(v) = d* @y (f,v), (77)

i.e., with spectral masses which are not located along the only diagonal of the
frequency-frequency plane. Provided that Loeve’s condition

//+: [Py (f,1)] < oo (78)

is satisfied, the corresponding nonstationary processes are referred to as harmo-
nizable, and such that

Ry (t,s) = / / o 2" (=) Py (f,v). (79)
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A companion concept of multiplicative harmonizability can be introduced in
the case of processes {X (t),t > 0} deviating from exact self-similarity [6]. This
readily follows from the “lampertization” of (39) which, together with (78), leads

to
—+oo

(CaY) () = / 1+i270 e (), (80)

—0o0
whereas the restriction of this general expression to the special case of in-
dependent spectral increments leads to the representation considered, e.g., in
[12,17,37]. Provided that (78) holds, multiplicatively harmonizable processes
{Y'(t),t > 0} have a (nonstationary) covariance function such that

+OO . .
Ry (t,5) = / / s GJH=2m 2&y (f,v). (81)

Time-dependent spectra In the general nonstationary case, (multiplicatively)
harmonizable processes have a second-order structure which is described by a
two-dimensional function, either in the time-time plane (covariance function)
or in the frequency-frequency plane (spectral distribution function). These two
equivalent descriptions can be supplemented by mized time-frequency represen-
tations interpreted as time-dependent spectra. Starting from (79) and assuming
further that me may write d?®y (f,v) = ®y(f, v)df dv, a proper symmetriza-
tion of the covariance function, followed by a partial Fourier transform, leads
to:

+oo . +oo .
Ry (t+7/2,t —7/2) e 2™ dr = Sy (f +v/2, f —v/[2) ™ dv.

—0oQ —00
(82)
Both sides of the above equation equivalently define the so-called Wigner-
Ville spectrum (WVS) [14], thereafter labelled Wy (¢, f).
By construction, the WVS is a nonstationary extension of the classical power
spectrum density, and it reduces to the latter in the stationary case: if we have
Ry (t,s) = vy (t — ) or, equivalently, @y (f,v) = 6(f —v) Ty (f), we simply get

+oo
Wy (t, /) = / y (1) €7 dr = Ty (f) (83)

— 00

for all ¢’s. Among the many other properties of the WVS [14], one can cite those
related to marginalizations, according to which:

+oo
Wy (t, f) df =Ry (t,1) (84)
and oo

Conventional mixed representations of nonstationary processes are based on
Fourier transforms, but alternative forms based on Mellin transforms can also
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be considered, which prove especially useful in the case of self-similar processes.
According to the interconnection (48) which exists between the Fourier, Mellin
and Lamperti transforms, and using the notation Ry (1) := IEY (t + 7/2)Y (¢t —
7/2), we have

Wy (t, f) = (FRy,t)(f)
= (MLuRy)(H +i27f)

+oo .
= / ™ Ry (t + log 2 log T_1/2) rH-2nf=1 gr
0

whence
+o0 .
Wy (logt, f) = Ry (logt +log 7+'/2 logt — log 7~ /2) 727/ =1 47
0
+oo '
= EY (log(t7/2))Y (log(tr—*/2)) 7=/~ qr
0
= t72H E,CHY(ta f)a (86)
with
+oo .
Wi (t, f) = R (#7112, 47~ 1/2) =270 =1 g (87)

0

The above quantity W y (¢, f) is referred to as a scale-invariant Wigner spec-
trum [12], since we have, for any H-ss process {X (t),t > 0} and any &k > 0:

EDH,kX(t7 f) = 1 WL;IIDH,kX(IOg t, f)
=28 Wsnzsix (logt, f)
= "W -1y (log(kt), f)
= kiZH EX (kta f)
Proposition 4 In the case of H-ss processes {X(t),t > 0}, the scale-invariant

Wigner spectrum is a separable function of its two variables which can be fac-
torized as:

W (t,f) = T, (f): (88)

Proof — We know from (86) that
Wy (t,f) = 7 W, (logt, f). (89)
If {X(t),t > 0} is H-ss, its inverse Lamperti transform {(L7;'X)(t),t € R} is

stationary by construction, and Eq. (83) guarantees therefore that the WVS of
the latter reduces to its power spectrum density for any .

O
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4.2 From global to local

Locally stationary processes Rather than resorting to processes that are
exactly (second-order) stationary, one can make use of the weakened model

Ry (t,s) = my (t;”) ot =), (90)

with my(t) > 0 and vy (.) a non-negative definite function. This corresponds
to a class of nonstationary processes referred to as locally stationary [31], since
their symmetrized covariance function is given by

Ry (t+7/2,t —7/2) = my () vy (7), (91)

i.e., as an ordinary stationary covariance function that is allowed to fluctuate
as a function of the local time t. From an equivalent perspective, the WVS
of a locally stationary process expresses simply as a modulation in time of an
ordinary power spectrum, since it factorizes according to:

Wy (t, f) = my (t) Ty (f).

When properly “lampertized,” locally stationary processes are therefore such
that:
Re,y(t,5) = my (log Vis) (ts)™ vy (log(t/s))

and
W, v(t, ) =my @) *" Ty (f).

thus generalizing the forms given in (17) and (88), respectively.

Locally self-similar processes Another possible variation is to accommodate
for deviations from strict self-similarity, as it may be the case with locally self-
similar processes, i.e., those processes whose scaling properties are governed by a
time-dependent function H (¢) in place of a unique constant Hurst exponent H.
When dealing with second-order Gaussian processes, a useful framework for such
a situation has been developed [1,27], referred to as multifractional Brownian
motion (mBm). Such processes admit the harmonizable representation

+oo ei21rft -1
BH(t)(t)z/oo Wdf(f)a

with d¢(f) the Wiener spectral measure and H : [0,00) — [a,b] C (0,1) any
Holder function of exponent 8 > 0. It has been shown [1] that the covariance
function of such processes generalizes that of fBm according to

2
g
RBH(t)(t;S) — ? (th(t,s) + sh(t,s) _ |t _ slh(t,s)) , (92)

with
h(t,s) := H(t) + H(s).
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Using (16) and proceeding as in Section 3.2, it is easy to show that

Ry, (t+ 5.t = ) = 02e=2M01 (coshin(t, 7)|r|/2] - [2sink(|r|/2)]" ") /2),

2
(93)
with

1(t,7) := h(exp(t + 7/2), exp(t — 7/2)),

and where {Yu(t),t € R} stands for the inverse Lamperti transform of mBm,
computed with some fixed exponent H € (0,1):

Ya(t) :== (L' Br)(t)-

If we formally consider the case where H(t) := H + alogt, we have n(t,7) =
2(H + at) and the process

Y(t) := (L:I_Jl(et)BH(t))(t) — o~ (H+tat)t BH(et)(et)
turns out to be such that

Ry (t + %,t - %) = 2ear?/2 (cosh[(H + at)||] — [2sinh(jr]/2))2H+) /2) .

(94)

Comparing with (56), it appears that the above covariance is identical to that

of a gOU process, with H replaced, mutatis mutandis, by H + at. The interpre-

tation of this result is that, when H(¢) admits locally the logarithmic approx-

imation H(t) := H + alogt, “lampertizing” a mBm with the time-dependent

exponent H + at ends up with a process which can be approximated by a (tan-

gential) locally stationary process of gOU type, locally controlled by the same
exponent.

4.3 Discrete scale invariance

According to Definition 4, self-similarity usually refers to an invariance with
respect to any dilation factor A. In some situations however, this may be a too
strong requirement (or assumption) for capturing scaling properties which are
only observed for some preferred dilation factors (think of the triadic Cantor
set [11], for which exact replication can only be achieved for scale factors {A =
3% k € Z}, or of the Mellin “chirps” of the form (52) for which scale invariance
applies for {\ = (exp1/fo)* ,k € Z} only).

Such a situation, which is referred to as discrete scale invariance (DSI), has in
fact been recently put forward as a central concept in the study of many critical
systems [32], and it has received much attention in a deterministic context.
The purpose of this Section is to show that the Lamperti transform may be
instrumental in the definition and the analysis of processes which are DSI in a
stochastic sense [6,7].
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Definitions

Definition 9 A process {Y (t),t € R} is said to be periodically correlated of
period Ty (or “Tg-cyclostationary”) if

{(Sn,Y)(t),t € R} £ {V(t),t € R}. (95)

Definition 10 A process {X (t),t > 0} is said to possess a discrete scale invari-
ance of index H and of scaling factor Ao > 0 (or to be “(H,\o)-DSI”) if

{(Da X)(t), ¢ > 0} £ {X (), > O} (96)

It naturally follows from these two definitions that Ty-cyclostationary processes
are also T-cyclostationary for any T' = kT, k € Z, and that (H, Ag)-DSI pro-
cesses are also (H,\)-DSI for any A = A, k € Z.

Given Definition 9, second-order Tp-cyclostationary processes {Y (t),t € R}
have a covariance function Ry (¢,t + 7) which is periodic in ¢ of period Tg, and
which can thus be decomposed in a Fourier series according to

Ry(t,t+7) = Y Cpu(r) e/, (97)

One deduces from this representation that the spectral distribution function
of Ty-cyclostationary processes takes on the form:

~ +Cx> .
@y(f, V) = / Ry (t, S) eizzﬂp(fti”s) dtds

—00

+oo
/ Ry (1, ¢ + 7) e=2m((=t=v7) gy g

= Y ) - (f - n/To)),
with
+o0 .
cp(v) = 3 C,(1) e 2™ dr. (98)

In contrast with the stationary case for which &y (f,v) is entirely concen-
trated along the main diagonal v = f of the frequency-frequency plane, the
spectral distribution function of cyclostationary processes is also non-zero along
all the equally spaced parallel lines defined by v = f —n/Ty,n € Z.

More on the theory of cyclostationary processes can be found, e.g., in [16].
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Characterization and analysis It has been stated in Theorem 1 that the
Lamperti transformation establishes a one-to-one correspondence between sta-
tionary and self-similar processes. An extension of this result is given by the
following Theorem:

Theorem 2 If{Y(t),t € R} is To-cyclostationary, then its Lamperti transform
{(LaY)(t),t > 0} is (H,eT0)-DSL. Conversely, if {X (t),t > 0} is (H,e%°)-DSI,
its inverse Lamperti transform {(L;'X)(t),t € R} is To-cyclostationary.

Proof — Let {Y (t),t € R} be a Tp-cyclostationary process. From Definition 9,
we have {Y'(¢),t € R} & {Y(t+ Tp),t € R} and, using (6), we may write
(LaY)(eTot) = (eTt)7 Y (logt + Tp)
L HTo (H Y (logt)
= (™) (LaY)(®),

thus proving that {(LgY)(t),t > 0} is (H,e™0)-DSI.
Conversely, let {X(t),t > 0} be a (H,e™)-DSI process. From Definition 10,

we have {X (eTt),¢t > 0} £ {eHTo X (t),t > 0} and, using (7), we may write
(L' X)(t+Tp) = e Hte=HTo X (eT0 )
L e Hi X (et
Ly X)),
thus proving that {(L7'X)(t),t € R} is Ty-cyclostationary.

O

Since DSI processes result from a “lampertization” of cyclostationary pro-
cesses, the form of their covariance function can readily be deduced from the
general correspondence (16) when applied to the specific form (97). We get this
way that (H, Ag)-DSI processes {X(t),t > 0} have a covariance function such
that:

Rx(t,kt) = (k) ) Cn(logh)tfHam/T, (99)
with Tg = log Ag. Plugging this expression into (87), we also get an expansion
for the corresponding scale-invariant Wigner spectrum:

oo

Wi (tf)= Z cn(f —n/2Tp) $2H+i2mn/To

n=—oo

While such representations might suggest to make use of Mellin-based tools
for analyzing DSI processes by working directly in the observation space, Theo-
rem 2 offers another possibility of action by first “delampertizing” the observed
scaling data so as to make them amenable to more conventional cyclostation-
ary techniques (see, e.g., [15,29]). This is in fact the procedure followed in [6,7],
where the existence of stochastic DSI is unveiled by marginalizing an estimated
cyclic spectrum computed on the “delampertized” data.
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Examples Weierstrass-Mandelbrot — Let us consider the process

X(t) = i ATHET G eien, (100)

n=—oo

withA > 1,0< H < 1, ¢, € U(0,2m) i.i.d. random phases and G(.) a 2m-periodic
function. We get this way a generalization of the (randomized) Weierstrass-
Mandelbrot function [4], the latter corresponding to the specific choice:

G(t) =1—e'. (101)
It is immediate to check that
DPuaX)(t) =AY AHrGA"At) efon

D0 AT G et

n=—oo

X (@),

4

thus guaranteeing that {X (¢),¢ > 0} is (H,\)-DSIL. In a similar way, Lamperti
transforming (100) leads to

(LH'X)(t) =e M Y~ AHrG(A"e!) efon

n=—0oo

00
— Z e—H(t—i—nlog)\) G(et—i-nlog)\) eigan
n=-—o0

D> (LF'G)(t +nlogh) e,

n=—oo

from which we deduce that

Z (LH'G)(t +log A +nlog\) e

n=—0oo

(Siog A L7 X) ()

o0

Z (LS'G)(t +nlog)) e*on-

(L X)),

evidencing therefore that the “delampertized” process {(L5'X)(t),t € R} be-
comes log A-cyclostationary, as expected from Theorem 2. In the case where the
phases would not be randomly chosen, but all set to the same given value (say, 0),
the “delampertized” version of (100) would simply takes the form of a periodic
function [33] (see Figure 4).

[l
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Weierstrass function (H = 0.5)

o

"Delampertized" Weierstrass function

Fig. 4. Discrete scale invariance and cyclostationarity — The Weierstrass function
(top) is not scale-invariant for all dilation factors, as evidenced by log-periodic fluc-
tuations. “Delampertizing” this function ends up in a periodic function (bottom).

As a DSI process, {X(t),t > 0} is necessarily nonstationary. However, intro-
ducing the notation

AZ(t, 1) :=Z({t+ 1) — Z(t)
for the increment process of a given process Z(t), we readily get from the defi-
nition (100) that
> .
AX(t,7) = Y XM AG(A"t, AT) e,
n=—oo

and it follows that the variance of this increment process expresses as

E[AX(t,7)? = > A0 AG(A"t, A r) AG(A"t, A7)
2
x // ¢ilon—pm) &n dom
0 2t 2w

D AN AG(A" AT .

n=—oo
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In the specific case of the usual Weierstrass-Mandelbrot process defined
through (101), it is interesting to note that

|AG(A"t, A"T)|? =2 (1 — cos A"7),

evidencing the fact that the increment process AX (¢,7) has a variance which
does not depend on time ¢ [4].

Parametric models — It has been shown in Section 3.4 that continuous-time H-ss
processes can be obtained from Euler-Cauchy systems driven by some appropri-
ately modulated white noise. Since such systems result from the lampertization
of classical ARMA systems, it follows that varying their coefficients in a log-
periodic way in time will generate DSI processes, in exactly the same way as
cyclostationary processes can be obtained as the output of a (nonstationary)
ARMA system with periodic time-varying coefficients.

The problem of getting corresponding models in discrete-time would need
a specific discussion, and it will not be addressed here. Referring to [6,7] for
some further details and illustrations, we will only mention that two preliminary
approaches have been considered so far, both based on the idea of introducing a
log-periodicity in the coefficients of a discrete-time model. In the first approach,
the discretization is obtained by integrating the evolution of a continuous-time
Euler-Cauchy system between two time instants, leading to an approximate form
of DSI. In the second approach, a fractional difference operator (discretized, e.g.,
as in [38]) is introduced, and it is cascaded with a nonstationary AR filter whose
coefficients are log-periodic.

5 Conclusion

The Lamperti transform is a simple way of connecting the two key concepts
of stationarity and self-similarity, which are both known to be ubiquitously en-
countered in many applications. As such, it has been shown to offer simpler
alternative viewpoints on some known problems, while providing new insights
in their understanding. From a more innovative perspective, it has also been
advocated as a new starting point for the analysis, modelling and processing of
situations which depart from strict stationarity and/or self-similarity.

The purpose of this text was to collect and develop a number of general
results related to the Lamperti transform and to support its revival but, of
course, much work is still to be done in different directions. One can think of a
number of further natural (e.g., multidimensional) extensions, as well as of the
need for efficient algorithmic tools, based in particular on genuinely discrete-time
formulations of the transform.
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