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Time–Frequency Filtering Based

on Spectrogram Zeros
Patrick Flandrin, Fellow, IEEE

Abstract—For a proper choice of the analysis window, a short-
time Fourier transform is known to be completely character-
ized by its zeros, which coincide with those of the associated
spectrogram. A simplified representation of the time-frequency
structure of a signal can therefore be given by the Delaunay
triangulation attached to spectrogram zeros. In the case of mul-
ticomponent nonstationary signals embedded in white Gaussian
noise, it turns out that each time–frequency domain attached to
a given component can be viewed as the union of adjacent De-
launay triangles whose edge length is an outlier as compared to
the distribution in noise-only regions. Identifying such domains
offers a new way of disentangling the different components in
the time–frequency plane, as well as of reconstructing the corre-
sponding waveforms.

Index Terms—Delaunay triangulation, filtering, spectrogram,
time–frequency analysis.

I. INTRODUCTION

S PECTROGRAMS—i.e., squared magnitudes of

Short-Time Fourier Transforms (STFTs)—are among the

simplest and most natural tools for performing a time-frequency

(TF) analysis of signals [8]. In the case of nonstationary signals

with a limited number of components (e.g., AM-FM-type

waveforms and/or impulse-like transients), spectrograms are

relatively sparse representations, with a few energy ribbons

localized along the TF trajectories of the different compo-

nents. In the model-free situations we are interested in here,

filtering those components is generally achieved by identifying

non-parametrically the TF domains defining the ribbons, and

then reconstructing waveforms by inverting the transform after

masking.

This long-standing question has recently received a renewed

interest, either because of the development of specific tech-

niques such as “synchrosqueezing” [1], [6], [21] for which

isolating domains of influence is a pre-requisite to reconstruc-

tion [19], or because of new proposals such as “contours” [18]

for defining basins of attraction attached to components. In

most cases, the rationale for identifying “signal regions” is
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based on local energy considerations and/or curves such as

ridges [7] which are supposed to capture local energy con-

centration. In contrast with such approaches based on large
values of the representation, we will propose here to make
use of zeros as characteristic points. Two main features of the
proposed approach are that (1) it allows for an unsupervised
disentangling and identification of individual components (in
contrast with simple schemes based on energy thresholding),

and (2) its geometrical, non parametric rationale makes it

rotation5invariant in the TF plane, with a similar ability to deal
with impulse-like transients signals (with almost “vertical”

TF signatures) and AM-FM-type waveforms (with almost

“horizontal” ones).

The paper is organized as follows. Section II is devoted to

STFT/spectrogram, with basics recalled in Section II-A and el-

ementary facts on the white Gaussian noise case in Section II-B.

Section III then discusses more specifically the role played by

zeros in a STFT/spectrogram: Section III-A justifies the com-

plete representation they offer for a proper choice of the short-

time window, whereas Section III-B suggests the Delaunay tri-

angulation based on zeros as a way of getting a simplified de-

scription. This paves the way for the new filtering approach that

is discussed and illustrated in Section IV.

II. STFT AND SPECTROGRAM

A. Definitions and Basics
Given a signal and a window , the STFT

is classically defined as the inner product between and

shifted versions (in time and frequency) of , i.e., as

, where stands for some joint TF

shift operator. For a sake of simplicity and symmetry, we fix

here in reference to theWeyl operator, [4], [5], thus ending
up with the explicit definition:

(1)

The corresponding spectrogram simply follows as:

(2)

It is well-known that and are not any 2D

functions since that, by construction, they inherit some struc-
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ture from their definition as inner products. More precisely, the

STFT (1) satisfies the reproducing identity:

(3)

in which the reproducing kernel is (up to a mul-

tiplicative term) nothing but the STFT of the window:

(4)

An equivalent formulation amounts to rewriting as

, with

(5)

the so-called ambiguity function, [8]. Doing so, it is easy to jus-
tify that any STFT (or spectrogram) has necessarily some local

redundancy since the reproducing kernel (4) cannot be arbi-

trarily peaked in both time and frequency. This follows from

general uncertainty relations attached to ambiguity functions in

terms of support and/or volume (see, e.g., [17] or [13] for precise

formulations). The consequence of these inequalities is that the

reproducing kernel (4) has necessarily some non-zero extension

that controls the local redundancy of the STFT/spectrogram. In

the particular case of the (unit energy) Gaussian window1

(6)

which is referred to as “circular” since

(7)

the reproducing kernel is maximally concentrated and defines an

“influence domain” which is circular and whose radius is given

by some effective area attached to the 2D Gaussian function of

variance 2.

B. Spectrogram of White Gaussian Noise

Whereas the spectrogram is classically defined for finite en-

ergy, deterministic signals, it can also be used for the analysis of

finite power, harmonizable random processes [8]2. More specif-

ically, we will restrict to the idealized case of zero-mean, ana-

lytic, white Gaussian noise such that:

(8)

It readily follows from (2) and (8) that the expected value of the

spectrogram is in this case constant:

(9)

1In the Physics literature (see, e.g., [15]), the corresponding spectrogram is

referred to as the “Husimi distribution function” [14].

2Wewill here formally apply the definition (2) to finite duration realizations of

such stochastic processes, looking at statistical properties of the corresponding

spectrogram characteristics.

whereas the covariance between spectrogram values at two

different locations in the TF plane only depends on the cor-

responding lags in both time and frequency, according to the

relation:

(10)

In the specific case of the circular Gaussian window (6), this

covariance takes on the simple form

(11)

where measures

the Euclidian distance in the plane between the two considered

points.

As a function of this only distance, the spectrogram of white

Gaussian noise can then be considered as a second-order homo-

geneous (or stationary) field. This homogeneity property carries

over to characteristic points of the surface (such as extrema, be

they local maxima or zeros). However, due to the reproducing

kernel structure recalled above, the distribution of those charac-

teristics points is expected to be constrained as well.

III. SPECTROGRAM ZEROS

A. The Bargmann Connection

Time and frequency are usually considered either indepen-

dently or jointly, but it might be interesting to see them as

coordinates of a complex-valued variable, thus identifying the

TF plane with the complex plane. Doing so by introducing

, a direct calculation shows that, when evaluated

with the circular Gaussian window defined in (6), the

STFT (1) can be re-written as:

(12)

where

(13)

and

(14)

This corresponds to the Bargmann factorization of the STFT,

with (13) the Bargmann transform [2], whose kernel is given

by (14). One interest of such a companion formulation for the

STFT is that (13) is an entire function, with consequences on

the structure of the STFT and the associated spectrogram. More

specifically, since the circular Gaussian window (6) is normal-

ized so as to be of unit energy, this immediately results in the

upper bound . Together with the factoriza-

tion (12), this leads to

(15)
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Fig. 1. Spectrogram and Delaunay triangulation. Left: In the case of white
Gaussian noise, the Delaunay triangulation constructed upon the zeros of the

spectrogram reveals an homogeneous distribution of random triangles. Right:

when a signal (namely, an impulse followed by a chirped Gaussian in this ex-

ample) is superimposed to noise, the distribution of the Delaunay triangles re-

mains unaffected in noise-only regions, whereas the “signal domains” are char-

acterized by more elongated triangles, with some edges longer than expected in

the noise-only case.

i.e., to the fact that is an entire function of order 2 [3]. As

a consequence, it admits a Weierstrass-Hadamard factorization

of the form [3], [12], [15], [22]

(16)

where the variables stand for the (infinitelymany)

zeros of the Bargmann transform which, by construction, also

correspond to the zeros of the STFT and of the spectrogram.

Although (16) is unlikely to be used as such for a possible re-

construction, its meaning is that the Bargmann transform (and,

hence, the associated STFT/spectrogram) is completely charac-

terized by the distribution of its zeros.

B. Delaunay Triangulation

Since zeros completely characterize a STFT, it is expected

that their distribution in the TF plane—the so-called “stellar

representation” in Quantum Mechanics [16] (see also [12] for

a related TF perspective)—evidences distinctive properties

attached to the nature of the analyzed signal. In this respect,

we can therefore get a simplified, geometrical description of

the TF structure of a signal by looking at diagrams connecting

STFT/spectrogram zeros, the simplest one being the Delaunay
triangulation, [20].
An example of a Delaunay triangulation attached to the col-

lection of STFT/spectrogram zeros in the case of white Gaussian

noise is given in Fig. 1 (left diagram). Since the stationarity of

the analyzed white Gaussian noise results in the homogeneity

of the 2D random field defined by the STFT/spectrogram (see

Section II-B), the distribution of zeros is itself homogeneous

all over the plane, a situation that is expected to be broken

whenever some signal—with a coherent TF structure, such as

a frequency modulation—happens to be superimposed. As evi-

denced in the same Fig. 1 (right diagram), this is exactly what

happens: when a signal (impulse + AM-FM chirp) is added to

the noise of the left diagram, the noise-only regions remain unaf-

fected whereas the “signal domains” are characterized not only

by large spectrogram values but also by Delaunay triangles that

are more elongated and with longer edges than in noise-only

regions.

Fig. 2. Delaunay triangulation—Distribution of edge lengths. In the case of
white Gaussian noise, the distribution of edge lengths in Delaunay triangles con-

structed upon spectrogram zeros (top: linear scale; bottom: logarithmic scale)

is essentially bounded above by a maximum length (full line).

Moreover, the probability that the edge length exceeds the value 2 (dotted line)

is about .

IV. TIME-FREQUENCY FILTERING

A. Rationale

Both the theoretical considerations of the previous sections

and the evidences of Fig. 1 suggest that signal domains can

be identified by looking at Delaunay triangles that depart

from the expected behavior attached to noise, thus calling for

a characterization of this reference situation. In this respect,

Fig. 2 displays the distribution of edge lengths of Delaunay

triangles constructed upon STFT/spectrogram zeros in the

nominal case of white Gaussian noise. What is evidenced is

that such a length is essentially bounded above by a maximum

value , with a very low probability to exceed,

e.g., 2 (referring as the distance between

any two zeros and , a numerical evaluation shows that

). Selecting Delaunay triangles on

the basis of thresholding their maximum edge length is therefore

a simple way of identifying elementary signal domains whose

concatenation defines supports—delineated by zeros—for TF

1/0 masks to be applied to STFT prior reconstruction of the

corresponding signal components.

B. Algorithm

Based on the elements obtained above, the TF filtering

algorithm is quite straightforward and can be summarized as

follows:

1. Perform Delaunay triangulation over STFT zeros ;

2. Identify outlier edges such that ,

with the threshold chosen typically as ;

3. Keep triangles with at least one outlier edge;

4. Group adjacent such triangles in connected, disjoint do-

mains ;

5. Multiply STFT with labeled 1/0 masks ;

6. Reconstruct the disentangled components, domain by do-

main, by using the standard formula:

(17)
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Fig. 3. Time-frequency filtering—Synthetic signal example (1/2). Top
left: spectrogram of a Hermite function embedded in white Gaussian noise

( dB). Bottom left: Delaunay triangulation constructed on the zeros

of the spectrogram, with outlier edges (see text) highlighted as thicker lines.

Bottom right: time-frequency domains obtained by concatenating adjacent

Delaunay triangles with outlier edges, each domain being labeled by a different

grey level. Top right: masked spectrogram when retaining as domain the central

ribbon.

Fig. 4. Time-frequency filtering—Synthetic signal example (2/2). Top:
noisy observation. Bottom: reconstructed waveform obtained by inverting

the masked STFT of Fig. 3 (top right), together with the noise-free Hermite

function for a sake of comparison.

C. Examples

The first example consists in a Hermite function (of order 17),

whose TF “trajectory” is known to be a circle [9] (a situation

that cannot be easily parameterized within the frameworks of

AM-FM signals as considered, e.g., in [7], [21] or [23]). The

overall filtering procedure (triangulation, selection of outliers,

grouping and masking) is summarized in Fig. 3, with the cor-

responding reconstruction result in Fig. 4, evidencing a gain of

about 16 dB.

Fig. 5. Time-frequency filtering—Real data example (1/2). Left: spec-
trogram of the benchmark “bat signal”. Middle: Delaunay triangulation

constructed on the zeros of the spectrogram, with outlier edges (see text)

highlighted as thicker lines. Right: time-frequency domains obtained by

concatenating adjacent Delaunay triangles with outlier edges, each domain

being labeled by a different grey level.

Fig. 6. Time-frequency filtering—Real data example (2/2). Top row:
masked spectrograms of the 3 main components identified in Fig. 5. Middle

row: the corresponding waveforms obtained by inverting the respective masked

STFTs. Bottom row: superimposition of the above 3 components, together with

the original signal for a sake of comparison.

The second example corresponds to the classical benchmark

“bat signal”3, whose spectrogram and Delaunay selection of

the domains corresponding to the different components are pre-

sented in Fig. 5, with individual reconstructions of the 3 main

ones plotted in Fig. 6, together with their recombination to be

compared to the complete waveform.

V. CONCLUDING REMARKS

A new approach to TF filtering has been proposed, based on

identifying spectrogram zeros rather than thresholding energy

levels. The advantage is expected to be threefold: (1) anchoring

signal domains to zeros allows them to be maximally large

and capture all of the component information; (2) grouping

Delaunay triangles prior filtering permits an unsupervised

disentanglement of signals into labeled components; (3) being

purely geometrical, the approach is naturally rotation-invariant

in the TF plane, with an equal ability to deal with TF trajectories

of any orientation (be they almost “vertical” for impulse-like

transients or “horizontal” for AM-FM-type waveforms). Only

the rationale of the approach has been presented here, with

examples supporting its effectiveness. Further studies will be

needed, e.g., to tune the edge length threshold which controls

the detection/false alarm trade-off, as well as to better assess its

performance and compare with competing methods.

3Thanks to C. Condon, K. White and A. Feng of the Beckman Institute of the

University of Illinois for the bat data and for permission to use it in this paper.
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