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Characterization of dynamic interactions between
cardiovascular signals by time-frequency coherence

Michele Orini, Raquel Bailón, Luca Mainardi, Pablo Laguna and Patrick Flandrin

Abstract—An assessment of the dynamic interactions between
cardiovascular signals can provide valuable information to im-
prove the understanding of cardiovascular control. In this study,
two methodologies for the characterization of time-frequency
(TF) coherence between cardiovascular signals are described.
The methodologies are based on the smoothed pseudo Wigner-
Ville distribution (SPWVD) and multitaper spectrogram (MTSP),
and include the automatic assessment of the significance level
of coherence estimates. The capability to correctly localize TF
regions where signals are locally coupled is assessed using
computer-generated data, and data from healthy volunteers.
The SPWVD allows for the localization of these regions with
higher accuracy (AC>96.9% for SNR≥5 dB) than the MTSP
(AC>84.4% for SNR≥5 dB). In fourteen healthy subjects, TF
coherence analysis was used to describe the changes, which a
tilt table test provokes in the cardiovascular control. Orthostatic
stress provoked an increase in the coupling between R-R vari-
ability (RRV) and systolic arterial pressure variability; it did
not provoke any significant change in the coupling between RRV
and respiration. In HF band, it decreased the strength of the
coupling between RRV and pulse interval variability estimated
from arterial pressure signal.

I. INTRODUCTION

Spectral coherence measures the degree of correlation be-
tween the spectral components of two signals [1]. This mea-
sure, which requires signals to be stationary, is inappropriate
for studying non-stationary processes. In the analysis of car-
diovascular signals, the estimation of spectral coherence in the
joint time-frequency (TF) domain has many potential fields of
application. For example, the localization of TF regions in
which two signals are coupled can be applied to the time-
varying estimation of baroreflex sensitivity [2]–[4], or in the
assessment of the degree of similarity between different signals
[5]. In recent years, different methods to estimate time-varying
spectral coherence have been proposed. Most of them are
based on parametric autoregressive modeling [6]–[8]. The
performance of these methods is related to the goodness of
fit with a pre-defined model, and in extremely non-stationary
conditions, they have been observed to perform less accurately
than non-parametric methods [9]. Coherence estimators based
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on non-parametric methods have the advantage of not requir-
ing any assumption on the TF structure of the signals, and
are relatively easy to estimate. Among them, in biomedical
applications, measures of time-scale coherence based on con-
tinuous wavelet transform (WT) have been recently proposed
to study cardiovascular dynamics [4], [10] as well as neural
connectivity [11], [12]. The TF resolution of the WT depends
on frequency. This implies that in the same signal, slower
oscillations are localized with lower temporal resolution, while
the faster ones are localized with lower spectral resolution.
In the late Nineties, estimators of time-frequency coherence
(TFC) based on multitaper spectrogram were proposed to
study the coupling between neuronal signals [13] and atrial
fibrillation [14]; but, to the extent of our knowledge, they have
never been used in the analysis of cardiovascular variability.
In this paper, two methods of TFC analysis are described with
the purpose of demonstrating their usefulness in the characteri-
zation of dynamic cardiovascular interactions. One is based on
the smoothed pseudo Wigner-Ville distribution (SPWVD), and
the other one on the multitaper spectrogram (MTSP). These
methods include the possibility of automatically localizing TF
regions in which spectral coherence is statistically significant.
The accuracy in the localization of these regions is assessed in
a simulation study. To highlight the potential of the presented
methods, TFC analysis is used to characterize the changes
induced by the tilt table test [15] on the dynamic interactions
between R-R variability (RRV) and systolic arterial pressure
variability (SAPV), RRV and respiration (RESP), and RRV
and pulse interval variability (PIV). The characterization of the
interactions between the RRV-SAPV signals and RRV-RESP
signals is relevant since it gives valuable information about
the baroreflex and the respiratory sinus arrhythmia. The TFC
between RRV-PIV signals is estimated to assess whether the
PIV signal can be used as a surrogate for the RRV signal.

II. METHODS

The spectral coherence function between two stationary
zero-mean random processes x(t) and y(t) is a normalized
version of the cross power spectral density, Sxy(f). Its magni-
tude is defined as:

γ(f) =
|Sxy(f)|√
Sxx(f)Syy(f)

, γ(f) ∈ [0, 1] (1)

Sxy(f) = Fτ→f

{
E [x(t)y∗(t− τ)]

}
(2)

where F{ · } and E[ · ] stand for the Fourier transform and the
expectation operator respectively. The magnitude of spectral
coherence is one in the spectral ranges in which x(t) and y(t)
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are related by a linear time-invariant system and zero in the
spectral ranges in which x(t) and y(t) are uncorrelated, i.e.
when Sxy(f) = 0 [1], [16].
The TFC function quantifies the strength of the local coupling
between non-stationary processes and can be defined as [16],
[17]:

γ(t, f) =
|Sxy(t, f)|√

Sxx(t, f)Syy(t, f)
, γ(t, f) ∈ [0, 1] (3)

where Sxy(t, f) stands for some non-stationary cross spectrum.
The non-stationary spectrum used in (3) does not have a
unique definition. The Wigner-Ville spectrum (WVS), defined
as the Fourier transform of a non-stationary cross-correlation
function [18]:

Sxy(t, f) = Fτ→f

{
E
[
x
(
t+

τ

2

)
y∗

(
t− τ

2

)]}
; (4)

can be seen as a natural extension of the cross power spectral
density in a non-stationary context. It can be shown that, under
mild conditions, the WVS is equal to the ensemble average of
the Wigner-Ville distributions, Wxy (t, f), of the realizations of
the processes [18]:

Sxy(t, f) = E [Wxy(t, f)] ; (5)

Wxy(t, f) = Fτ→f

{
x
(
t+

τ

2

)
y∗

(
t− τ

2

)}
; (6)

When only one observed realization is available, as in single-
trial analysis, Sxy(t, f) should be estimated by replacing
E[Wxy(t, f)] with local averaging:

Ŝxy(t, f ;φ) = Wxy(t, f)⊗ φ(t, f) (7)

where ⊗ represents the convolution on t and f , and φ(t, f) is
a smoothing function, which, given (3), should guarantee the
positiveness of the spectra. In this paper, two different estima-
tors of Sxy(t, f) (4) are considered to estimate the coherence
function γ(t, f), namely, the SPWVD and the MTSP.

A. Time-frequency coherence by smoothed pseudo Wigner-
Ville distribution (SPWV-TFC)

The SPWVD is a member of the Cohen’s class and corre-
sponds to the particular case in which φ(t, f) is a separable
function. It is defined as:

ŜW
xy(t, f)=Wxy(t,f)⊗φ(t,f)=F(ν,τ)→(t,f){Axy(ν, τ)Φ(ν, τ)}

Axy(ν, τ) = Ft→ν

{
x
(
t+

τ

2

)
y∗

(
t− τ

2

)}
(8)

Φ(ν, τ) = F -1
(t, f)→(ν, τ){φ(t, f)}

where F(ν,τ)→(t,f) is the Fourier transform operator, used to
pass from the ambiguity function (AF) domain to the TF
domain, and Axy(ν, τ) is the cross-AF of signals x(t) and
y(t). The presence of residual interference terms [16], [19] in
the SPWVD may cause γ̂(t, f) /∈ [0, 1]. Indeed, the Janssen’s
interference formula [19]:

|Wxy(t, f)|2=
∫∫

Wxx

(
t+

τ

2
,f+

ν

2

)
Wyy

(
t− τ

2
,f− ν

2

)
dτdν

(9)
shows that for some TF point (t0, f0), it is possible to have
|Wxy(t0, f0)| �= 0 while Wxx(t0, f0) = Wyy(t0, f0) ≈ 0, and

consequently γ̂(t0, f0) > 1. To obtain coherence estimates that
range between 0 and 1, the kernel should completely suppress
the interference terms [16]. A necessary, but not sufficient,
condition to have coherence estimates bounded between zero
and one is the positiveness of the auto spectra. As long as
the degree of TF filtering is strong enough, TF coherence by
SPWVD (SPWV-TFC) is obtained as:

γ̂W(t, f) =

∣∣∣ŜW
xy(t, f)

∣∣∣√
ŜW

xx(t, f)Ŝ
W
yy(t, f)

(10)

To suppress the interference terms, a simplified version of the
multiform–tiltable exponential kernel [20] is used:

Φ(ν, τ) = exp

{
−π

[(
ν

ν0

)2

+

(
τ

τ0

)2]2λ
}

(11)

In the AF domain, the iso–contours of (11) are ellipses whose
eccentricities depend on parameters ν0 and τ0. Parameters ν0

and τ0 are used to change the length of the ellipse axes aligned
along ν (the degree of time filtering) and τ (the degree of
frequency filtering), respectively. The parameter λ sets the roll-
off of the filter as well as the size of the tails of the kernel.
The resolution of the SPWVD is given by the shape of the
kernel function. The spreading introduced by the kernel is
assessed by estimating the SPWVD of a Dirac impulse and
of a complex exponential, whose ideal TF representations are
straight lines in frequency and time direction respectively.
This is shown by the following expressions: for x(t) = δ(t0),
ŜW

δδ(t, f) = φ(t−t0, f); for x(t) = ei2πf0t, ŜW
ee (t, f) = φ(t, f−

f0). Temporal and spectral resolutions are quantified by the full
width at half maximum (Δm), and by the full width at a% of
the total area (Δ(a%)) of the kernel function or, whichever is
equivalent, of ŜW

δδ(t, f0) and ŜW
ee (t0, f) respectively (examples

are given in Fig. 4 and comments in sec. IV).

B. Time-frequency coherence by multitaper spectrogram
(MTSP-TFC)

A spectrogram is another estimator of the Wigner-Ville
spectrum (4), defined as [18], [21]:

ŜS
xy(t, f)=

[
Fτ→f{x(τ)h(τ−t)}

][
Fτ→f{y(τ)h(τ−t)}

]∗
(12)

The spectrogram is a member of Cohen’s class, estimated
by using (7) and replacing φ(t, f) with the Wigner-Ville
distributions of h(t), Whh(t, f). The advantages of spectrogram
are the reduced level of interference terms and that it is
non-negative. Shortcomings are related to the poor joint TF
resolution given by h(t): the impossibility of independently
adjusting the smoothing in time and frequency leads to the well
known trade-off: The better a signal component is localized
in time (or frequency), the worse it is localized in frequency
(or time). Moreover, spectrograms, as defined in (12), cannot

be used in single-trial coherence analysis since
∣∣∣ŜS

xy(t, f)
∣∣∣2

=

ŜS
xx(t, f)Ŝ

S
yy(t, f); consequently, γ̂(t, f) = 1. In a statistical

sense, the spectrogram is an inconsistent estimator of the
WVS, with a variance in the order of the squared WVS [18].
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The multitaper spectrogram (MTSP), which is the extension
of a methodology proposed to improve the estimation of the
power spectral density [22], was introduced to improve the
bias-variance trade-off of a traditional spectrogram [23], [24].
The MTSP is computed by averaging different spectrograms,
obtained by using a set of orthogonal windows hk(t):

ŜS
xy(t,f ;K)=

1

K

K∑
k=1

[
Fτ→f{x(τ)hk(τ−t)}

][
Fτ→f{y(τ)hk(τ−t)}

]∗
(13)

where hk(t) are Hermite functions, that are used because they
are optimally concentrated in a circular TF region [13]. They
are estimated as [24]:

hk(t) = e−
t2

2 Hk(t)/
√

π
1
2 2kk! (14)

where Hk(t), with k ∈ N, stands for Hermite polynomials,
which obey the recursion:

Hk(t) = 2tHk-1(t)− 2(k − 2)Hk-2(t), k ≥ 2 (15)

with the initialization H0(t)=1, H1(t)=2t.
With only a few Hermite functions (as K = 4) the corre-
sponding kernel, φ(t, f) = Whh(t, f) in (7), is the sum of K
Laguerre functions and approximates a “top-hat” function [13],
[23] (see Fig. 4 in sec. IV). Time and frequency resolutions are
quantified by indices Δm and Δ(a%) estimated from the MTSP
of a Dirac impulse, ŜS

δδ(t, f0) = 1
K

∑K

k=1
hk(t − t0)

2, and that
of a complex exponential, ŜS

ee(t0, f) = 1
K

∑K

k=1
|Hk(f − f0)|2,

where Hk(f) is the Fourier transform of hk(t).
Time-frequency coherence by multitaper spectrogram (MTSP-
TFC) is obtained as:

γ̂S(t, f) =

∣∣∣ŜS
xy(t, f ;K)

∣∣∣√
ŜS

xx(t, f ;K)ŜS
yy(t, f ;K)

(16)

C. Statistical analysis

The local averaging provided by the smoothing function (7),
causes the coherence estimates of two uncorrelated signals
to be not null. This dependence introduces an uncertainty
in the interpretation of the coherence estimates. To reduce
this uncertainty and to localize TF regions characterized by
a significant coherence level, a hypothesis test is used. The
null hypothesis states that two signals x(t) and y(t) are
uncorrelated around a point (t0, f0). The test consists of the
following steps:
(i) Generate uncorrelated test signals x̃j(t) and ỹj(t). (ii)
Estimate the distribution Γ(t, f) = {γ̂1(t, f), ..., γ̂j(t, f), ...},
where γ̂j(t, f) is the TFC between the jth realization of test
signals x̃j(t) and ỹj(t). (iii) Estimate the threshold γTH(t, f ;α),
as the (1 − α)th percentile of Γ(t, f), where the significance
level α represents the probability of wrongly rejecting the
null hypothesis. (iv) Determine a TF mask M(t, f ;α), which
identifies the regions in which the null hypothesis can be
rejected:{

M(t, f ;α) = 1, if γ̂(t, f) > γTH(t, f ;α) coupling

M(t, f ;α) = 0, if γ̂(t, f) ≤ γTH(t, f ;α) no coupling
(17)

A priori, the threshold function γTH(t, f ;α) should depend on
α, on the geometry of the kernel and on the spectral properties
of the analyzed signals. In this study, a signal dependent and
a signal independent threshold functions are used.

1) Signal independent threshold (SITH): Test signals are
white noises. In this case, the threshold γSI

TH(t, f ;α) will depend
only on the kernel and is expected to be constant over the TF
domain.

2) Signal dependent threshold (SDTH): The estimation
of SDTH involves three steps: (i) Estimate γx

TH(t, f)
from Γx(t, f) = {γ̂x,1(t, f), . . . , γ̂x,j(t, f), . . .}, where γ̂x,j(t, f)
is the TFC between signal x(t) and a the j-th re-
alization of a white noise. (ii) Estimate γy

TH(t, f) from
Γy(t, f) = {γ̂y,1(t, f), . . . , γ̂y,j(t, f), . . .}, where γ̂y,j(t, f) is
the TFC between signal y(t) and a the j-th realization of
a white noise. (iii) SDTH is obtained as γSD

TH(t, f ;α) =
max[γX

TH(t, f ;α), γ
Y
TH(t, f ;α)].

III. MATERIALS

A. Simulation study

Signals whose dynamics depend on the modulation of the
autonomic nervous system, such as heart rate variability,
arterial pressure variability, respiratory signal etc., could be
modeled as the real part of the sum of complex exponentials
showing both amplitude and frequency modulation, embedded
in noise:{

x(t) = Ax,LF(t)e
iθx,LF(t) +Ax,HF(t)e

iθx,HF(t) + ξx(t)

y(t) = Ay,LF(t)e
iθy,LF(t) +Ay,HF(t)e

iθy,HF(t) + ξy(t)
(18)

where ξx(t) and ξy(t) are two independent white Gaussian
noises, and subscripts LF and HF stand for low frequency
range [0.04, 0.15 Hz] and high frequency range [0.15, 0.4
Hz] respectively. The time-courses of the signal components
used in this simulation are shown in Fig. 1a–d. Signals x(t)
and y(t) can be seen as locally coupled since their spectral
components share the same instantaneous frequencies and their
amplitudes vary slowly. They are expected to be coupled over
the entire TF domain except in three localized regions. During
T1 (lasting 15 s), both LF and HF components are uncoupled
because Ay,LF(T1) = Ay,HF(T1) = 0. During T2 (85 s), the
signals are uncoupled in LF because Ay,LF(T2) = 0, while
during T3 (50 s), the signals are uncoupled in HF because
Ay,HF(T3) = 0. The correct localization of the TF regions where
signals are coupled/uncoupled is challenging since both instan-
taneous frequencies and amplitudes of the signals are time-
varying. From a physiological viewpoint, the time-courses of
the instantaneous frequencies of HF components, fx,HF(t) and
fy,HF(t), cover the range of possible respiratory frequencies
observed in many autonomic tests, and it may correspond to a
pattern observed during some respiratory disorders, such as pe-
riodic breathing. From a theoretical viewpoint, the tracking of
time-varying spectral components characterized by sinusoidal
frequency modulation is challenging due to the high level of
inner interference terms, that characterizes signals with such a
modulation [19]. Moreover, fx,HF(t) and fy,HF(t) reach values as
low as 0.18 Hz (10.8 breaths/min), mimicking slow breathing.
In this situation, separating LF and HF components requires
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Fig. 1: Simulation study. (a)–(d): Instantaneous frequencies
fk,B(t), with k ∈ {x, y} and B∈ {LF,HF} and amplitudes
Ak,B(t), of LF and HF components of signal x(t) and y(t)
(18). (e)–(f) Theoretical coherence patterns cB(t) in LF and HF
bands. Shadowed areas correspond to interval of uncoupling
in both LF and HF (T1), in LF (T2) and in HF (T3).

high resolution.
The capability of the TFC estimators to track the changes
described above is quantified in terms of accuracy. Gold
standards are represented by indices cLF(t) and cHF(t), which
by definition are equal to 1 when signals are coupled, and
0 when signals are uncoupled at f = fLF(t) and f = fHF(t)
respectively (see Fig. 1e–f). At each point (t0, fB(t0)), with
B = {LF,HF}, outcomes are classified as shown in Table I.
According to this scheme, a low sensitivity (or specificity)

Gold standard
Test outcome cB(t0) = 1 cB(t0) = 0

M(t0, fB(t0);α) = 1 True Positive (TP) False Positive (FP)

M(t0, fB(t0);α) = 0 False Negative (FN) True Negative (TN)

TABLE I: Simulation study: detection scheme

corresponds to the identification of intervals of local coupling
(or uncoupling) shorter than the true ones. Accuracy is given
by AC=(TP+TN)/(TP+TN+FP+FN).

B. Physiological study

Fourteen healthy subjects (aged 29±3 years) underwent a
tilt table test. The protocol consisted of: 4 minutes in early
supine position (Tes), 5 minutes head-up tilted to an angle of
70o (Tht) and 4 minutes back to later supine position (Tls). The
ECG and respiratory signals were recorded using the BIOPAC
MP 150 system with a sampling frequency of 1 kHz and 125
Hz respectively. The respiratory signal was recorded through
a strain gauge transducer. The pressure signal was recorded
in the finger by the Finometer R© system with a sampling
frequency of 250 Hz, and without correction for the hydrostatic
gradient change during tilt. Beats from ECG and pulses from
the pressure signal were detected to generate RR, pulse interval

and systolic arterial pressure time series. During the procedure,
the Finometer R© was recalibrated at the beginning of Tht and
Tls. The recalibration took few seconds and introduced artifacts
which were detected and corrected by interpolation. The series
were subsequently resampled at 4 Hz, and RRV, PIV from the
finger pressure measurement and SAPV signals were obtained
by high–pass filtering the corresponding series with a cut-off
frequency of 0.03 Hz. The degree of coupling between RRV
and RESP, RRV and SAPV, RRV and PIV was assessed.

IV. RESULTS

A. Relation between degree of time-frequency filtering and
coherence estimates

The relation between the mean value of the signal indepen-
dent threshold function, γSI

TH, and the TF resolution is shown
in Fig. 2. γSI

TH was obtained by collecting the TFC of 250
couples of white noise, and with α=5%. This figure reveals
the strong dependence of coherence estimates on the geometry
of the kernel, and confirms the need of a statistical test to
assess the local coupling. Depending on the kernel, γSI

TH can
be as high as 0.9, being higher for lower degree of smoothing.
This implies that, without an appropriate statistical test, it is
easy to wrongly detect local coupling. For each combination
of time and frequency resolution, the coefficient of variation
of γSI

TH(t, f) never exceeded 3%, and γSI
TH stabilazed having

processed 75 noise realizations. This shows that the threshold
is uniform over the TF domain and suggests that only few pairs
of white noises are necessary to reliably estimate the threshold
value. Figure 2a shows that γSI

TH estimated by MTSP decreased
by increasing the number of tapers K, while for a given
number of tapers, γSI

TH was almost independent of the different
combinations of time and frequency resolutions. This is likely
due to the fact that the TF support of the kernel associated with
different hk(t) is approximately the same (when the width of
hk(t) increases, the width of |Hk(f)| decreases). Figure 2b
shows that γSI

TH estimated by SPWVD was inversely related
to the degree of TF smoothing. Not all the combinations
of time and frequency smoothing could be used to estimate
γ̂W(t, f). In this example, the finest resolutions of the SPWVD
were: (Δm

t ,Δ
m
f ) ≈(18s,0.031Hz),(12s,0.047Hz),(9s,0.086Hz).

For the same Δm
t , the MTSP with K = 4 gave much lower Δm

f ,
being (Δm

t ,Δ
m
f )≈(18s,0.203Hz), (12s,0.305Hz), (9s,0.402Hz).

Figure 3 represents the signal dependent threshold, γSD
TH(t,f),

corresponding to signals described in Fig. 1, characterized by
SNR equal to 20, 5 and -10 dB. Thresholds were obtained by
using, for both Γx(t, f) and Γy(t, f), 250 realizations of test
signals, and α=5%. Threshold γSD

TH(t,f) estimated by SPWVD
reflects the narrow band structure of the signals, at least for
high SNR level, while γSD

TH(t,f) estimated by MTSP is constant
over the TF domain. In the following, given that for MTSP
γSD

TH(t,f) ≈ γSI
TH(t,f), the statistical test for MTSP-TFC will be

performed by SITH only.

B. Simulation study

Taking into account the time-course of the spectral com-
ponents of x(t) and y(t) shown in Fig. 1, one could require
to use a smoothing that gives Δm

t =7.5 s and Δm
f =0.04 Hz.
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These values correspond to half the duration of the shortest
decorrelating interval, and half the minimal spectral distance
between LF and HF component. The parameters of the MTSP
and the SPWVD that gave resolutions close to these values
were chosen. The TF spectra of a Dirac impulse, x(t) = δ(t0),
and of a complex exponential, x(t) = ei2πf0t, estimated by
SPWVD and MTSP used in the simulation study, are shown
in Fig. 4. For comparison, TF spectra estimated by WT are
also shown. Wavelet spectra were obtained by using a specific
toolbox for the estimation of wavelet coherence [25]. As
suggested in [10], Morlet wavelet with ω0 = 20 is used, and a
further smoothing is applied to obtain spectra that can be used
in the estimation of wavelet coherence [10], [25]. Given that
the resolution of the WT depends on frequency, the spectra of
the Dirac impulse and of complex exponentials x(t) = ei2πfit

were estimated for fi ∈ {0.1, 0.2, 0.3, 0.4} Hz. From the
spectra shown in Fig. 4, indices Δm and Δ(a%) were estimated,

and are reported in Table II. The SPWVD was characterized
by much better resolution than the MTSP: Δm

t and Δm
f of

the SPWVD were about half Δm
t and Δm

f of the MTSP.
Nevertheless, the Hermite functions, being Δ(90%)/Δm <1 (i.e.
1
4

∑4
1 |hk(t)|2 and 1

4

∑4
1 |Hk(f)|2 had practically no tails),

made the smoothing of the MTSP well concentrated in the TF
domain. The kernel used in the calculation of the SPWVD,
was characterized by Δ(90%)/Δm ≈ 3. The presence of tails
in the kernel used to estimate the SPWVD (11) is necessary
to find a good compromise between the elimination of the
interference terms and the TF resolution. The SPWVD was
also characterized by much better resolution than the WT,
except for frequency resolution at f = 0.1 Hz, for which
Δm

f of WT was slightly lower than Δm
f of SPWVD.

Figure 5 depicts the TF spectra, estimated by SPWVD, MTSP
and WT, of a signal used in the simulation study, characterized
by SNR=10dB. The kernels used in this example were the
same as those used in Fig. 4. It is shown that the SPWVD
gave a more accurate localization of the time-varying spectral
components of the signals. For f ≈ 0.1 Hz, the SPWVD
and WT were characterized by similar frequency resolution.
However, around this frequency, the SPWVD offered a fine
temporal resolution (see also Fig. 4 and table II), while the
WT gave a very poor representation of the temporal changes
of the LF component, which did not vanish during T1 and T2.
Furthermore, in the WT, the bandwidth of the HF component
is much wider than the bandwidth of the LF component.
However, this does not reflect the “real” structure of the
signals, but it is due to the frequency-dependent resolution
of WT.
In Fig. 6, the maps of the significance level of the local
coupling between a couple of representative signals are shown
for different SNR. These kinds of maps provide a useful alter-
native representation of the results of single-trial coherence
analysis. Regions in which the coupling is not significant
are reported in white, while those in which the coupling is
significant are reported in gray scale, with intensities that de-
pend on the significance level. White and black lines represent
the regions where signals are coupled, i.e. cB(t) = 1, and
uncoupled, i.e. cB(t) = 0 respectively. The SPWVD localized
coherence changes better, due to higher resolution both in
time and frequency. This led to the correct estimation of the
duration of T1, T2 and T3, and to separate the LF and HF
components even when they were close. Results shown in Fig.
6c, obtained by comparing γ̂W(t, f) to the SDTH, matched the
ideal TFC distribution characterized by a coherence level that
is not significant only in well–localized TF regions: during T1

in both LF and HF bands, during T2 in LF band, and during
T3 in HF band. In Fig. 6g, it is shown that for an SNR as low
as 0 dB, the MTSP-TFC estimator identifies larger regions
characterized by local coupling.
Global results, given in terms of accuracy, are shown in Fig.
7. In these graphics, the influence of noise, type of threshold
and significance level are assessed. For each combination of
these parameters, 50 pairs of signals were processed. These
results show that: (i) Coherence by SPWVD is characterized
by higher accuracy than coherence by MTSP; for example,
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for SNR≥ 0 and α = 0.1%, the global accuracy of γ̂W(t, f),
estimated by averaging results obtained in LF and HF bands,
was more than 11.8% higher than the accuracy of γ̂S(t, f).
(ii) Accuracy of the γ̂W(t, f) was very high for SNR≥ 5 dB
(AC>96.9%, averaging results in LF and HF ranges); (iii)
The differences between the accuracy of γ̂W(t, f) and γ̂S(t, f)
decreased by increasing α; (iv) In γ̂W(t, f), the use of signal
dependent instead of signal independent thresholds improved
the accuracy, but only for high SNR.

TABLE II: Simulation study – TF resolution.

Time Resolution (s) Freq Resolution (Hz)
Δm

t Δ(90%)
t Δm

f Δ(90%)
f

SPWVD 11.1 39.5 0.051 0.185
MTSP (K=4) 25.6 25.1 0.129 0.127
WT (0.1Hz) 89.0 124.2 0.041 0.042
WT (0.2Hz) 44.5 64.2 0.083 0.082
WT (0.3Hz) 29.6 42.8 0.124 0.122
WT (0.4Hz) 22.2 32.1 0.166 0.162

C. Physiological study

As an illustrative example, the TF distribution of the RRV
and SAPV signals from a healthy subject (male, 27 years old)
undergoing a tilt table test is shown in Fig. 8a–d. From visual
inspection, it is already possible to detect some correlations
between the non-stationary structures of the signals. The res-
olution was (Δm

t ,Δm
f ) = (12s, 0.041Hz) for the SPWVD and

(26.5s, 0.12Hz) for the MTSP with K = 4. At the beginning
of the head-up tilt (epoch Tht), the instantaneous LF power of
the RRV and SAPV signals quickly increased and maintained
high value for about one minute. During the remaining part
of Tht, the instantaneous LF power first decreased and then
increased until supine position was restored. The component
related to respiration was more clearly represented in the
SAPV than in the RRV signal. During Tht, the respiratory
frequency was higher than the traditional upper limit of HF
band (0.4 Hz), indicating that in non-stationary conditions,
spectral boundaries should be time-varying and respiratory-
dependent [26]. The statistical significance of the coupling
between RRV-SAPV, shown in Fig. 8e–f, increased during
Tht, especially in the LF band. In LF band, the proportional
part of the TF plane in which coherence was significant, was
64%, 88% and 69% during Tes, Tht and Tls respectively. During
Tht, and around the respiratory rate (reported in red line), the
significance of γ̂W(t, f) was higher than that of γ̂S(t, f). This
is likely due to the finer resolution of the SPWVD, which
better characterized the rapid changes of the HF components
in both signals.
The ability to localize changes in the temporal evolution of
the coherence between cardiovascular signals was assessed in
the example shown in Fig. 9. This graphic shows the LF os-
cillations of the RRV and SAPV signals, obtained by low-pass
filtering with a cut-off frequency of 0.16 Hz (see the box of
Fig. 8e–f). The LF oscillations of the RRV and SAPV signals
were highly correlated, except during the interval bounded by
two consecutive local minima of the SAPV oscillation, marked
by a shadowed area. The intervals during which the coherence,
evaluated in the LF range by SPWVD and MTSP, were
not statistically significant are bounded by vertical lines. As
shown, in this representative example, SPWVD localized the
change in the strength of the local coupling more accurately
than MTSP.
To characterize the temporal evolution of the local coupling
between the signals, the index CB(t) was defined as:

CB(t) =

∫
B

γ̂(t, f)M(t, f)df

/∫
B

df ; B∈ {LF,HF} (19)
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This index takes into account both the spread and the mag-
nitude of the local coupling, averaged in LF and HF spectral
bands. The median trend and the interquartile range of CB(t),
estimated among the entire study population, is shown in Fig.
10. Concerning the coupling between RRV-SAPV signals, the
head-up tilt provoked a change in CLF(t) composed of the
following phases: (i) instantaneous decrease during the upright
movement of the automatic bed (interval in between vertical
lines); (ii) fast increase, up to values that are significantly
higher than baseline ones (Wilcoxon rank-sum test, p <0.05);
(iii) stabilization around baseline values. In Tls, the restoration
of the supine position provoked a similar pattern, but charac-
terized by lower CLF(t). In panel (b), it is shown that, after
head-up tilt, CHF(t) first abruptly decreased and then quickly
increased toward baseline values. The increase in the median
CB(t), observed in LF during Tht and Tls, and in HF during Tht,
had similar slopes (4.63, 4.86 and 4.17 10-3s-1, respectively).
The coupling between RRV-RESP signals (panels (c)–(d)) was
not significantly affected by the head-up tilt. The coupling
between RRV-PIV signals was affected by the postural changes
only in HF, while in LF, it was always close to one.

V. DISCUSSION

In this paper, the use of SPWVD and MTSP to estimate
the TFC between cardiovascular signals reliably was assessed
for the first time. It was shown that the combination of
these methods with statistical analysis allows to accurately

localize TF regions where the coupling is significant. In
contrast with stationary spectral coherence, which quantifies
the degree of global linearity, TFC quantifies the degree of
local coupling. This is shown in the simulation study, where
TFC was significant in a large part of the TF domain, although
the signals were not globally linearly related (their amplitudes
were not linearly related). This was due to the presence, in
both signals, of locally synchronized oscillations.
In the study of cardiovascular control, TFC has many fields
of application. For example, it can be used to reveal an
impairment of the baroreflex, which results in a low degree of
coupling between RRV and SAPV. Time-frequency coherence
can be used as a measure of similarity to validate the use of
one signal, and its derived measures, as surrogates of original
ones [5]. It can also be used to assess the pertinence of linear
(or nonlinear) models to describe the relationship between
different signals in the modeling of the cardiovascular system.

A. Statistical assessment

As for the stationary spectral coherence [1], TFC depends
on the parameters used in its calculation. This dependence
makes the use of some statistical analysis necessary to assess
whether the TFC estimates are significant or not. The problem
of interpreting the level of coherence correctly is especially
important in non-stationary analysis, since, as shown in Fig. 2,
the finer the TF resolution, the higher should be the coherence
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estimates to be considered as statistically significant. Statisti-
cal analysis is based on the point-by-point comparison between
coherence estimates and threshold functions. Two thresholds
are defined: SITH, which only depends on the resolution of
the spectra, and SDTH, which depends on both the resolution
of the spectra and the TF structure of the signals. These
thresholds have both pros and cons: on one hand, the use of
a specific threshold that takes into account the TF structure
of the signals is appealing, but on the other, in a population
study, its use implies an increase in the computational cost
of the analysis. As shown in Fig. 3, only the SPWVD gives
the possibility of using a signal-dependent threshold. This is
an advantage over the MTSP. Nevertheless, the results of the
simulation study (Fig. 7) show that the use of SDTH improved
the accuracy of localization only for signals characterized by
high SNR.

B. Comparison between the methodologies

Although the theoretical properties of an estimator of co-
herence based on SPWVD were first discussed in [16], [17],
it was never used in biomedical applications. In the SPWVD,
the reduction of the interference terms [19] is crucial since
they may cause the coherence estimates to lose their physical
meaning. In this study, the appropriate degree of smoothing
was determined by first fixing a desired TF resolution, and
then by iteratively increasing the degree of smoothing, until
γ̂W(t, f) ∈ [0, 1]. Another approach, presented in [27], makes
use of geometrical relations between the TF structure of the
signals and the interference terms to determine the parameter
of the kernel (11). In that approach, as in [28], the support of
the TFC is limited to regions of interest to reduce the required
degree of smoothing.
By using both computer-generated and recorded physiological
data, changes in the local coupling were better localized by
using the SPWVD than the MTSP. This is due to the same
structural reason which makes the SPWVD more suitable than
the spectrogram for the localization of TF features, namely,
the possibility of independently setting the time and frequency
filtering [18], [21]. Indeed, although the constraint of having a
TFC bounded between zero and one imposes a sort of trade-
off between time and frequency resolution, this option allows
reducing the global amount of smoothing, thus yielding more
accurate estimates.
Nevertheless, the MTSP has some important features that
could make it useful in coherence analysis. First, being based
on spectrograms, which are non-negative, coherence estimates
are always bounded between 0 and 1. Secondly, the use of
Hermite functions, which are optimally concentrated in a
circular TF region, offer a good trade-off between time and
frequency resolution [29], [30]. Finally, as shown in Fig. 6,
it is also possible to detect local coupling between signals
characterized by a low SNR via MTSP.
Both SPWVD and MTSP are characterized by a constant
resolution over the entire TF domain. This is in contrast with
other methodologies such as WT, in which the resolution
depends on frequency. This makes the interpretation of the
coherence function estimated by SPWVD and MTSP easier

than the interpretation of the wavelet coherence since the
uncertainty due to smoothing does not change with frequency.
Moreover, as shown in Fig. 4, the SPWVD used in the
simulation study was characterized by a finer resolution than
the Morlet wavelets used previously in coherence analysis
[10]. A comprehensive comparison between wavelet coherence
and the methodologies presented in this study is beyond the
scope of this paper. However, it is worth noting that although
the resolution of the WT shown in Fig. 4 may be improved
by choosing ad hoc parameters or other smoothing kernels
[11], an improvement is likely to concern either time or
frequency, since WT offers the same trade-off between time
and frequency as methods based on Fourier analysis [31].
Given that the main goal of time-frequency coherence anal-
ysis is to provide accurate estimates of local coupling, and
given that the correct localization in both time and frequency
accounts for most of the accuracy of the estimates, indices Δm

and Δ(a%) are used to quantify and compare the resolutions.
One of the differences between the SPWV-TFC and the TFC
estimators based on spectrogram and continuous WT [10]–
[12], [25], is that to estimate the SPWV-TFC, there is no
need for further processing of the TF spectra. Indeed, by
construction, the squared magnitude of the cross spectrogram
(or scalogram) is equal to the product between the auto spec-
trograms (or scalograms). In single-trial coherence analysis,
this implies that a further TF smoothing (a further decrease
in TF resolution) than that used to estimate the spectra is
required.
Spectrogram, wavelet and SPWVD provide a spectral analysis
that is formally equivalent [31], and they can be obtained by
processing the Wigner-Ville distribution [18]. As previously
mentioned, the advantage of SPWVD is that it offers the
possibility of determining the shape of the smoothing function
both in time and frequency, which in turn allows for more
accurate localization of cardiovascular dynamics.
Recently, time-varying autoregressive methods were also pro-
posed to estimate the coherence function [7], [8]. Time-
frequency and autoregressive analysis are very different and it
is difficult to fairly compare them. However, TF analysis offers
some advantages over autoregressive methods, which may
deserve attention. In TF methods, the structure of the signals
is characterized without imposing any assumption or model
to the signals. No coefficient identification neither parameter
initialization is needed. Thus, they do not allow disentangling
feedback and feedforward mechanisms when systems interact
in closed-loop [7], [8].

C. Physiological study

An analysis of the recorded physiological data showed that
the methodologies described in this study can be used to char-
acterize the dynamic interactions between cardiovascular sig-
nals. Generally, these signals have a non-stationary structure,
even during intervals of supine position. This confirms that
stationarity is an exception rather than the rule, and highlights
the importance of TF analysis which, unless stationarity is
proved [32], should be preferred to traditional time-invariant
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analysis. In this study population, coherence analysis shows
that during tilt table test, cardiovascular rhythms such as heart
rate, systolic pressure and respiratory signal, were dynamically
coupled. Head-up tilt provoked an increase in the TFC between
the RRV and SAPV signals. Moreover, it has been shown that
the increase that followed the loss of coherence due to the
postural changes (back and forth from supine position to head-
up tilt), was characterized by similar slope. This may imply
the presence of a common mechanism of resynchronization
between RRV and SAPV. The presence of some artifacts due
to the recalibration of the finger pressure signal may also be
responsible for the decrease in the coupling observed at the
beginning of Tht and Tls. The RRV and SAPV signals were
also coupled in HF band, around respiratory rate. The strength
of this coupling was similar to that between the RRV and
RESP signals. This coupling, which is due to respiratory sinus
arrhythmia, was maintained even during head-up tilt. Finally,
it is shown that the PIV signal can be used as a surrogate of
the RRV signal, even if caution is required in the HF band,
where a decrease in the coherence during postural changes was
observed. This may be due to a change in the vascular tone,
which affects the pulse transit time and introduces a difference
in the TF structure of the two signals [5].

Most of the algorithms described in this paper can be freely
downloaded at http://www.micheleorini.com/.
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