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Abstract 

The aim of this paper is to illustrate some applications of HOS within the context of chaotic time series analysis. After 
reviewing briefly some of the most popular methods and approaches used in chaotic signal analysis, we show how HOS 
may lead to some significant improvement. First, an HOS expansion of the mutual information is shown to provide an 
easy way to estimate the reconstruction delay that must be used in the embedding reconstruction method. Then, 
a fourth-order extension of the local intrinsic dimension analysis (LID) is proposed. The ability of this HOS extension to 
separate between chaotic and stochastic behaviour is illustrated by examples on simulated data and experimental time 
series. 

Zusammenfassung 

Ziel dieses Beitrags ist die Illustration einiger HOS-Anwendungen im Zusammenhang mit der Analyse chaotischer 
Zeitreihen. Nach einem kurzen Riickblick auf die bekanntesten Methoden und Ansltze, die man zur Analyse chaotischer 
Signale verwendet, zeigen wir, wie HOS zu bedeutenden Verbesserungen fiihren kbnnen. ZunHchst wird gezeigt, da8 eine 
HOS-Entwicklung der gegenseitigen Information einen einfachen Weg zur SchPtzung der Rekonstruktionsverz6gerung 
bietet, die man in der eingebetteten Rekonstruktionsmethode anwenden mul3. Dann wird eine Erweiterung vierter 
Ordnung fiir die Analyse lokaler intrinsischer Dimension (LID) vorgeschlagen. Die Fiihigkeit der HOS-Erweiterung zur 
Trennung zwischen chaotischem und stochastischem Verhalten wird durch ein Beispiel mittels simulierter Daten und 
experimenteller Zeitreihen illustriert. 

Rbumi! 

Le but de cet article est de presenter quelques applications des SOS dans le contexte de l’analyse des siries temporelles 
chaotiques. Apris une br&ve r&vision de quelques-unes des mCthodes et approches les plus populaires utilis6es en analyse 
des signaux chaotiques, nous montrons comment les SOS peuvent conduire g des amtliorations significatives. Tout 
d’abord, on montre qu’une expansion en SOS de l’information mutuelle fournit un moyen aist: pour estimer le d&lai de 
reconstruction qui doit Ctre utilisi: dans la mkthode de reconstruction par immersion. On propose kgalement une 
extension au quatrikme ordre de l’analyse de la dimension intrinskque locale (DIL). La capacitk de cette extension SOS 
$ discriminer entre comportements chaotique et stochastique est illustrk par des exemples & partir de donn6es simul& 
et de sCries temporelles exp&imentales. 
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1. Introduction 

When dealing with signals that exhibit irregular 
behavior, the most widely accepted approach con- 
sists of modelling it as the realization of some 
stochastic process. Until recently, this approach 
was the only one available. In such models, irregu- 
larity is implicitly associated with randomness 
within a generation mechanism. In this respect, one 
of the most common paradigms of signal process- 
ing consists in describing an irregular signal as the 
output of a linear system driven by a purely 
stochastic process, usually white Gaussian noise. 

However, although such an approach may prove 
extremely useful in numerous engineering prob- 
lems, it is nowadays well-recognized that, in some 
cases, irregularity may also stem from some purely 
deterministic (i.e., non-random) non-linear systems, 
exhibiting a very high sensitivity to initial condi- 
tions. This situation is referred to as chaos. Chaos 
offers therefore a new paradigm and it allows one 
to describe the corresponding signals from a com- 
pletely new perspective, thus requiring the develop- 
ment of specific analysis tools. (General references 
concerning chaos and its analysis are, e.g., Cl, 4, 13, 
29, 32, 351). Most of the studies aim at measuring 
chaos that may be embedded in noise, but rely on 
the assumption that the underlying process is ac- 
tually chaotic. In these studies,fiactional dimension 
plays a key role. However, it has been recently 
shown that a fractional dimension is not a feature 
of chaotic signal only. As an example, AR( 1) or l/fd 
processes [30,4] may exhibit a low-dimensional 
and non-integer fractal dimension in the recon- 
structed phase space, although they are purely 
stochastic processes. 

Because of the nature of chaos (non-linear sys- 
tems, non-Gaussian statistics, . . . ), higher-order 
techniques are likely to play an important role in 
algorithms aimed at chaotic signals. It is the pur- 
pose of this paper to provide a brief introduction to 
chaotic signal analysis and its main algorithms 
(some classical, some new), emphasizing the useful- 
ness and the relevance of higher-order concepts in 
this context. The detection problem (does the sys- 
tem present any chaotic behavior?) rather than the 
estimation problem (what are the characteristics of 
the observed chaotic system?) is emphasized. 

In the next section, basic definitions and proper- 
ties of chaos are briefly given. The whole study 
presented in this paper will be based on a recon- 
struction of the phase space of chaotic attractors, 
performed by using the celebrated time-delay em- 
bedding method. In Section 3, this latter embed- 
ding method is briefly reviewed and the role of 
HOS in the experimental determination of the em- 
bedding parameters is examined. A new insight into 
the interpretation of local intrinsic dimensionality 
(LID) is provided by the use of independent com- 
ponent analysis (ICA) [9]. This method, based on 
fourth-order cumulants, is shown to bring a partial 
answer to the deterministic versus stochastic 
separation problem, one of its most important fea- 
tures being that ICA relates directly to the under- 
lying dynamical system, whereas the Grassberger- 
Proccacia Algorithm, for instance, is a measure of 
geometrical properties of the attractor. 

2. A brief review of chaos 

2. I. DeJinitions 

An observed signal x(t) is usually considered to 
partially represent information about a stochastic 
process (a realization). Here we will rather view it as 
partial information related to the deterministic 
evolution of a dynamical system. By definition, 
a dynamical system is characterized by a state 
XE R”, whose time evolution is governed by a uec- 
tar jield f: R” + R” according to the differential 
equation 

p=,w. 

The number n of coordinates in the state vector 
X characterizes the number of degrees of freedom 
involved in the system and the whole space to 
which X is allowed to belong is called the phase 
space. Notice that this latter quantity n defines 
what we will refer to as the dimensionality or the 
number of degrees of freedom of the system, as 
there is no overall accepted definition for it. 

If f does not depend upon time (which will be 
assumed in the rest of the paper), the system is said 
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to be autonomous. Any solution of an autonomous 
system expressed by (1) can be written X(t) = 
rp,(X,-J, where X0 stands for some initial conition. 
This solution is referred to as a trajectory in phase 
space, the mapping qt (such that qr 0 pps = cpI +s and 
cpO(X) = X) being called the$ow. 

A solution of Eq. (1) is characterized asymp- 
totically (i.e., as t + co) by a steady-state behavior 
which must be bounded if it is to make sense. 
Accordingly, the trajectory tends to remain 
bounded within a subset of the phase space (called 
the attractor), the nature of which heavily depends 
on f: In the case of linear f’s the only (bounded) 
attracting sets are points or cycles, which restricts 
the set of possible steady-state trajectories to be 
fixed points or quasi-periodic orbits (countable 
sum of periodic solutions). Moreover, the steady- 
state behavior is unique and is attained whatever 
the initial condition is. 

The situation is quite different and much richer if 
one considers the case of non-linear dynamics. Dif- 
ferent steady-state behaviors can be observed, de- 
pending on the initial conditions, and the solutions 
themselves are not restricted to quasi-periodicity: 
chaotic motion is one among the many possibilities. 

As there is no unique and well-accepted defini- 
tion of chaos, a signal will be considered here as 
chaotic if 
_ it results from a (non-linear) autonomous deter- 

ministic system, and 
_ the behaviour of this system is highly dependent 

on initial conditions in the sense that trajectories 
initiated from neighboring points in phase space 
diverge exponentially as functions of time. 

Furthermore, it seems important to emphasize here 
that in the case of high values of n, most experi- 
mental signals may be modelled equally well by 
stochastic processes. The limit is rather empirical 
between these approaches. Therefore, we will re- 
strict ourselves to situations which only involve 
a low number of degrees offreedom, i.e. a low dimen- 
sionality n. 

2.2. Characterizing chaos 

According to the above definition, chaotic sys- 
tems undergo many interesting specific character- 

istics. Different characterizations of chaotic signals 
exist, each of them putting emphasis on some speci- 
fic property. 

In phase space, trajectories of a chaotic system 
with few degrees of freedom converge towards 
a limit set, an attractor which only fills a low- 
dimensional subset of phase space.’ Because of 
the assumptions of (i) boundedness and (ii) non- 
periodicity, this attractor has necessarily a very 
peculiar and intricate structure with possibly@uc- 
tal properties, a situation referred to as a strange 
attractor. The existence of a fractal (i.e., non-inte- 
ger) dimension for an attractor can therefore be 
used as a hint for a possibly chaotic behavior, the 
dimension itself being a lower bound for the num- 
ber of degrees of freedom governing the dynamics 
of the system. Let us remark that the fractal struc- 
ture of the attractor associated with a given signal 
should not be confused with fractal properties per- 
taining to the signal itselfi for instance, some recent 
studies [30,39,41] laid stress on the fact that, e.g., 
fractional Brownian processes may behave like 
chaotic processes when studied by using some frac- 
tal dimension estimators, thus leading to erroneous 
conclusions about the deterministic or stochastic 
nature of the process (see Section 4.1). 

Another consequence of the lack of periodicity is 
the broadband nature of the spectrum for chaotic 
signals, which is therefore a necessary (but, of 
course, not sufficient) condition for the assessment 
of chaos. 

One of the main features of chaos is the strong 
dependence of the trajectories on the initial condi- 
tions. This property drastically limits any possibili- 
ty of long-term prediction: Sensitivity to initial 
condition leads to the fact that (initially close) tra- 
jectories diverge exponentially with respect to time. 
A measure of this divergence is provided by the 
Lyapunou exponents. Consider, at some initial time 
t = 0, an infinitesimal hyper-sphere of radius E(O) 
centered on a (e.g. randomly chosen) point of the 

‘It will be assumed throughout the paper that the systems 

under study are undergoing a steady-state behavior, in the sense 

that all the observations correspond to state vectors belonging 

to the attractor (the signal is observed after sufficiently large 

time after the transient). 
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attractor. After a short time t, this hyper-sphere 
will be deformed by the action of the flow into 
some hyper-ellipsoid whose principal axes &i(t), 
i =l, . . . , p characterize contracting (respectively 
dilating) directions if &i(t) < E(O) (respectively 
&i(t) > E(O)). In this picture, Lyapunov exponents 
are defined as 

pi = lim lim 1 log%. 
t-m E(O)+0 t 

Therefore, a necessary condition for a possible situ- 
ation of chaos is the existence of at least one positive 
Lyapunov exponent. 

2.3. Examples 

We will use two experimental chaotic time series 
as test signals. Both are sampled records measured 
on a chaotic electronic circuit from Chua’s family 
(see [32]). Both series were sampled from the same 
circuit, proposed in [41] and described in Fig. 1. 

The behavior of this circuit is described by the 
following set of coupled differential equations: 

LdlL=_v -RI 
dt 

2 s LY 

where g(T/) = moV +0.5(mI - mo)(l I/ + bl - 
1 I/ - bl). This system may exhibit some chaotic 
behavior, depending on the value taken by RI. 
Different tuning of this adjustable resistor allows us 

NL 

Fig. 1. Schematic representation of the double-scroll Chua cir- 

cuit from which test signals are measured. 

to get either periodic signals or chaotic ones, as 
those referred to as Expl or Exp2 in the rest of the 
paper. 

The voltage threshold b and the admittance 
values m. and ml are set by the negative imped- 
ance converter and the rectifiers used to construct 
the nonlinear device. For these experiments, 
we had C1 =5.6nF, C2 =47 nF, L =7.5 mH, 
R, = 3.3 kQ R, = 33 kR and the adjustable resistor 

RI,,, = 10 kR, b = 1.55 V, m. =0.498 ma-’ and 
m, =0.802 ma-‘. The experimental signals V2(t), 
referred to as Expl and Exp2, shown in Fig. 2 were 
obtained for different tuning of the resistor RI. The 
initial conditions were set to identical values 
(V, = V2 =0) for both experiments, though they 
may be considered as being random, due to the 
presence of (thermal and electromagnetic, as no 
shielding was used) noise. The corresponding time 
series were recorded at a sampling rate of 28.8 kHz, 
and with a 12 bit quantization. The records were 
performed once the system was “locked” on its 
attractor, thus insuring that no transient behaviour 
was present. A thorough discussion about the be- 
havior of the circuit is to be found in [41]. 

Notice that Expl time series clearly exhibits 
some nonlinear characteristics, as its switching be- 
havior, whereas Exp2 time series may easily be 
interpreted (at first glance) as to be a filtered 
stochastic process (with poles of the filter close to 
the unit circle). However, there exist some other 
representations and characteristics that allow to 
identify Exp2 as stemming from a deterministic 
system. These points are developed in the next 
sections. 

3. Phase space reconstruction 

As the characterization of chaotic signals con- 
sidered so far are based on properties of state vec- 
tors within the phase space, at least n independent 
time series are to be measured and recorded on the 
experimental set, n standing for the expected di- 
mension of the phase space. As it was already 
emphasized, n should be equivalently interpreted 
here as the number of degrees of freedom of the 
system under study. In most experimental situ- 
ations, no sufficient information is available for 
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Expl time series 
4000, I I I I I I I I I I 

I I I I I I I I I I I 

50 100 150 200 250 300 350 400 450 500 
time, in units of sampling period 

Exp2 time series 

0 
0 50 100 150 200 250 300 350 400 450 500 

time, in units of sampling period 

Fig. 2. Experimental time series, Expl (above) and Exp2 (below). 

properly composing a state vector and studying its 
evolution. The most critical solution arises when 
only one measured time series can be recorded. In 
such a case, the problem is somewhat similar to the 
one faced within a stochastic framework, when 
ensemble quantities are to be inferred from the 
observation of only one realization. 

Given an observed one-dimensional time series 
x(t), considered as only one component of an un- 
known n-dimensional state vector, the problem is 
therefore to reconstruct an approximate phase 
space, with the requirement that it be topologically 
equivalent to the true one. 

1981 Takens proposed a theorem that extends 
Whitney’s ideas, and provides strong mathematical 
support for it. This theorem states the following: 
given one (noiseless) infinitely long observation x(t) 
and any arbitrary (non-zero) delay T, the collection 

x(r), x(t + z), . . . ) x(t + (p - 1)z) 

defines a reconstructed attractor which is guaran- 
teed to be equivalent (up to some unknown dif- 
feomorphism’) to the actual one, provided that 
p 2 2D2 + 1, where D, stands for the correlation 
dimension of the attractor (see Section 4.1 for 

3.1. Method of delays 

A solution to the phase space reconstruction 
problem was proposed by Whitney [40] in 1936. In 

‘Letf:X+f(X) a function andf-’ its inverse, both bijective 

and continuous. Thenfis a homeomorphism. Furthermore, iffis 

differentiable, it is called difiomorphism. Note that continuity 

here has to be considered in the sense of a topological continu- 

ity: VX, 3 V(X), such that if X’ E V(X), then f(X’) l f( V(X)). 
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definition of the correlation dimension). Geometri- 
cal properties of the reconstructed attractor are 
therefore identical with the geometrical properties 
of the real attractor, which makes of this method of 
delays a tool of considerable interest. 

When only N data points of a sampled time 
signal x, are available, the technique consists of 
building the vectors 

Xi=(Xi,Xi+d,...,Xi+(p-l)d), i=L2, ...,Npd, (2) 

where Npd = N - (p - 1)d. d stands for elementary 
delay and p is the embedding dimension chosen (as 
previously) such that p > 2D2 + 1. 

The embedding dimension p is a priori a free 
parameter which, given a signal, can be used as 
a variable when looking for chaotic dynamics. In- 
deed, if we suppose that a dimension estimation of 
the (reconstructed) attractor is performed (e.g. esti- 
mating D2 by using the Grassberger-Procaccia 
algorithm, see Section 4.1) with increasing embed- 
ding dimensions p’s, it is expected that the esti- 
mated dimension will vary significantly until the 
effective dimension D2 of the attractor is attained. 
Therefore, chaotic dynamics are expected to lead to 
a saturation of the estimated dimension (at a low, 
and generally non-integer, value), as a function of 
the embedding dimension p. The same behavior is 
evidently expected (parameter estimation exhibi- 
ting a saturation effect with increasing p’s) when 
it comes to the estimation of the number of degrees 
of freedom of the system by using rank-based 
approaches, as discussed in Sections 4.2 and 4.3. 
Alternatively, stochastic signals (with many degrees 
of freedom) should explore as many directions 
within phase space as possible, thus presenting no 
saturation effect for increasing embedding dimen- 
sions. 

3.2. The choice of the reconstruction delay 

Takens’s theorem states that the choice of the 
delay is theoretically of no importance in the case of 
noiseless observations of infinite length. However, 
this may become an important issue from a practical 
point of view: for delays that are too small, all the 
coordinates of the reconstruction remain strongly 
correlated and the estimated dimension tends 

towards 1; conversely, for too large delays, the 
coordinates are almost independent so that the 
dimension is generally close to the embedding di- 
mension p, with no significant relationship with 
the number of degrees of freedom involved in the 
dynamics. 

A “good” delay should therefore correspond to 
the smallest value for which the different coordi- 
nates of the reconstructed state vector are almost 
“unrelated” in a sense which has to be made precise. 
The most popular approach makes use of the first 
zero of the estimated cross-correlation function be- 
tween the observation and its delayed version 

1 N 

C,(r)=(N_r)(N-s_l),=~+,~k~k-” (3) 

where [X”k]k=r,N stands for the centered sampled 
version of x(t). This is clearly a gross indicator 
which only concerns second-order independence. 
A more global criterion, relying on the concept of 
general (not just second-order) independence, has 
therefore been proposed in terms of mutual informa- 
tion (see [31]) between the time series and a delayed 
version of it. The optimum delay is chosen so as to 
coincide with the first minimum of the mutual in- 
formation function3 [37,17]. Efficient algorithms 
have been developed towards this end, thus permit- 
ting an improved phase space reconstruction, but 
at the expense of huge computation times (in the 
general case) [17,18]. 

This problem of optimum selection of a delay is 
one instance in which techniques based on higher- 
order statistics may prove useful: they allow some 
improvement as compared to second-order based 
criteria, while remaining of a reduced complexity, 
as compared to “all-order” methods. 

The general framework for independent com- 
ponent analysis of vectors can be described as 
follows [10,9]. Let pX and pX, be the probability 

3Though the processes considered here are purely determinis- 
tic, the collection of all processes related to different initial 
conditions can be embedded within a stochastic framework 
[13]. This point of view will be underlying most of the concepts 
and ideas handled throughout this paper, with appropriate 
ergodic estimates in the case where only one time series (one 
“realization”) is available. 
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density functions (pdf) of a set of vectors 
X =(X1, . . . ,Xi, ... ,x&T and of its components xi, 
respectively. If all the components are statistically 
independent, 

Px(U) = fi Px,(%)- (4) 
i=l 

The purpose of independent component analysis 
is therefore to search for a linear transformation 
that minimizes the statistical dependence between 
the vector components. To this end, a useful dis- 
tance measure is the Kullback divergence which, in 
this case, is given by 

Eq. (5) also turns out to be the average 
information 

(5) 

mutual 

(6) 

where S(p,) stands for the Shannon differential en- 
tropy of x, and S(pXly) denotes the entropy asso- 
ciated with the conditional pdf pXlv. Let J(p,) be the 
negentropy of the distribution pX, defined by 

J(PX) = S(&) - SW> (7) 

where +X is the Gaussian probability density func- 
tion having the same mean and variance as pX. By 
substituting (7) in (6), it may proved that 

= - S(&) + i S(4xi) 
i=l 

+ J(P*) - i J(Pxi). 
i=l 

(8) 

Remarks 
- The negentropy of the distribution px may also 

be shown to be equal to the Kullback divergence 
between 4X and px; this latter property, together 
with the positiveness property of the Kullback 
divergence, shows that the Gaussian distribution 
(with a given mean and variance) is maximum 
entropy distribution (among the set of distribu- 
tion having regular covariance). 

J(p,) =A KijkKijk + & KijklKijkI 

+ ~ KiikKij,KkqrKqm 

+ &KijkKi,nKFKL 

- $KijkKi,,KF + O(p-‘). (11) 

The Kij...q’S stand for the cumulants of the stan- 
darized variables Zip lj, . . . , Zq and p is the number 
of independent variables in x. The convergence of 

- Let A be a p x p non-singular matrix. Y = i@X 4Presence of the same index in superscript and subscript 
is a new random variable obtained from implies a summation over this index, e.g. I?‘&,,, = Ci I&,&. 

X through linear transformation. Then, one gets 
S(p,,) = S(p,) + log(det(iW’)). As the definition 
of the negentropy of y implies that 4, has the 
same variance as p,,, the same transform i@ has to 
be applied on both & and px, from which it is 
seen that the negentropy is invariant with respect 
to changes of coordinates. 

- Introducing a Gaussian probability density func- 
tion as a reference distribution is natural here, 
as higher-order cumulants of a distribution 
measure the departure of that distribution from 
the Gaussian. 

Making use of the fact that J(p,) is invariant with 
respect to orthogonal changes of coordinates and 
that 

S(&) = i(p + p log 2n + log det V), (9) 

where V is the covariance matrix of X, the mutual 
information (8) can be expressed as 

1, Px, fi Px, 
( > i=l 

= J(PA - 2 J(P,i) - S(&J + E S(4Xi)Y (10) 
i=l i=l 

where f is the standardized vector obtained from 
a Choleski factorization of x. 

It then becomes possible to approximate the 
mutual information function via a fourth-order ex- 
pansion of J(p,) based on the Edgeworth expansion 
of probability density function [21, pp. 145-1503. 
For standarized data, and using the Einstein sum- 
mation convention,4 this expansion reads [9] 
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such an expansion is related to the fact that cumu- 
lants of order i of a sum of p independent variables 
behave asymptotically as p’z-i)/2 (see [21,9] and 
references therein). 

Fig. 3 shows a comparison between an estimate 
of the mutual information function (MIF) between 
the time series and its delayed versions based 
on Fraser’s algorithm [18] and a fourth-order ap- 
proximation of the MIF using the Edgeworth 
expansion. The signals under study consists of 2048 
data points from Expl and Exp2 (cf. the preceed- 
ing sections) experimental sampled time series 

~dc=l,N~ A set of two-dimensional vectors 
(xk, xk+JT is formed, and the preceeding equations 
are used with (i,j, k, I) E 1,2. All the cumulants 
involved in the Edgeworth expansion have been 
estimated sing k-statistics [21, pp. 259-2601 pro- 
viding u J iased estimations. 

The agreement between the curves (Fraser’s es- 
timation of MIF, and the fourth-order expansion of 
MIF) is good, especially when it comes to the 
location of local extrema, which are the quantity of 
major interest. Further advantages offered by the 
approach based on the fourth-order expansion are 
the following: (i) it allows one to compute the vari- 
ance of the estimated mutual information, (ii) it 
does not need any empirical threshold (as needed to 
perform a direct estimation of the pdf pX by using 
Fraser’s algorithm [17]), (iii) it has an improved 
efficiency for larger p’s (cf. Eq. (11)) and (iv) it 
requires generally less data points than Fraser’s 
algorithm in the case of signals exhibiting complex 
trajectories in the phase space.’ 

One should finally note that the global approach 
reported here generalizes recent studies and sup- 
ports the claim that, from an empirical point of 
view, the “embedding window” (p - 1)d may be 
chosen as the characteristic time for which some 
suitably chosen cumulants (up to order four) are 

51n the general case, it remains difficult to accurately evaluate 

and compare the complexity of both approaches, as the number 

of operations involved in Fraser’s algorithm depends heavily 

upon the structure of the attractor: if the structure of the attrac- 

tor is homogeneous, the algorithm requires very few operations 

whereas for very intricate structures the convergence is very 

slow. On the opposite, the fourth-order method requires a con- 
stant number of operations, whatever the attractor is. 

simultaneously close to zero 131. In fact, when most 
cumulants simultaneously vanish, so does the MIF. 
However, some alternative methods based on the 
“stability” of the reconstructed phase space when 
p is modified [22] may lead to a different choice for 
d. We have also noticed that this general approach 
based on minimum mutual information may fail to 
give the optimal delay, especially in the case where 
the time series contains strong spectral lines. This 
latter point has been briefly discussed in [25]. 

4. Dimensionality 

As was previously stressed, a chaotic system is 
associated with a low-dimensional attractor whose 
complex geometry makes it afractal object. There- 
fore, the estimation of a fracta16 dimension of an 
attractor (true or reconstructed) has been con- 
sidered a clue for giving evidence of chaotic behav- 
ior within a given system. 

Different definitions of dimensions were pro- 
posed. The simplest one (capacity dimension) 
consists in covering the attractor by the minimum 
number N(E) of hypercubes of size E, and evaluating 
the quantity 

DC = lim !.%!!@+ 
E-0 log(l/s) 

(12) 

A refinement of this definition takes into account 
the probability Pi with which each of the N(E) 
hypercubes is visited (i.e. the probability that a state 
vector “falls” within this hyper-sphere defined on 
the attractor), leading to the Renyi’s (generalized) 
information dimensions 

1 
D, =- lim log(c;Z p:, 

4 -1 E-0 log(l/&) . 
(13) 

Though the estimation of any of these quantities is 
an important issue, it must be emphasized that, 
even in the case of a reliable estimation, the signifi- 
cance of a result based on purely geometrical 

‘Many different dimensions for characterizing fractals have 

been proposed. The interested reader should refer to, e.g., 163 or 

[27] for interesting discussion. 
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Exp2, autocorrelation function 
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Fig. 3. Estimation of mutual information between experimental time series and delayed versions. The time delay is expressed in unit of 
sampling period. The upper curve on both plots shows the autocorrelation function, as a basis for comparison with the mutual 
information (MIF). The curves for the analysis of Expl have been resealed for delays greater than 95 units, for sake of readability. The 
time series corresponding to Expl was here down-sampled by 2. 
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properties of the attractor should be questioned. It 
is, for example, not clear whether any dynamical 
information, such as the number of degrees of free- 
dom governing the system, can be gained from such 
a static perspective. This problem is another in- 
stance in which higher-order statistics may prove 
useful, as we will illustrate later. 

4.1. Correlation dimension 

The most widely used fractal dimension is the 
correlation dimension (which is identical with 
Reny’s Dz). Estimation of Dz is usually performed 
by using the Grassberger-Procaccia Algorithm 
(GPA) [19]. This algorithm measures for each p, 
the number of pairs (Xi,Xj) whose distance is less 
than a given radius I: the following correlation 

integral is computed: 

&(r; p) 

1 
5 z UP- llxi-xjII), (14) 

=“(N&Sd-l)i=l j=l,j#l 

where M stands for the number of test points Xi 
selected at random on the attractor and U is the 
unit step function. This approach is highly effective 
because of the fundamental property of CN(r; p) 

lim C,(r; p) N rDz, r-to, p>2D2+1, (15) 
N+‘X 

according to which the correlation dimension D can 
be estimated from a slope measurement in a log-log 
plot of CN(r; p). 

In Fig. 4 we present some results obtained 
from GPA, applied to either chaotic signals (the 

8- 

6- 

Dimension estimation, Expl (*-),Exp2(..),WGN(-),WL process(--) 
I I I I I 

I 

3 
I I 1 I 

4 5 6 7 8 
reconstruction dimension 

Fig. 4. Results of correlation dimension (D,) estimation performed by GPA for both stochastic signals and chaotic time series. All 
estimations were performed from a 32 K point time series, and reconstruction delays were d = 1, d =64 for WGN and WL signals, 
respectively, and d =4 for experimental series Expl and Exp2. 
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experimental time series depicted in Section 2.3 and 
observed in a “steady-state” regime, so as to 
guarantee that the observations lie on the attractor 
(limit set)) or a discrete-time white-noise signal and 
a Wiener-Levy process. These results were partially 
to be expected in the sense that the estimated di- 
mension saturates in the first case, when also the 
embedding dimension is increased, while in the case 
of white Gaussian noise it keeps on growing with p. 

However, a misleading behavior can be observed 
also in the case of some purely stochastic processes 
with a “l/f” spectrum, as illustrated here for the 
Wiener-Levy process. 

x, = x,- 1 + E,, (16) 

for which a thorough theoretical [30, 39,411 and 
experimental [24] analysis justifies a saturation at 
the value D2 = 2. This is to be explained as follows: 
although “l/f” stochastic processes are unrelated 
to any chaotic dynamics, they are fractal signals, 
thus leading to fractal reconstructed attractors. 
This counterexample gives evidence that, in the 
general case, GPA is much more an estimation 
algorithm (given chaotic dynamics, what is the di- 
mension of the attractor?) than a detection one (is 
there any chaotic dynamics?). 

Another drastic limitation of GPA concerns its 
prohibitive computational load and its reduced 
effectiveness for small data sets. Roughly speaking, 
a reliable estimation of a dimension D2 requires 
approximately 10D2 data points, which makes the 
method inapplicable as soon as D, exceeds some 
units [36]. 

4.2. Rank dimensions 

The above limitations of GPA have motivated 
the search for improvement [2] and alternative 
methods. Another dimension estimation has been 
proposed, the simplicity of which made it very 
attractive: the motivation for the local intrinsic 
dimensionality (LID) [16,34] (see also [S]) is to 
extract some information from local matrices asso- 
ciated with a phase space trajectory, and to reduce 
the problem of dimension estimation to that of 
rank determination. The algorithm proceeds as fol- 
lows: (i) given an embedding dimension p, a number 

M of test points is selected at random on the attrac- 
tor; (ii) for each of these points Xi, the q-nearest 
neighbors Xicq) are retained and organized in a 
(p x q) matrix 

F(i) = (Xi(l) -xi,xi(2) -xif ... ,xi(q) -xi), (17) 

whose rank is estimated by counting the number of 
significant singular or eigenvalues, and (iii) the LID 
is then obtained as the average of these local ranks 
over the M chosen points: 

2, = $ ,i rank(P(i) rT(i)). 
r-l 

(18) 

In this respect, LID may be interpreted as being 
related to principal component analysis (PCA) of 
the set of difference vectors in the neighbourhood of 
a given center. 

Whereas GPA is theoretically well-founded, LID 
is more difficult to justify.7 In practice, LID tends 
to overestimate D2, though it remains generally in 
good agreement with the estimation issued by 
GPA. However, LID enjoys the property of a very 
easy implementation at a low computational cost. 
This may also be somewhat confusing, as an esti- 
mate of the minimum number of coordinates neces- 
sary to reconstruct the phase space was expected 
from the explanations given in the preceding foot- 
note, rather than an estimate of the correlation 
dimension. Actually, this latter dimension depicts 
a geometrical characteristic of the fractal attractor 
(see also next sections). 

Results obtained from LID estimations are 
shown in Fig. 5. The rank of local correlation 
matrices was estimated by thresholding their sorted 
eigen-spectrum. The threshold was fixed arbitrarily 
so as to retain t =80% of the total energy, spread 
over the most significant eigenvalues. The values 
shown on the plot are the average values of rank 
estimations performed from a set of m local correla- 
tion matrices. These latter were estimated over 

‘The main justification [ 161 for the LID algorithm stems from 
the equivalence between the number of independent parameters 
which are necessary in either a first order Taylor expansion 
of the non-linear dynamics at a given point Xi or a local Kar- 
hunen-Lohe expansion of r(i). This is however not trivial, and 
the interested reader is referred to [2S] for a more detailed 
discussion. 
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LID estimation, from 2nd order analysis 
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Fig. 5. Results of the local intrinsic dimensionality algorithm on chaotic Expl (dashed) and Exp2 (dotted) signals and Wiener-L&y 
stochastic process (solid). 

neighbourhoods that are randomly spread over the 
reconstructed phase space. In the example shown, 
64 K points were considered for the phase space 
reconstruction; m = 50 different neighborhood con- 
taining q = 80 neighbors each are used for the LID 
estimation. Apart from the gain in terms of com- 
putational load, it can be checked that LID suffers 
from deficiencies similar to GPA when one wants 
to use it as a discriminator “chaos versus noise”. 

4.3. HOS extensions 

The sensitivity of both GPA and LID towards 
additive noise leads to severe degradation of their 
performance, even at reasonable signal-to-noise ra- 
tios. Essentially motivated by an SNR improve- 
ment of the LID algorithm when the data points 
are corrupted by some additive Gaussian noise, 

a “higher-order version” of LID (referred to as 
HOLID) has recently been proposed [33]. It 
consists of introducing a fourth-order cumulant 
matrix fi 

Aij = &{X”Xj} - 38{Xf}8(XiXj}, (19) 

where d stands for the expectation operator and Xi 
for a component of the embedding vectors. Estima- 
tion is then performed on a neighborhood of q local 
data points, rank being deduced from the SVD of 
M. As it was designed in order to get some im- 
proved rank estimation in the presence of Gaussian 
noise, HOLID leads basically to the same results as 
LID, though it has an improved behavior with 
respect to SNR. 

It was previously stressed that LID is basically 
an eigenmethod, i.e. an algorithm that only tracks 
uncorrelated (i.e. Iinearfy independent) components 
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in the embedding, while forcing the orthogonality 
of the decomposition vectors. This amounts to say- 
ing that the coordinates of (17) are decomposed 
according to 

Xi(k) - xi = i pjk c(xi), 

j=l 

(20) 

where the ~jk are uncorrelated and the y ortho- 
gonal (Karhunen-Loke expansion). Coming back 
to the interpretation of degrees of freedom (that is 
the minimum number of coordinates that must be 
considered to get some reliable representation of 
the system) in terms of unrelated coordinates of the 
state vector, it is more appealing to look for an 
independent component analysis, without imposing 
any orthogonality condition between the corres- 
ponding vectors, i.e. to only impose the require- 
ment that the /djk be independent until fourth-order. 

A global fourth-order matrix, generalizing (19), 
can therefore be constructed, containing all pos- 
sible cumulants from a set of p-dimensional vectors. 
Forcing all of the cross-cumulants to be zero, one 
can form the basis of a new higher-order version of 
LID (referred to as LID4), which has been pro- 
posed and applied in [24]. However, this approach 
led to some difficulties in its interpretation, as it 
dealt with fourth-order cumulants, homogeneous 
to &(x4} whereas any energy oriented threshold 
deals with the signal variance homogeneous to 
&(x2). 

Another appealing approach consists in consid- 
ering the problem in terms of source separation, 
in the spirit of [9]. This corresponds again to a 
decomposition of the form of Eq. (20) under a con- 
straint of statistical independence up to fourth- 
order. This leads however to a new distribution of 
the energy of the local observations, in the sense 
that all vectors in the phase space are expressed in 
new basis in such a way that all coordinates are 
again uncorrelated, thus allowing to consider the 
total energy of the process as being equal to the 
sum of the energy of each component. This point is 
illustrated in the next paragraphs. This kind of 
linear separation of independent components has 
been recently addressed in [S, 91. We briefly outline 
the principle of separation algorithms in the follow- 
ing. Exhaustive justification and theoretical devel- 
opments, together with a discussion of different 

issues concerning the source separation problem 
(for the first time referred to as independent com- 
ponent analysis (ICA) by Jutten and Htrault, see 

POI)~ are discussed in several papers, e.g. 
[S-l 1,201. A detailed presentation of the algorithm 
within the context of chaotic signal analysis is pre- 
sented in [25]. 

In this approach, we propose to represent the set 
of points in the neighborhood Xi through the fol- 
lowing new expansion around Xi: 

Xi(k) - xi = f Zi(k),ju,j, 

j=l 

(21) 

where the projection coordinates Zi(k),j on Q,j are 
independent of the Zi(k),[ but the set of vectors 
q, j are no longer required to be orthogonal to each 
other. The difference between the KLE and the 
expansion (21) resides in these latter properties that 
both the projections coordinates and the basis vec- 
tors are required to achieve. This analysis leads one 
to express the correlation matrix of the ‘points’ 
within the neighborhood as follows: 

c__ 1 -. -T 
q-1 

Y(z) Y (i) = WD2WT, (24 

where the vectors Ui,k in (21) are given by the kth 
row of IV, and D is a diagonal matrix. IV is con- 
structed so that the expression of the vectors in the 
neighborhood under consideration are such that 
their coordinates with respect to this new basis 
minimize their cross-mutual information (at least 
the fourth-order expansion of it) [9,25]. Further- 
more, W has normalized columns, so that one has 

-- 
Trace(C) = Trace(WD*w=) 

= Trace(W ‘mD2) 

= Trace(D *) (23) 

as the Trace of a product of matrices is invariant by 
permutation, and the diagonal of the product 
kVTkV is identically equal to one. In this case, 
representations given by either LID or ICA-LID 
retain the same energy, namely the energy asso- 
ciated with the set of vectors in the neighborhood of 
interest. For the LID algorithm, the energy is 
spread over the entire eigenspectrum of the local 
correlation matrix, whereas the energy is given by 
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the Trace of the diagonal matrix b2 in the case of 
the ICA-LID approach. 

An illustration of the effectiveness of this ap- 
proach for improving the discrimination chaos ver- 
sus noise, is given in Fig. 6. The rank estimation 
was performed by thresholding the sorted diagonal 
values of b2, so as to retain a given percentage of 
the total energy. The parameters for these estima- 
tions were the same as those used for the LID 
estimation in the previous paragraph (namely, 
m =50, N = 64 K points, q = 80 and t = 80%). 
Notice that both chaotic time series exhibit a 
saturation of their ICA-LID estimation when p is 
increased, and alternatively that ICA-LID keeps on 
growing with p for the stochastic Wiener-Levy 
process. Thus, ICA-LID approach turns out to be 
much more efficient than second-order-based 
methods when it comes to separate between chaotic 

and stochastic processes. However, this was to be 
expected as we mentioned that the main motivation 
for introducing ICA approach was to estimate the 
number of necessary coordinates for mimicking the 
dynamical system, whereas GPA and LID are 
known to measure geometrical features of the at- 
tractor. 

As for the second-order LID algorithm, a weak- 
ness of this higher-order method is the need to 
estimate the effective rank of higher-order matrices. 
This is generally done from empirical threshold- 
ing methods. Nevertheless, first investigations 
conducted up to now suggest that, in comparable 
circumstances, fourth-order algorithms tend to 
provide a result more related to the number of 
degrees of freedom involved in the dynamics than 
to the geometrical dimension of the attractor 
(see [ 14,251). 

ICA-LID estimation 

reconstruction dimension 

Fig. 6. Results of the ICA-LID algorithm computed on chaotic Expl (dashed) and Exp2 (dotted) signals and Wiener-L.&y stochastic 
process (solid). 
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4.4. LID or ICA-LID? 

There is no simple relation between the number 
of coordinates of a chaotic system and the fractal 
dimension of its attractor. This latter is a purely 
geometrical characteristic, that is in some way 
a static property of the whole attractor, stemming 
from the simultaneous effects of positive Lyapunov 
exponents (to stretch the initial hyper-sphere) and 
non-linearities (to fold it on itself). The number of 
coordinates necessary to represent the system is 
closely related to the dynamics, which appears ex- 
plicitly in the time-delayed structure of the coordi- 
nates that are expanded around a given position. 

KLE imposes a double orthogonality on the 
expansion, which means that it only allows one to 
track the only principal directions into which all 
the points in the neighborhood are to be mapped. 
Thus, it gives an information about how the 
“cloud” of points in the neighborhood “covers” 
locally different orthogonal directions in the phase 
space, thus leading to some local geometrical char- 
acteristic. It may easily be seen that two indepen- 
dent modes associated to close trajectories will not 
be revealed through KLE analysis. Thus, this 
method will only yield one important eigenvalue 
(proportional to the sum of the directions), the 
second eigenvalue falling generally within the es- 
timation variance of the eigenspectrum. The power of 
ICA-LID resides in its ability to separate independent 
components, even in the case where they are related 
to directions that are very close to each other, as the 
new basis is not required to be orthonormal. 

5. Conclusion 

The purpose of this paper was to show that some 
more insight can be gained in the characteriza- 
tion of chaotic signals by using higher-order based 
techniques. For instance, although it has been 
stressed that the problem of detecting chaos (or, in 
other words, of testing for determinism) cannot be 
restricted to an estimation problem based on chaos- 
oriented algorithms, fourth-order estimation algo- 
rithms have been shown to outperform second-order 
(classical) ones within a detection (stochastic versus 
deterministic) context. 

However, with the few examples presented here, 
we are far from exhausting the potential usefulness 
of higher-order techniques within the context of 
chaotic signal processing. We mention for example 
that only low-dimensional chaos has been con- 
sidered, although increasing the number of degrees 
of freedom also leads to important problems. Fully 
developed turbulence is a physical example of such 
a situation, and its characterization relies heavily 
on higher-order concepts such as the so-called 
“structure functions” [26]. (By definition, a struc- 
ture function measures the higher-order moment of 
the increment of a velocity field, and its scaling 
behavior (in the small-scale limit) directly provides 
informations about deviations from Gaussian fluc- 
tuations.) 

Furthermore, we have chosen here not to present 
any application of higher-order spectrum estima- 
tion for chaotic signal analysis. One may find good 
illustrations of the power and usefulness of higher- 
order spectra within this context in Refs. [12,23]. 
Some examples of bispectral analysis of chaotic 
time series may also be found in [25], and a dis- 
cussion on estimation issues together with an ex- 
tended bibliography is given in [28]. 

From another point of view, it is clear that, 
beyond analysis, challenging problems of prediction 
are offered by chaotic signals and that non-linear 
models are to be explored further from such a per- 
spective [7].” 
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