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The synchrosqueezed transform was proposed recently in [Daubechies et al. (2009)] as
an alternative to the empirical mode decomposition (EMD) [Huang et al. (1998)], to
decompose composite signals into a sum of “modes” that each have well-defined instan-
taneous frequencies. This paper presents, for synchrosqueezing, a study similar to that
in [Rilling and Flandrin (2008)] for EMD, of how two signals with close frequencies are
recognized and represented as such.
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1. Introduction

The empirical mode decomposition (EMD) algorithm, first proposed in [Huang
et al. (1998)], made more robust as well as more versatile in [Huang et al. (2009)],
is a technique that aims to decompose functions into their building blocks, when
the functions are the superposition of a (reasonably) small number of components.
The components are assumed to be well separated in the time-frequency plane,
and all of them are with slowly varying amplitudes and frequencies. The EMD has
already shown its usefulness in a wide range of applications including meteorology,
structural stability analysis, and medical studies — see [Huang and Wu (2008)]. On
the other hand, the EMD algorithm contains heuristic and ad hoc elements that
make it hard to analyze mathematically.
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The paper by [Daubechies et al. (2009)] proposed and analyzed a method called
synchrosqueezing that captures the flavor and philosophy of the EMD approach,
albeit using a different approach in constructing the components. A precise math-
ematical definition for a class of functions that can be viewed as a superposition
of a reasonably small number of approximately harmonic components was given,
and for functions in this class, it was proved that the method succeeds indeed in
decomposing arbitrary functions belonging to this class.

Synchrosqueezing by definition is a highly nonlinear operator the behavior of
which is sufficiently complicated to generate some interesting phenomena. In this
paper we demonstrate such an interesting phenomenon, also observed for EMD.
When a signal is composed of two components with close instantaneous frequencies,
EMD exhibits a beating phenomenon [Rilling and Flandrin (2008)]. More precisely,
if a signal is composed of two harmonics, i.e., f(t) = cos(27t) +a cos(2w&pt), Rilling
and Flandrin [2008] show an interesting zone in the a vs. £ plane (amplitude vs.
frequency plane) where EMD misidentifies the sum of two components as only a
single component; the precise shape of this zone depends on the value &j. They also
quantified this phenomenon carefully and called it beating, because EMD “identi-
fied” the two harmonics as a single oscillating (i.e., beating) signal. Here, we study
this phenomenon for the EMD-inspired synchrosqueezing. We provide numerical
results as well as an analysis of these results.

2. Synchrosqueezing

Synchrosqueezing was originally introduced in the context of analyzing auditory
signals [Daubechies and Maes (1996)]; in [Daubechies et al. (2009)] it was shown to
catch the flavors of EMD [Daubechies et al. (2009)]. It is in fact a special case of
reassignment methods [Auger and Flandrin (1995); Chassande-Mottin et al. (2003,
1997)]. In synchrosqueezing, one reallocates the coefficients resulting from a contin-
uous wavelet transform based on the frequency information, to get a concentrated
picture over the time-frequency plane, from which the instantaneous frequencies are
then extracted. Special properties of synchrosqueezing include that (1) it is adap-
tive to the given signal; (2) the signal can be reconstructed from the reallocated
coefficients. We refer the readers to [Daubechies et al. (2009)] for the motivation,
details of the algorithm, and detailed discussion. We briefly list the main steps of
the algorithm here.

(1) REQUIRE: A signal f(t); a mother wavelet ¢(t) with suppt)(€) C [1—A, 1+A],
where A small enough;

(2) (Step 1) Calculate the continuous wavelet transform Wy (a,b) of f.

(3) (Step 2) Calculate the instantaneous frequency information w(a, b).

(4) (Step 3) Calculate the synchrosqueezed function S¢(&,b) over the time-
frequency plane.
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(5) (Optional) Extract dominant curves from S¢(&,b).
(6) (Optional) Reconstruct the signal as a sum of components, one for each
extracted dominant curves.

3. Numerical Experiment

In [Rilling and Flandrin (2008)], the beating phenomenon stemming from the local
extremal points detection (part of the EMD procedure) was studied and reported
in detail. Since synchrosqueezing has been shown to be similar to EMD [Daubechies
et al. (2009)], it would be interesting to study its behavior in the same situation,
and to see whether it exhibits a similar beating phenomenon. For some signals, it
is not immediately clear whether they should be decomposed into a sum of several
simple summands, like sinusoids, or be preserved and viewed as a single modulated
signal. If an oracle were whispering in our ear information about the underlying
physical rule, it would be easy to decide. However, in general, no such oracle is
available, and we have only the signal itself as a guide; the information we read
from the signal may, however, depend on the algorithm we use. Thus, the first step
toward the answer to this question is understanding how the algorithm reacts to
the simple case where the signals are the composite of two harmonic functions with
different frequencies.

Consider two discrete time harmonic signals fi[n] = cos(2r%) and fa[n] =
Acos(2m€p7) (where 1/T is significantly larger than the Nyquist rate — 1 in this
case — to avoid any possible confounding) with A > 0 and 0 < § < 1. We run
the synchrosqueezing algorithm to analyze f[n] = fi|n] + f2[n] and ask the same
questions as in [Rilling and Flandrin (2008)], namely: given f[n] = fi[n] + f2[n],
(1) “When does synchrosqueezing retrieve the two individual tones?,” (2) “When
does it consider the signal as a single component?,” and (3) “When does it do
something else?.”

We introduce the following “error function” e to measure how accurately the
synchrosqueezing can extract f;

S [RS5 (6, b;) — RSy, (6, b,)IRSy, (&, b)]
Sy, Sp) = =1 , 1
“(57.55) >, IRS7, (6, b)) W

where {¢} and {b;} are numerical discretization when calculating Sy and Sy, .
Note that the numerator is close to zero if the synchrosqueezed result Sy of the
composite signal f = fi + f2 gives the right result Sy, in the area where Sy, is
mainly supported, i.e., when synchrosqueezing succeeds in separating the signals.
By its definition, e is a function depending on A and &.

We fix T so that the sampling rate is 50 Hz, and sample for 20 seconds, ¢ € [0, 20].
Since the width of the support of ’(/AJ, the Fourier transform of the mother wavelet
1), is important in the synchrosqueemng7 we test the signal based on two different
mother wavelets 17 and 12, where 1/)1 has a larger support than ’(/JQ (Fig. 1). The
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Fig. 1. (a) 4 and (b) .

“continuous wavelet” transform is approximated by discretizing a, dividing every
octave (i.e., an interval, in log scale, between a and 2a) into 32 slots, equispaced in
log scale. We consider & € [0,1] and A € [10~1,10%4]. The results, using 11, resp.
1) as the mother wavelet, are shown in Figs. 2 and 3, respectively. The z-axis in both
figures is the amplitude a, represented in log scale (from —1 to 2), and the y-axis is
the frequency, represented in linear scale (from 0 to 1). The beating phenomenon
shows up, as expected, when the frequency f is close to 1 and the amplitude a is
large: in this case, the synchrosqueezing fails to extract two components. Moreover,
the smaller the support of 1[) is, the better will be the separation result. Also note
that when & = 1, e = a. That explains why we see a smoothly increasing error
when & = 1.

As for EMD, it appears that synchrosqueezing evidences a nonsymmetric behav-
ior with respect to the amplitude parameter, separation becoming increasingly
difficult when a is increased. However, unlike what is observed for EMD, we do
not see a sharp transition from zone 1 to zone 3 when a increases, as shown in
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Fig. 2. Here, we use 1 in the synchrosqueezing algorithm. (a) The graph of the function
e(Sy,Sy,) defined by Eq. (1). The higher the value of e(Sy, S, ), the worse the separation and
(b) the 2D projection figure of the function e(Syf, Sy, ).
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Fig. 3. Here, we use @1 in the synchrosqueezing algorithm. (a) The graph of the function
e(Sf,Sy,) defined by Eq. (1). The higher the value of e(Sy, Sy, ), the worse the separation and
(b) the 2D projection figure of the function e(Sy, Sy, ).

Fig. 4. Theoretically, when & is less than the threshold depending on the mother
wavelet, as we derive in the next section, synchrosqueezing can distinguish the two
components. The other difference is when the amplitude a is small. We see that syn-
chrosqueezing can separate the two components more effectively than with EMD.
In fact, no matter how small a is, when & is close to 1, EMD get confused, as can
be seen in the transition area from zone 1 to zone 2 in Fig. 4.

It would be interesting to understand what feature of synchrosqueezing makes
the error large in these regimes. In Fig. 2, for instance, keeping the amplitude fixed
at @ = 1 and increasing & from 0 to 1, we see that synchrosqueezing becomes
increasingly “confused,” since the error e increases. Figure 5 shows plots of log(1 +
|S¢(b,&)|) for the corresponding synchrosqueezed transforms S (b, ), for different
values of &. When & = 0.9, i.e., fa(t) = cos(2m x 0.9t), it is difficult to read
off from the synchrosqueezed transform whether the signal is composed of one or
two components, because the curve(s) in the dominant region keeps merging and
splitting up again, as time progresses. This beating phenomenon, stemming from
the nonlinearity of synchrosqueezing, is quantitatively described in the next section.

4. The Beating Phenomenon

Consider the continuous model: fi(t) = cos(2nt), fa(t) = acos(2m&opt), and f(t) =
fi(t) + fa(t), where ¢ > 0 and 0 < & < 1. Pick a wavelet ¢y € C* so that
suppy = [1 — A, 14+ A], [a "(a)da =1 and & < H_ﬁ‘ The continuous wavelet
transforms of f; and f are then
Wi, (a,0) = Vai(a)e”
and
Wy (a,b) = Va[ih(a)e® + aph(a&y)e®®]
Over the region Z;, = {(a,b) € R2:/ai)(a)e™ # 0}, by definition we have
wf (a,b) =1 forall (a,b),



34 H.-T. Wu, P. Flandrin € I. Daubechies

-1 logiga

log; ga

(c)

Fig. 4. Reproduction of Figs. 2 and 7 from [Rilling and Flandrin (2008)] given here to com-
pare with Figs. 2 and 3. This figure considers the same signal, cos(27t) + acos(27 ft), where
a € [1071,10%] and f € (0,1); note that the amplitude is denoted by the lowercase a and the
frequency is denoted by the lowercase f. For details on the exact parameters used in the EMD
algorithm, see [Rilling and Flandrin (2008)]. (a) The error as a function of amplitude and fre-
quency; (b) The 2D projection onto the (a, f)-plane of amplitude and frequency; (¢) Summary
of [Rilling and Flandrin (2008)]. Three zones with different behaviors can be distinguished: (1)
the two components are separated, (2) they are considered as a single signal, and (3) EMD does
something else ((© [2008] IEEE).
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Fig. 5. Here, we use 91 in the synchrosqueezing algorithm. (a) f(t) = cos(27t) 4 cos(27 x 0.5t);
(b) f(t) = cos(2nt) + cos(2m x 0.7¢t); and (c) f(t) = cos(2mt) + cos(2w x 0.9¢).
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and over the region Z; = {(a,b) € R? : /ah(a)e™® + ay/arh(a&o)e™ # 0} we have
Vad(a)e® + ago/aip(ago)e™
Vap(a)e® + ay/ap(ago)etto

Since &y < 1+A7 it follows that afy <1 —A when 1 — A < a < 14+ A. On the other
hand, when 1 — A < a§y < 1+ A we have a > 1 + A. In conclusion, we have

wy(a,b) =

1 when 1 —A<a<1+A
wyr(a,b) =< & when 1 — A <ay <1+ A

not defined otherwise.

As a result,
cos(2mb)0(§ — 1) when £ =1
RSp (§,0) = { .
0 otherwise,
and
cos(27mb)o(€ — 1) when § =1
RS¢(&,b) = < acos(2mEeb)d(€ — &) when & = &
0 otherwise,

which imply that after proper discretization, the error function vanishes, i.e.,
e(Sf,S¢,) = 0. In other words, synchrosqueezing can theoretically separate any
combination of two different harmonics if A can be picked sufficiently small.
However, in practice, A is fixed ahead of time; as shown in Sec. 3, the beat-
ing phenomenon then shows up when the frequencies of two composite harmonic
functions are too close.
For fixed A, the case 1+A < & < 1 will arise for some &. Fix & so that & 1+A <

& < 1. When 1 — A <a <1+ A, it follows that (11+A < a& < (14 A), which

means wy(a,b) will contain frequency information from both fi and fo. Indeed,
after defining wy(a,b) over Z(b) = {(a,b) € R?:4p(a)e® + ah(alp)e’ # 0}, we
have

wr(a,b) — 1] =

b(a)e™ + aoip(ao)e™s .
¥(a)e® + arp(aky)eiéo

a(§o — 1)ih(agy)ee
zﬁ(a)eib + atp(a&y)eiéo

a(1 — &) (ago)
V@20 (ago) + 02 (a) + 2ath(ao)(a) cos(b(1 - &))
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Thus, synchrosqueezing gives

RS (1,b) = %/Wf(a,b)a_3/25(|wf(a,b) ~1))da

1+A
B /1_A “ X{a<1 A} {>1+A da] cos 27b
8
0 17
+ a a w(afo)X{K%}u{w%}da] acos2méob

) A
= [ a_lw(a)da] cos 2mh — [/ R a_lw(a)da] cos 27b.

o

Similar argument shows that

(1—% )1/3(0&)

|wf(a7b) _§0| = — ~
V4202 (ago) + 02(a) + 2ath(ago)b(a) cos(b(1 — &)

)

A 1+A
RS (&o,b) = [/ a_llp(a)da] a cos 2wépb — l/ﬂ a_lw(a)dal a cos 2wéob.

This means that when 1 1+—A <& < 1, RS¢(1,b) is attenuated by the presence of fo
and NS¢ (&o, b) is attenuated by the presence of fi. In particular, when 0 < 1—-§p <
1, RS¢(1,b) and NSf(&o, b) are both almost zero. This result explains why the error
is small when 0 < £y —1 < 1 compared with other & € (ﬁ—ﬁyfo) (see, e.g. Fig. 3).
Moreover, the calculation shows that when two components have close frequencies,
synchrosqueezing cannot separate them.

Note that since w(a,b) is defined over Z(b), we need not worry about whether
the denominator of |wy(a,b) — 1| is zero.

We can likewise consider |w¢(a,b) — &| for £ # 1, &o:
(1 —&)9(a)e® + a(é — )ib(ay)e™
(a)e?® + agh(agp)eteo

(1 = ©)1(a)e™® =) + a(& — )1 (ao)
P(a)eit(1=60) + arp(aky) '

|wy(a,b) =&l =

We can have |w¢(a, b) —&| = 0 only if the numerator of the fraction is real, i.e., when
b= 15’207 where k € Z. To observe what is going on, we take 1/3(5) = e"f’”g/",
where o is small, to facilitate the calculation. (To be a “true” wavelet, 1 should
satisfy 1[)(0) = 0, which is not strictly the case here, but it is true for all practical

purposes if o is sufficiently small.) Thus, when b = 11320’ the numerator becomes
|(~D)F(L = e VY7t a(y — e (o e),
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When £ is even, we thus need to solve the following equation for a:
(1 €)e™ V7 4 a(gy — e~V — 0, (2)
This can have a solution only when & < ¢ < 1. (Recall that we consider

only & < 1; & > 1 can be dealt with by similar argument.) We obtain a =
1—&o£/(1-60)2+ (65 —1)Ce a(§—%o).
2 1_5

, where C, = ogln ; this has a real solution for a only

1-gp |
when (1 — &) + (§ — 1)C. > 0, that is, when & € (&, (1 + ae"<1+500>) 1(1 +

1-&o
a&pe 7T en) )] =1.
60—/ &P @10, JEarge: |
Denote ae; = 1—80—+/(1-80)?+(&—-1)C and ap = 1—8o++/(1—80)2+(§5 1

1758 1 Eo
the two solutions of a of Eq. (2) when £ € I. Note that since ﬁ <& <El

and A < 1, we know a.; < ﬁ < ﬁf — % < 1 — A. In conclusion,
when £ € I, and b = 1’20, with & even, then Sf(¢,b) can be written down

explicitly as
0= / Wi (a,b)a*?5(|wy (a, b) — &|)da
- [/ a'P(a)d(|lwy(a,b) — §|)da] ei2mb
+ [/ a " P(ago)d(Jwy (a, b) — §|)da] o
Ly gk

kT a
= ——1(ae,2)e' 0 + —(ac2bo)e’ 0.
Qe 2 Qe 2

Similarly, when k is odd, we need to solve the equation
(€ = e V7 a(g — eV =0, (3)

In this case, the solution a exists when £ > 1 or £ < &. Similar argument gives

1—£ot/(1—E0)2+(E2-1)C, _ . .
us @ = ZS0EVK 1Eog)2+(£0 ) , where C, = aln%. The solution a is real
1-¢&op 0 1-&o 1 1-¢&op
when a < e”0%%0) and £ € [(e"TFe0) — a)" ' (e"(Fe0) — a&y),00) = I, 1, or when

1-&o 1-¢o 1-¢o
ao > €707 and € € (0, (a — 7T ) (o — eTTHD)) = I, .

L — RY 2_1)C, _ — 3 T )0,
Denote ap; = 1-% (11505)2+(£0 DC and oz = 1-8o+y/(1 go)2+(50 DG
0
1-&o
the two solutions of a of Eq. (3) when a < e"0+€0) and & € I, 1, or when a&y >
eTFEST and £ € I, 2. Note that a,1 < 1+£o < ﬁg = LA < 1~ A.In conclusion,

when £ € I, ; and ae"<1+50> <1 (or when ¢ € I,, 5 and ae"“jr&o) >1/&),b= 1’1720 Kk




38 H.-T. Wu, P. Flandrin € I. Daubechies

odd, S¢(&,b) can be written down explicitly as

1 - jkx a -~ ; Eokm
Sp(8,0) = —v(ao2)e’ ™% + —(a,260)e" 5.
Qo,2 Ap,2
Putting together all the above explains what we see in Fig. 5: when b = k even,

1 5 J
suppS¢(&,0) = {£:5¢(&,b) # 0} C I, and when b = k’g k odd suppSy(§,b) =
{€:5¢(&,b) #0} C 1,1 or 1,5 depending on a. Since I, 1 NI, = 0 and I,o NI = 0,
we conclude that when & > }jr—ﬁ, S¢(&,b) exhibits an oscillating pattern, which
prevents us from telling either the signal is composed of one or two components.
Note that the spreading of the support suppSy(§,b) depends on not only &, but
also on a and o.

5. Conclusion

This study has considered how synchrosqueezing behaves in signals consisting of
two harmonic functions with different frequencies and amplitudes, i.e., f(t) =
f1(t) + fo(t) = cos(27t) + acos(2wét). Since synchrosqueezing is a nonlinear and
adaptive method that captures some of the features of EMD, it is interesting to
assess in what aspects they differ and how much they share. Guided by the signal,
synchrosqueezing gives an analysis that is as intuitive as that given by EMD. How-
ever, the difference of synchrosqueezing and EMD can be noticed in the result of
applying them to f(t) = f1(t) + f2(t). In particular, the reaction of synchrosqueez-
ing is different from that of EMD, especially when the amplitude a is small, i.e.,
the transition from zones 1 to 2 in Fig. 4; when the amplitude a is larger, there is
no sharp transition as in EMD as can be seen in the transition area from zone 1
to zone 3 in Fig. 4. Moreover, as predicted in Sec. 4, the smaller the support of ’(/AJ,
the more accurate the separation of the two components Thus, we can answer the
questions we asked in the beginning: when &, < 1 T A, where suppw C[1-A,144],

synchrosqueezing can retrieve the two individual tones, otherwise synchrosqueezing
gets confused.

Compared with EMD, which highly depends on local extremes, synchrosqueez-
ing depends on the continuous wavelet transform and reassignment. This partially
explains why the result of synchrosqueezing and EMD is different when applied to
f(t) = f1(t) + f2(t). One resource of the beating of synchrosqueezing is its ability
to extract nonharmonic component. This can be seen clearly through the calculus
of variation interpretation provided in [Daubechies et al. (2009)]. The calculus of
variation interpretation says that if the given function f is in the proper function
class A 4, which is composed of finite well separated intrinsic mode type functions,
then its synchrosqueezed wavelet transform Sy (&, b) approximates the minimizer of
the following functional

/ ‘%e { [ Fe b)d&} = 5| b [[oren -icrenrm @
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The motivations of this functional come from reconstructing the given function
from its decomposition and the following relationship

Dpeitt = jgetct, (5)

A close look into Eq. (4) tells us that the second term helps to relax the frequency
notion in Fourier transform. It is this relaxation that help synchrosqueezing to
extract intrinsic mode type “building block” functions from a given function in the
proper function class A q. Further, it is this relaxation that generates the beating
phenomenon.

The model analyzed here is of course oversimplified, so as to make it feasible to
compute |w(a, b) —&| = 0; nevertheless, this simplified model helps us to understand
more details of the synchrosqueezing algorithm.
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