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Abstract. Reassignment is a non-linear technique which can improve on the localization of a spectrogram by
moving its values according to a suitable vector field. Statistical properties of spectrogram reassignment vectors
are investigated in detail. Closed form expressions are given when the observation consists in a non-random
component embedded in white Gaussian circular noise, and when the analysis window is Gaussian. An extension
to arbitrary windows is also proposed and theoretical claims are supported by numerical simulations.
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1. Introduction

Reassignment is a non-linear technique which has recently been reintroduced and put for-
ward as an efficient means of getting sharply localized time-frequency distributions [1].
The technique consists in moving the value of a time-frequency distribution from the point
where it has been computed to a new location which is more representative of the local
signal energy distribution. Reassignment is based on a vector field which conveys a lot of
information about the signal structure and it is therefore an important issue to quantify prop-
erties of this vector field, especially from a statistical point of view. This paper is devoted
to first theoretical investigations of this question which — up to now — has received no
attention in the literature, although it is believed to be of a key importance for many further
signal processing applications based on reassigned distributions. While reassignment is
a very general principle which can be applied to almost any time-frequency distribution,
discussion will be restricted here to spectrograms only. Let us finally note that, due to space
limitations, most proofs of the results presented here have been omitted, but they can be
found in [2].

2. Basics and assumptions

In order to reassign the spectrogram associated to the short-time Fourier transform (STFT)
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F (h)
x (t, ν) =

∫ +∞

−∞
x(t− τ)h∗(τ)e2πıντ dτ (1)

based on a windowh(t), it is necessary to introduce two auxiliary STFT’s based on the win-
dows(T h)(t) = t h(t) and(Dh)(t) = (d/dt)h(t). Given these three STFT’s, reassignment
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Identifying the time-frequency plane with the complex plane, it is therefore possible to
define at each time-frequency point a dimensionless reassignment vectorr(t, ν) according
to

r(t, ν) =
t̂(t, ν)− t

∆th
+ ı

ν̂(t, ν)− ν
∆νh

, (3)

where∆th and∆νh stand, respectively, for the mean-square duration and bandwidth of
the analysis window. This study is devoted to statistical properties ofr(t, ν) in the case
of observations corrupted by a zero-mean noisen(t) assumed to be white, Gaussian and
analytic (hence, circular [3]), i.e., such that

E[Re{n(t)}Re{n(s)}] = E[Im{n(t)}Im{n(s)}] =
σ2

2
δ(t− s); E[n(t)n(s)] = 0 (4)

for any(t, s) ∈ R2, with its real and imaginary parts a Hilbert transform pair.

3. Statistics of reassignment vectors for Gabor spectrograms

Let us first consider a Gaussian windowh(t) = 21/4λ−1/2 exp(−π(t/λ)2), a situation
referred to as a Gabor spectrogram. In this case, we have∆th = (4π)−1/2λ and∆νh =
(4π)−1/2/λ, and(T h)(t) = t h(t) and(Dh)(t) = (d/dt)h(t) happen to be proportional
to each other. The relative reassignment vector reduces to

r(t, ν) = −
√

4π
λ

F2

F1
, (5)

whereF1 andF2 are simplified notations forF (h)
x (t, ν) andF (T h)

x (t, ν), respectively.

3.1. The “noise only” case

In the “noise only” case where the observation isx(t) = n(t), it follows from properties
related to both linear filtering and analytic circularity that the vectorF = [F1 F2]t is
zero-mean and Gaussian circular, with a joint probability density function (pdf) given by
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Figure 1. Log-probability density function of reassignment vectors in the Gabor spectrogram case and in a “noise
only” situation. Left: theoretical joint density, as predicted by eq.(10). Right: estimated joint density, obtained
from a simulation based on an average over3 noise realizations, each of412× 156 time-frequency data points.

Figure 2. Log-marginals of the probability density function of reassignment vectors in the Gabor spectrogram
case and in a “noise only” situation. Left: time marginal, right: frequency marginal. Solid lines correspond to the
theoretical predictions of eq.(11), whereas the crosses have been obtained from a simulation based on an average
over3 noise realizations, each of412× 156 time-frequency data points.

fF (F1, F2) =
1

π2|det Γ| exp(−F †Γ−1F ); Γ =
[
σ2

1 = 2σ2 0
0 σ2

2 = σ2λ2/2π

]
. (6)

Making then the change of variables
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[F1 F2]→ [w r]
{
w = F1

r = −(
√

4π/λ)F2/F1
(7)

whose inverse transform has for Jacobian|λw|2/4π, we get for the pdf ofr(t, ν) (see [4]
for the principle of the technique and [2] for the details):

f(r) =
λ2

4π

∫ ∫ +∞

−∞
|w|2fF

(
w,− λ√

4π
rw

)
dRe{w} dIm{w} (8)

=
λ2

4π2(σ2
1σ

2
2) [1/σ2

1 + |λr|2/(4πσ2
2)]2

, (9)

a result which — using the definitions ofσ1 andσ2 — can be more simply reexpressed as

f(r) =
1

π (1 + |r|2)2 . (10)

As a consequence,r(t, ν) appears as being zero-mean but of infinite variance, with
marginal densities given by (let us recall that the real and imaginary parts ofr correspond
to the reassignment components in time and frequency, respectively)

f(Re{r}) =
1

2(1 + (Re{r})2)3/2
; f(Im{r}) =

1
2(1 + (Im{r})2)3/2

. (11)

It turns out that both quantities have exactly the same form, what results from the radial
symmetry of (10). We can furthermore remark that they are independent of the noise level
σ2, of time (stationarity), of frequency (whiteness) and of the window length (reduced
coordinates).

Another way of formulating the same results is to make use of the polar coordinates
ρ = |r| ∈ [0,+∞[ andθ = arg r ∈]− π, π], thus leading to a joint pdf

f(ρ, θ) =
ρ

π (1 + ρ2)2 (12)

which is now independent ofθ, and therefore to the marginal properties

f(ρ) = 2ρ/
(
1 + ρ2

)2
; f(θ) = 1/2π. (13)

3.2. The “signal + noise” case

The previous analysis can be carried over to “signal + noise” situations where the observation
is of the formx(t) = s(t) + n(t), with s(t) a non-random component andn(t) as in (4).
According to this model,x(t) is still Gaussian circular, although not zero-mean.

Calculations are in this case more cumbersome than in the “noise only” case but the
derivation proceeds along the same lines (details are given in [2]). The final result is

f(r) =
1

π (1 + |r|2)2

[
1 +

S

2σ2

|1 + rr∗0 |2
1 + |r|2

]
exp

{
− S

2σ2

|r − r0|2
1 + |r|2

}
, (14)
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Figure 3. Log-marginals of the probability density function of reassignment vectors in the Gabor spectrogram
case and in a “chirp+noise” situation (SNR= 64dB). Left: time marginal, right: frequency marginal. Solid
lines correspond to the theoretical predictions derived from eq.(14), whereas the crosses have been obtained from
a simulation based on an ensemble average over20, 000 noise realizations.

with S =
∣∣∣F (h)
s (t, ν)

∣∣∣2 andr0 the noise-free reassignment vector.

The pdf now becomes a function of the local signal-to-noise ratio SNR= S/2σ2. In the
case where SNR→ 0, one can check that (14) reduces to the “noise only” pdf (10). One
can also remark that (14) tends to be approximatively Gaussian for smallr’s and, if one has
furthermore SNR→ +∞ (“signal only” case), one getsf(r) ∼ SNRexp (−SNR) ∼ 0
unlessr = r0, in which casef(r) ∼ SNR∼ +∞.

The theoretical results of this Section are well-supported by numerical simulations, as
illustrated in Figures 1 to 3.

4. Extension to spectrograms with arbitrary windows

The use of Gaussian windows only may appear as a restriction and it is desirable to
consider more general situations. Dealing with arbitrary windows requires however a
specific treatment which cannot take advantage of the simplifications which occurred in
the Gaussian case. In fact, it turns out that the problem of evaluating the pdf of a re-
assignment vector based on an arbitrary window can be embedded in a more general
problem which can be stated as follows: given an observationx(t) = s(t) + n(t),
where s(t) is non-random andn(t) as in (4), what is the joint pdf of the(N − 1)-
dimensional complex-valued vectorr = [r1 r2..rN−1]t whose coordinates are given by
(rn = (1/λn)yn+1/y1;n = 1 . . . N − 1), where theλn’s are complex-valued numbers and
the collection ofyn’s results from the linear filtering ofx(t) by a family of filters of impulse
responseshn(t)?

This problem can be solved by introducing the change of variables
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[y1 y2 . . . yN ] −→ [y1 r1 . . . rN−1], (15)

whose inverse transform has for Jacobian
∣∣∣rN−1

1

∏N−1
n=1 λn

∣∣∣2. It follows that

f(r) =

∣∣∣∣∣
N−1∏
n=1

λn

∣∣∣∣∣
2 ∫ ∫ +∞

−∞
|y1|2(N−1)fY (rλy1) dRe{y1} dIm{y1}, (16)

with rλ = [1 λ1r1 λ2r2 . . . λN−1rN−1]t and wherefY (.) stands for the joint density of
the filtered observations(y1, y2, . . . yN ), a Gaussian pdf of covariance matrixΓ.

This expression can be evaluated in a more explicit form and, after some tedious manip-
ulations (for details, see [2]), we get

f(r) = 1
πN | det Γ|

∣∣∣∏N−1
n=1 λn

∣∣∣2 e−|b|2/a+c∫∫ +∞
−∞

∣∣y1 + b
a

∣∣2(N−1)
exp

(
−a|y1|2

)
dRe{y1} dIm{y1} ,

(17)

with

a = r
†
λΓ
−1rλ; b = s†Γ−1rλ; c = s†Γ−1s (18)

ands the vector formed by the filtered versions of the noise-free observation.
In the “noise only” case wheres(t) = 0, some simplifications occur, leading to

f(r) =
1

πN |det Γ|

∣∣∣∣∣
N−1∏
n=1

λn

∣∣∣∣∣
2 ∫ ∫ +∞

−∞
|y1|2(N−1) exp

(
−a|y1|2

)
dRe{y1} dIm{y1} (19)

and, finally, to

f(r) =
1

πN |det Γ|

∣∣∣∣∣
N−1∏
n=1

λn

∣∣∣∣∣
2

(N − 1)!
aN

. (20)

This result is quite general and can be applied to the specific situation of time-frequency
reassignment by setting

h1(t) = h∗(t)ei2πνt; h2(t) = (T h∗)(t)ei2πνt; h3(t) = (Dh∗)(t)ei2πνt, (21)

thus leading to

Γ = 2σ2

 1 0 0
0 ∆t2h −1/2
0 −1/2 4π2∆ν2

h

 . (22)

It has to be observed thatdet Γ = 2σ6(16π2∆t2h∆ν2
h − 1), a quantity which, by virtue

of Heisenberg’s inequality, is always non-negative and is zero if and only if the window is
Gaussian. In this case,Γ is no longer invertible and it is necessary to go back to the results
of the previous Section.
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Assuming thath(t) is not Gaussian, we have to consider the reassignment vector

r = − 1
∆th

Re

{
y2

y1

}
+ ı

1
2π∆νh

Im

{
y3

y1

}
, (23)

thus motivating the introduction of

r = [r1 r2]t =
[

1
λ1

y2

y1

1
λ2

y3

y1

]t
, (24)

with λ1 = −∆th andλ2 = 2π∆νh. The joint density of this vector can be shown to take
on the form:

f(r) =
2
π2

H2
(
H2 − 1

)2
[H2 (1 + |r1|2 + |r2|2)− 2HRe{r1r∗2} − 1]3

, (25)

with H = 4π∆th∆νh, whence the final result

f(r) =
∫ ∫ +∞

−∞
f(r) dIm{r1} dRe{r2} =

1
π(1 + |r|2)2

, (26)

which appears to be identical to the one obtained in the Gaussian case (see eq.(10)). We can
remark that the frequency marginal of eq.(26) can be considered as well as the instantaneous
frequency pdf of a colored bandpass Gaussian noise, with the consequence that its expression
is in agreement with the result obtained in [5] by a different method.

The situation of “signal + noise” is far more complicated in the general case than in the
Gaussian one and it will not be followed up here (see [2] for elements).

5. Conclusion

Statistical properties of reassignment vectors have been derived in simple, yet realistic
and important situations. Given these results, it is now possible to incorporate statistical
elements in the reassignment process, to validate its use in noisy situations and to increase
the significance of the results it gives. It is also believed that this knowledge should help
in extracting useful information directly from the reassignment vector field, in a statistical
signal processing perspective. Finally, it is worthwhile to mention that the obtained results
should be of help for providing a statistical basis to related techniques such as the “ridge
and skeleton” method [6], whose principle has much to share with reassignment.
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