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ABSTRACT

Chirps (i.e., transient AM-FM waveforms) are ubiquitous in nature and man-made systems, and they may serve
as a paradigm for many nonstationary deterministic signals. The time-frequency plane is a natural representation
space for chirps, and we will here review a number of questions related to chirps, as addressed from a time-frequency
perspective. Global and local approaches will be described for matching and/or adapting representations to chirps. As
a corollary, joint time-frequency descriptions of chirps will be shown to allow for e�ective de�nitions of \instantaneous
frequencies" via localized trajectories on the plane. A number of applications will be mentioned, ranging from
bioacoustics to turbulence and gravitational waves.
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1. INTRODUCTION

Fourier analysis treats time and frequency in an exclusive fashion: time or frequency. Considering one of these two
variables as being possibly dependent on the other (e.g., frequency as a function of time) is however a point of view
which is clearly supported by intuition and by the everyday experience of music, whistles. . . in brief, of frequency
modulations. Simple (transient) signals whose description is of this type are loosely referred to as \chirps", in
reference to Webster's de�nition66:

Definition 1. Chirp, n. A short, sharp note, as of a bird or insect. \The chirp of itting bird," { Bryant.

Whereas intuition pleads in favor of heuristic descriptions of chirps as \gliding tones", their mathematical rep-
resentation deserves some speci�c treatment, able to wedding time and frequency. The purpose of this paper is to
discuss a number of issues related to chirps, as seen from a time-frequency perspective.

We will �rst list, in Section 2.1, many di�erent instances where chirps can be naturally observed, and we will
discuss various mathematical ways of modelling chirps that may support physical intuition. Signal decompositions
based on chirp(let)s will then be briey mentioned in Section 3, mostly as a motivation for the core of the paper,
which is to discuss the rationale behind time-frequency representations matched to speci�c chirps. Basics of (energy)
time-frequency distributions will be recalled in Section 4. Thinking of the time-frequency plane as a mathematical
musical score, chirps are expected to localize on trajectories interpreted as pitch histories: this issue will be explored
in Section 5, and it will be argued that e�ective (time-frequency) de�nitions of \instantaneous frequencies" can be
obtained from distributions with suitable localization properties.

2. CHIRPS

2.1. Chirps everywhere

Chirps are ubiquitous in nature and man-made systems. Let us �rst enumerate a few examples where the notion of
\chirp" naturally emerges.

Audio signals | Chirps are naturally encountered in many audio signals, ranging from bird songs and music (\glis-
sando") to animal vocalization (frogs, whales) and speech. The so-called \sinusoidal models"44 are a typical attempt
to representing audio signals as a superposition of chirp-like components.
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Radar and sonar systems| Chirp signals are also commonly observed in natural sonar systems. Most species of bats
make use of an ultrasound system based on chirps whose parameters can be shown to directly control echolocation
performance.47 Such a situation closely resembles that of man-made radar and sonar systems, where chirps are of
common use too.54

Wave physics | Low-frequency chirps (such as, e.g., PC1 oscillations39) can be observed in the ionosphere as
\whistling atmospherics".62 Many time-varying oscillatory systems give birth to chirp-like behaviors: a beautiful
(and well-documented) instance of a chirp is provided by the gravitational waves expected to be radiated by massive
astrophysical objects such as coalescing binaries.17,57 Another example is provided by breaking waves on a seashore,
that have a wavelength modulated by the underwater pro�le of the ground, hence giving rise to 2D chirps. From a
di�erent perspective, non-harmonic waves propagating in a dispersive medium are naturally chirped by a warping
mechanism.58

Mechanics and vibrations | A paradigm for a chirp is in fact the note played by a diapason (or a chord, or a pipe)
with a time-varying length. Apart from music, such a phenomenon can be observed, e.g., in vibration signals recorded
on car engines, due to the time-varying volume of the gas ignition chamber.14

Spirals in turbulence | One of the many pictures of turbulence is that of a collection of spiraling coherent structures
(vortices)46: when advected by a mean ow and measured at a given point in space, spatio-temporal sections of such
objects are \seen" as chirps.

Biology and medicine | Other forms of coherent structurations of waves as chirps arise in biomedical signals, e.g.,
in EEG (epileptic seizure11) or uterine EMG (pregnancy contractions24).

Critical phenomena | In a number of critical phenomena,60 it has been evidenced that universal singular behaviors
(typically, power-law divergences) are decorated by a chirp component related to accelerating oscillations (e.g.,
accumulation of precursors in the case of earthquakes, speculative bubbles in the case of �nancial crashes,38 . . . ).

Special functions | Finally, chirps have also been shown to exist in purely mathematical objects such as Weier-
strass7,59 or Riemann36 functions, not to mention27 the chirp structure of (compactly supported and minimum
phase) Daubechies wavelets22 of large order.

2.2. Chirp models

Radio and AM-FM | In each of the above examples, the considered signals admit a decomposition in two (time-
varying) terms of amplitude and phase (typically, something of the form x(t) = a(t) cos'(t)), so that the \chirping"
nature of the observation stems from nonlinearities in the phase. Such a decomposition may appear as natural, but
it is not necessarily so, depending on whether we adopt a point of view of analysis or of synthesis. In the synthesis
case, we can say that the two signals a(t) and '(t) pre-exist prior their combination as x(t): the simplest example
is given by radio broadcasting systems (AM or FM) in which a message is modulating a waveform, allowing for its
recovering from the mixture via a matched demodulation. In passive (or \blind") situations where a modulated signal
x(t) is observed with no side information about its production, the situation is quite di�erent since demodulation
would amount two identify two unknowns (the amplitude a(t) and the phase '(t)) on the basis of one equation only
(the observation x(t)).53 In the monochromatic case x(t) = a cos 2�f0t, no ambiguity exists in the decomposition
and in the physical interpretation of f0 as frequency. Formalizing the idea of an \instantaneous frequency" amounts
therefore to generalizing the concept of a monochromatic wave by allowing the amplitude a and the frequency f0 to
become time-dependent, so that x(t) takes on the desired form a(t) cos'(t), with a(t) > 0 and '(t) nonlinear in t.

Analytic signals | The non-unicity of such a representation41,53 has received di�erent solutions and is at the heart
of the time-frequency problem. Following Gabor32 and Ville,65 it is generally accepted to get rid of arbitrariness
by considering a real-valued signal x(t) 2 IR as the real part of the complex-valued signal zx(t) := x(t) + i(Hx)(t),
where H stands for the Hilbert transform. The rationale for introducing such an \analytic signal" zx(t) is that,
when applied to a monochromatic wave, it simply reduces to a complex exponential, thus representing a \stationary"
signal by a rotating vector whose modulus is constant and whose rotation is uniform. In the general case of an



arbitrary signal, this leads naturally to de�ne an instantaneous amplitude and an instantaneous frequency according
to ax(t) := jzx(t)j and fx(t) := (1=2�) (d=dt) arg zx(t), respectively. It is worth noting that, whereas the concept
of an instantaneous frequency could seem to be attached to that of locality, its de�nition in Gabor-Ville's sense is
highly non-local. This point of view (which could be referred to as \think local, act global") is due to the in�nite
support and the slow decay of the Hilbert �lter, whose impulse response reads h(t) = p:v:f1=�tg.

Other ways of de�ning an instantaneous frequency can be imagined,64 but none proved to be signi�cantly bet-
ter. Moreover, whatever the chosen de�nition, the principle of using a one-dimensional curve of the time-frequency
plane has a natural limitation as soon as the analyzed signal is multicomponent, i.e., such that di�erent frequency
contributions are allowed to be simultaneously present. In such a case, the representation can at best give some
\average" description�, and in no way the multivalued functions which would be necessary for a physically mean-
ingful interpretation. Overcoming this limitation motivates the introduction of truely mixed (i.e., two-dimensional)
representations, that will be discussed further in Section 4.

Modelling chirps | Keeping in mind the above remarks, we will adopt for the modelling of chirps the following, yet
loose, de�nition (which, a priori, does not assume analyticity):

Definition 2. Chirps are signals of the form

x(t) = a(t) expfi'(t)g; (1)

where a(t) is some positive, low-pass and smooth amplitude function whose evolution is slow as compared to the
oscillations of the phase '(t).

\Slow evolution" conditions on a(t) and '(t) are usually25,40,63 based on the two quantities �1(t) := _a(t)=a(t) _'(t)
and �2(t) := �'(t)= _'2(t), and read

sup
t
j�1(t)j � 1 ; sup

t
j�2(t)j � 1: (2)

The �rst condition guarantees that, over a (local) pseudo-period T (t) = 2�=j _'(t)j, the amplitude a(t) experiences
almost no relative change, whereas the second condition imposes that T (t) itself is slowly-varying, thus giving sense
to the notion of a pseudo-period.

Stationary phase approximations of chirp spectra | Although the de�nition of a chirp is usually given in the time
domain (as in (1)), some applications may call for a companion description in the frequency domain.17,25,56 In this
respect, it is customary63 to make use of a stationary phase approximation, assuming more or less explicitly that the
conditions given in (2) support the e�ectiveness of the approach.

The argument of the stationary phase principle can be phrased as follows. Let I be an integral of the form

I =

Z



b(t) ei (t) dt; (3)

where both b(t) > 0 and  (t) are C1, whereas suppf (t)g is restricted to some interval 
 � IR over which b(t) is
integrable. If b(t) is slowly-varying as compared to the oscillations controlled by  (t), positive and negative values
of the integrand tend to cancel each other, with the consequence that the main contribution to I only comes from
the vicinity of those points where the derivative of the phase is zero. Assuming that  (t) has one and only one
non-degenerate stationary point ts (i.e., that we have _ (ts) = 0 and � (ts) 6= 0), we can make the change of
variables u2 := 2[ (t)�  (ts)]= � (ts), so as to rewrite (3) in the canonical form

I = ei (ts)
Z

0
g(u) ei�u

2

du; (4)

with g(u) := b(t(u))(du=dt)�1 and � := � (ts)=2. Using a Taylor expansion for the exponential in the right-hand side
of (4), we are thus led34 to decomposing (3) as I =: Ia +R, with

Ia =

s
2�

j � (ts)j
b(ts) e

i (ts) ei(sgn
� (ts))�=4 (5)

�It is worth noting that this idea of \average" frequency cannot be followed up stricto sensu: for instance, the instantaneous
frequency of a signal composed of two tones f1 and f2 generally contains contributions outside the interval [f1; f2], whereas
the signal itself is strictly limited to this frequency band.21,41



the stationary phase approximation of I .

The quality of this approximation depends on the magnitude of the remainder R. Extending an approach
developed in34 allows for bounding explicitly the relative error Q = jR=Iaj as

Q � Qm =
5=4

j�j g(ts)
sup
u2
0

(j�g(u)j); (6)

and the stationary phase approximation is therefore valid if Qm � 1. Given the model (3), an explicit evaluation of
this quantity leads to a fairly complicated function which is explicitly given in15,17 and which depends non-linearly
on b(t),  (t) and some of their derivatives up to third order.

This (suÆcient) criterion can be readily applied to the problem of evaluating the spectrum of a chirp (1) with a
monotonic instantaneous frequency by setting b(t) := a(t) and  (t) := '(t)� 2�ft (with the stationary point ts thus
de�ned by _'(ts) = 2�f). What turns out is that the corresponding error is not only controlled by the terms �1(t)
and �2(t) of eq.(2), but also by additional terms depending on more complicated combinations of a(t), '(t) and some
of their higher-order derivatives.16 Provided that conditions are satis�ed so as to validate (5), a by-product of the
stationary phase approximation is that the group delay (de�ned as tx(f) := �(@	=@f)(f)=2�, with 	(f) the phase
function of the spectrum) coincides with the reciprocal function of the instantaneous frequency of the signal,28 i.e.,
that fx(tx(f)) � f .

Going back to the general model (3), it is worth investigating the case where there is no stationary point. In such
a situation where _ (t) 6= 0 for all t's, (3) can be rewritten as

I =

Z



b(t)

i _ (t)
i _ (t) ei (t) dt;

and an integration by parts leads to I=kbk1 � k_b(t)=b(t) _ (t)k1+k � (t)= _ 2(t)k1 if we further assume that b(t) 2 L1(
)
and b(@
) = 0. As compared to the situation where the oscillations of the phase would be in�nitely slowed down, this
means that the magnitude of (3) is in this case bounded from above by a quantity whose decay to zero is controlled
by chirp-like conditions. Moreover, in the case where I corresponds to the Fourier transform of the chirp (1) (i.e.
when b(t) = a(t) and  (t) = '(t)� 2�ft) and if we furthermore assume that _'(t) > 0 for any t 2 
, we can conclude
that the frequency domain for which no stationary point exists is the half-line of negative frequencies. Since we have
in this case � (t) = �'(t) and _ (t) � _'(t) when f < 0, we are ensured that k_b(t)=b(t) _ (t)k1 � k _a(t)=a(t) _'(t)k1 and
k � (t)= _ 2(t)k1 � k �'(t)= _'2(t)k1. It appears therefore that the heuristic conditions (2) are suÆcient for guaranteeing
the quasi-analyticity of the exponential model (1)|in the sense that spectral contributions at negative frequencies
are almost zero|, with the consequence that the quantity _'(t)=2� can be e�ectively interpreted as the instantaneous
frequency of the chirp.

Linear chirps | The simplest, and most commonly used, example of a chirp is the \linear" chirp, de�ned by:

Definition 3. A linear chirp is a chirp (1), in which a(t) / expf��t2g and '(t) = 2�(�t2=2 + �t), with � and
� 2 IR and  � 0.

Strictly speaking, such a linear chirp can never be analytic, and it is improperly that the quantity _'(t)=2� = �t+�
is often referred to as its \instantaneous frequency". De�ned this way, linear chirps constitute however an interesting
class of signals, since quasi-analyticity can obtained under the narrowband condition

p
 + �2= � �. Moreover, in

the purely FM case  = 0, the exact spectrum actually coincides with its stationary phase approximation whereas,
in the general case, the quality of the approximation is controlled by the time-bandwidth product �=.

Power-law chirps, hyperbolic chirps and oscillating singularities | Another particularly important class of chirps is
that of \power-law" (and \hyperbolic") chirps, de�ned by16,25:

Definition 4. A power-law chirp is a chirp (1), in which a(t) / jtj�� and '(t) = 2�djtj�, with �; d 2 IR and
� 6= 0.

Definition 5. A hyperbolic chirp is the natural extension of a power-law chirp when � ! 0, characterized by a
logarithmic phase of the form '(t) = 2�d log jtj, with d 2 IR.
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Figure 1. Gravitational waves expected to be radiated by coalescing binaries are modelled (for t < 0) by power-law
chirps with � = 1=4 and � = 5=8. An example of such a waveform is given in the top row, in the case of two objects
of identical masses m1 = m2 = 10 (in solar masses units), during the �nal stage preceding the coalescence time
t = 0. The corresponding instantaneous frequency is given in the middle row, whereas the bottom row superimposes
the actual spectrum and its stationary phase approximation, supposed to be linear in the chosen log-log plot.

It follows from those de�nitions that qualitatively di�erent types of waveforms can be obtained, depending on the
values of the parameters � and �. First, considering a(t) as the amplitude of the chirp, we can observe that a(0) = 0
(resp. +1) if � < 0 (resp. > 0). Second, identifying _'(t)=2� = d�jtj��1 with the \instantaneous frequency" of the
chirp leads to a power-law divergence in 0 for all �'s such that � < 1. This will however correspond to an \inde�nitely
oscillating" signal in 0 only if we have the stronger condition � � 0.45 In fact, within the range 0 < � < 1, the phase
does present a well-de�ned value in t = 0, namely '(0) = 0, thus connecting the singular behaviour of its derivative
with a non-oscillating singularity of the waveform in 0.

As far as the spectrum of power-law chirps is concerned, it can be shown16 that both stationary phase criteria,
derived from either the heuristic conditions (2) or the re�ned analysis sketched in Section 2, share the same frequency
dependence � = C (�d=f�)1=(��1), with the only di�erence that the pre-factor C reads C = (1=2�)max(j�j; j� � 1j)
in the �rst case25 and C = (5=48�)j12�2 � 12�+ 12�� + 2�2 � 5� + 2j=j� � 1j in the second one.16 Depending on
which of these quantities is greater, we can therefore evidence, for any given d, pairs (�; �) such that the stationary
phase approximation still remains valid whereas the heuristic conditions (2) are violated or, on the contrary, such
that the approximation breaks down whereas the same conditions are satis�ed.16

Power-law chirps have been introduced either as suitable models for gravitational waves (in the case of coalescing
binaries, a Newtonian approximation leads to � = 1=4 and � = 5=8, see Figure 1),25,17 or as powerful re�nements
to isolated singularities for which a H�older-type characterization is not suÆcient.1



3. CHIRPS AS SIGNAL BUILDING BLOCKS

The usual Fourier transform (FT) can formally be written as (Fx)(f) := hx; ef i, with ef (t) := expfi2�ftg, so that
the overall signal can be recovered as

x(t) =

Z +1

�1

hx; ef i ef (t) df;

i.e., as a (suitably weighted) superposition of pure tones. When switching from pure tones to chirps, the \stationary"
structure attached to the linear phase 2�ft is replaced by a time-varying one which connects time and frequency by
means of a one-dimensional curve, namely _'(t): in some sense, the frequency structure of a chirp can be viewed as
that of a warped monochromatic wave. This naturally suggests the use of chirp-based substitutes to the ordinary
Fourier analysis, that may explicitly take into account a possible time evolution of spectral properties.

3.1. Modi�ed Fourier transforms

One way of modifying the monochromatic waves of Fourier analysis is to only allow for a variation of frequency as a
function of time, while not introducing any idea of localization in time.

Fractional Fourier transform | A �rst instance of such a modi�ed FT is given by the \fractional Fourier transform"
(FrFT) of angle � 2 (��=2;+�=2], de�ned as51 (F�x)(�) := hx; y�i, with

y�(t) :=
p
1� i cot� expf�i�(�2 cot�� 2�t csc�+ t2 cot�)g: (7)

As functions of t, the elementary waveforms y�(t) onto which x(t) is projected in order to compute its FrFT
happen to be linear FM signals whose \instantaneous frequencies" read fy�(t) = � csc� � t cot�. In the speci�c
case where � = �=2, one can check that fy�=2(t) = � and that (F�=2x)(�) = (Fx)(�), thus recovering the ordinary
FT with � interpreted as the usual frequency variable. In all other cases, the FrFT o�ers a convenient framework
for analyzing, decomposing (or modifying) signals in terms of linear FM contributions which can be thought of as
monochromatic waves whose instantaneous frequency law, which was initially constant (and, hence, \horizontal" in
the time-frequency plane), has been chirped by a rotation.

Mellin transform | Another modi�ed FT is the \Mellin transform" (MT). Restricting, for a sake of simplicity, to
causal signals, the MT can be de�ned as9

(Mx)(s) :=

Z +1

0

x(t) t�i2�s�� dt;

where � is some free parameter. De�ning ~x(t) := e(1��)t x(et), it is easy to check that (Mx)(s) = (F ~x)(s), i.e.,
that a MT is nothing but the FT of an exponentially warped signal. From another perspective, computing a MT
amounts to project a signal onto a family of elementary signals of the form t�� expfi2�s log tg; t > 0. Such signals
can be seen as (causal) hyperbolic chirps, in the sense of Def. 5. Given that the \instantaneous frequency" law of
these chirps is fx(t) = s=t, the Mellin parameter s can therefore be interpreted as a hyperbolic chirp rate.

3.2. Chirplet decompositions

A di�erent way of modifying the monochromatic waves of Fourier analysis is to introduce the idea of some form of
localization in time for the waves onto which the analyzed signal is projected.

Gabor, wavelet and warped bases | This point of view leads traditionnally to ordinary Gabor or wavelet decom-
positions/bases,13,22,42 but it can also be suitably modi�ed so as to accommodate for elementary waveforms tiling
the plane in some non-rectangular way. Elements of such warped bases4 are in fact nothing but chirps (or even
\chirplets", in the sense that are indeed elementary signal building blocks), that can be tailored to speci�c time-
varying structures. The eÆciency of such warped bases is essentially of a computational nature, since they allow for
compact representations whose coeÆcients can be obtained via fast algorithms. Their drawback lies however in their
poor analysis capabilities, since they are highly dependent on the discrete nature of the tiling of the plane.



Chirplets | In order to overcome the above limitation, chirplets should better be parameterized in some (almost)
continuous way. De�ning a chirplet requires however (at least) four parameters. For instance, in the simplest case
of a linear chirplet, one can modify De�nition 3 so as to have

xt0;f0;�;(t) / expf��( + i�)(t� t0)
2 + i2�f0(t� t0)g; (8)

where t0 and f0 stand for the central locations of the chirplet in time and frequency, respectively, whereas � is its
chirp rate and  > 0 its (inverse squared) duration.

Chirplet decompositions | Since a direct evaluation of all the inner products hx; xt0;f0;�;i would be computationally
much too expensive,12 more eÆcient strategies have been developed. \Matching"43,33 (or \basis"19) \pursuit" is one
such strategy in which, at each step of the algorithm, the largest inner product is identi�ed and the corresponding
chirplet contribution removed, so that the process can be iterated on the residual. Another point of view consists in
estimating chirplet parameters in the maximum likelihood sense.48,50 In this case, the advantage can be shown to be
in terms of statistical eÆciency in the one chirplet case, while approximate (and computationally eÆcient) solutions
can be obtained when dealing with multiple chirplets.50

4. TIME-FREQUENCY

4.1. Time-frequency as a paradigm

Beyond the speci�c technicalities of the aforementioned modi�cations to Fourier-type signal decompositions, the
common denominator of all approaches is that the time-frequency plane appears as a natural representation space
for chirps (and especially multiple chirp signals), with expected energy localizations along curves of the plane that
can be interpreted as the \instantaneous frequencies" of the di�erent components.

Rather than focusing a priori on (segments of) pre-determined curves of the plane|a point of view which amounts
to addressing the signal description problem in an essentially 1D way|, we will hereafter reconsider it from a truely
2D perspective, o�ering signals various ways of structuring their complexity in the time-frequency plane. The
key issue is therefore shifted to how properly choosing a time-frequency representation with potential localization
properties for given chirps.

4.2. From Fourier to Wigner-Ville, via short-time analyses

In order to concile both time and frequency aspects, the easiest (and oldest) way of introducing a time-dependence

in a spectral representation is to make it local by substituting to the ordinary FT the quantity F
(h)
x (t; f) := hx; htf i,

where h(t) is some \window" and htf (�) := h(��t) expfi2�f�g. The main drawback of any such \short-time Fourier
transform" (STFT) is that it necessarily introduces some extraneous ingredient (the window h(t)), which may be
poorly adapted to the analyzed signal. An intuitive improvement amounts therefore to make the window depend on
the signal, with the simple choice h(t) � x�(t) := x(�t), as suggested by the \matched �ltering" principle. Doing

so, it is straightforward to check that we are in fact led to F
(x�)
x (t; f) �Wx(t=2; f=2)=2, where

Wx(t; f) :=

Z +1

�1

x(t+ �=2)x(t� �=2) e�i2�f� d� (9)

is nothing but the usual Wigner-Ville distribution (WVD).21,28,65,67

4.3. Classes of distributions from covariance principles

By construction, a WVD is quadratic in the signal and is an energy distribution. More generally, a systematic
way of constructing classes of solutions consists in imposing some (very general) a priori structure to the desired
distribution, and in deducing more and more restrictive parameterizations from the progressive imposition of further
requirements considered as \natural".28 Albeit not strictly necessary, the usual framework for energy distributions
�x(t; f) such that Z Z +1

�1

�x(t; f) dt df = kxk22 (10)



is quadratic:

�x(t; f) =

Z Z +1

�1

K(s; s0; t; f)x(s)x(s0) ds ds0; (11)

and it then suÆces to impose additional covariance constraints to appropriately reduce the space of admissible
solutions. In brief, this approach amounts to imposing the commutative relation �Tx(t; f) = (~T�)x(t; f), in which
T : L2(IR)! L2(IR) stands for some transformation operator acting on signals (and ~T : L2(IR2)! L2(IR2) for the
corresponding operator acting on time-frequency distributions). In other words, the desired distribution is asked to
\follow" a signal in the transformations that it undergoes.

The simplest example is that of shifts, in both time and frequency, for which the covariance principle leads the
most general kernel to take on the simpler form K(s; s0; t; f) = K0(s� t; s

0 � t) expf�i2�f(s� s0)g, where K0(s; s
0)

is some arbitrary two-dimensional function. A remarkable result of this approach is that it then ends up exactly with
Cohen's class21,28:

Cx(t; f) :=

Z Z +1

�1

'(�; �)x(s + �=2)x(s� �=2) ei2�[(s�t)��f� ] ds d� d�; (12)

provided that

'(�; �) :=

Z +1

�1

K0

�
t+

�

2
; t�

�

2

�
e�i2��t dt: (13)

The central role played, in classical time-frequency analysis, by Cohen's class (whose the WVD (9), as well as the
spectrogram, i.e., the squared modulus of a STFT, is a member) is therefore reinforced by the constructive argument
according to which it is the class of all quadratic time-frequency distributions that are shift-covariant.

Generalizing the approach, a deductive construction of other classes of distributions can be obtained on the basis
of covariance requirements di�erent from shifts. In particular, imposing covariance with respect to shifts in time and
dilations leads|in the space of analytic signals|to the so-called \aÆne" class.8,55 Other choices may be considered,
at will: covariance requirements with respect to frequency-dependent shifts (nonlinear group delays) lead, e.g., to
\hyperbolic" and \power" classes.52

5. TIME-FREQUENCY LOCALIZATION OF CHIRPS

The non-unicity of a time-frequency distribution leaves room for speci�c choices on the basis of additional require-
ments within a given class. In this respect, localization properties play a special role and may point towards relevant
uses of speci�c distributions when analyzing chirps.

5.1. Wigner and linear chirps

A by-product of the interpretation of the WVD as a self-adapted STFT is that the standard localization property of
the Fourier representation on pure tones, namely that x(t) = expfi2�f0tg ) X(f) = Æ (f � f0), is now extended to
any linear FM in the WVD case, since we then have x(t) = expfi2�(f0t+ �t2=2)g )Wx(t; f) = Æ (f � (f0 + �t)).

The localization property of the WVD on straight lines of the plane is a direct consequence of the quadratic
nature of the representation, and its admits a simple geometrical interpretation28,30 which allows for a number of
generalizations. Let x(t) = a(t) expfi'(t)g be a chirp, its WVD can be written as the FT of a modi�ed chirp, whose
phase is �t(�) := '(t+ �=2)�'(t� �=2). The corresponding \instantaneous frequency" identi�es therefore, at each
time instant t, to the quantity (@�t=@�)(�)=2� = [fx(t + �=2) + fx(t � �=2)]=2, a quantity which exactly coincides
with fx(t) if and only if '(t) is a polynomial of degree at most two, i.e., if the chirp is linear.

A di�erent insight on the same issue of localization for linear chirps can be gained from Janssen's interference
formula37:

W 2
x (t; f) =

Z Z +1

�1

Wx(t+ �=2; f + �=2)Wx(t� �=2; f � �=2) d� d�;

according to which a non-zero value of the WVD at a given time-frequency point results from the superposition of
other non-zero WVD contributions which are symmetrically located with respect to the considered point. From this
perspective, localization on straight lines is clear, since a straight line is the only curve of the plane de�ned as the
locus of all of its mid-points. More generally, we see that localization is a concept which directly follows from the
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Figure 2. The localization property of the Wigner-Ville distribution on straight lines of the time-frequency plane can
be seen as the result of a contructive interference process. Cross-terms of the WVD being located midway between any
two interacting components, the Figure illustrates how an increasing number N of aligned wave packets creates an
increasing number of cross-terms that are aligned too. In the limit where N !1, this leads to a perfect localization
of the distribution along the line, which is the locus of all of its mid-points. (In each image, time is horizontal,
frequency is vertical, and amplitude is coded with gray levels (only positive values are displayed).

quadratic nature of the transform and, hence, that it is just another facet of interference phenomena35 attached to
quadratic distributions: in a nutshell, and as illustrated in Figure 2, localization is nothing but the emergence of a
constructive interference process.

5.2. Quadratic generalizations

While retaining the overall philosophy put forward by the speci�c case of the WVD, variations can therefore be
proposed, with modi�ed \mid-points geometries" leading to modi�ed WVD's localizing on nonlinear curves of the
plane. More precisely, in the case of analytic signals, it is known8 that localization on power-law group delays of the
type tX(f) = t0 + c fk�1 (k � 0) can be achieved with adapted \Bertrand distributions" of the form

B
(k)
X (t; f) :=

Z +1

�1

X (f�k(u))| {z }
dilation

X (f�k(�u))| {z }
compression

f �k(u) e
i2�ft�k(u) du| {z }

modi�edFourier

;

where �k(u) := [k(e�u � 1)=(e�ku � 1)]1=(k�1) (with k 6= 0 or 1, and continuous extensions when k = 0 or 1),
�k(u) := �k(u)� �k(�u) and �k(u) := _�k(u)

p
�k(u)�k(�u). In fact, such distributions di�er only slightly from the

usual WVD (9) which can be equivalently expressed as :

WX(t; f) =

Z +1

�1

X (f + �=2)| {z }
shift forward

X (f � �=2)| {z }
shift backward

ei2��t d�| {z }
Fourier

:

In the WVD case, interference terms appear midway between interacting components,35 and are controlled by
the arithmetic mean rule (a; b) 7! A(a; b) = (a+ b)=2. In the Bertrand case, the construction rule turns out31 to be
controlled by the \generalized logarithmic mean"61 (a; b) 7! Lk(a; b) = [(ak � bk)=k(a� b)]1=(k�1), with k 6= 0; 1 and

continuous extensions when k = 0 or 1. In accordance with the formal equivalence B
(2)
X � WX , we have L2 � A,

whereas varying k allows for interpreting localization on power-law curves as the result of a modi�ed geometry, based
on a notion of mean di�erent from the usual arithmetic one (L�1, for instance, is the geometric mean), see Figure 3.

5.3. Warped quadratic distributions

Among the various classes of distributions that can be obtained from a covariance requirement with respect to
frequency-dependent shifts, the Altes distribution28,52

�QX(s; f) := f

Z +1

�1

X(f eu=2)X(f e�u=2) ei2�su du (14)

plays, within the hyperbolic class, a role as central as the WVD within Cohen's class. In fact, one can check that both
distributions are intimately related since we have �QX(s; f) =WeX (s; log f), with eX(f) := X(ef )ef=2. It thus follows
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Figure 3. In the case of Bertrand distributions of index k 2 IR, two components located in (t1; f1) and (t2; f2)
interfere to create a cross-term whose location is controlled by a generalized logarithmic mean rule. The Figure gives
the time-frequency trajectory of this \mid-point" when k varies from �1 to +1. In a �rst approximation (for
details, see31), one can infer from this diagram that, for a given k, chirp localization can therefore be achieved along
the matched power-law functions passing through the three considered points.

that Altes distributions may be perfectly localized, in their Mellin variable s, for speci�c chirps with hyperbolic
group delays. From a time-frequency perspective, the formal identi�cation s � tf guarantees that the associated
time-frequency version QX(t; f) := �QX(tf; f) of the Altes distribution can be perfectly localized along hyperbolae
of the plane.

This idea of getting localized distributions from warping can be pushed further and adapted to more general
cases, on the basis of very general unitary equivalence arguments.5

5.4. Quartic and higher-order generalizations

As we have seen, the WVD combines two ingredients: it is a quadratic distribution of the signal, but arguments of the
signal entering the cross-product are linear in the variable onto which the Fourier transform applies. Localization on
straight lines of the plane is then the result of this combination, justifying that at least one of those two ingredients
has to be relaxed for ensuring localization on nonlinear curves. The Bertrand distribution was an instance of such
a modi�cation, with a quadratic transform involving nonlinearly warped spectra. Another way can however be
explored: it consists in generalizing the idea of self-adaptation thanks to which a signal-based STFT gave birth to
the WVD. Transposing the approach to quadratic distributions, the idea is to start from some generalized form of
the WVD (as o�ered, e.g., by the kernel-based framework of Cohen's class21,28), with some explicit signal dependence
in the parameterization.20 This point of view paves the road (together with a fresh interpretation) for polynomial
distributions,10 amongst which the simplest ones are quartic in the signal:

Qx(t; f) =

Z +1

�1

x (t+ b1�) x (t+ b2�) x (t+ b3�) x (t+ b4�) e
�i2�f� d�;

where the bi's are real-valued free parameters. As expected, convenient choices of these parameters can be made
so as to guarantee a perfect localization in the case of unimodular chirps with a cubic phase (i.e., quadratic FM
signals), with preferred solutions in terms of computational simplicity and minimum spreading for quartic phases.49

Although it can be extended conceptually to higher-order chirps with higher-order distributions, this approach,
however, becomes quickly totally uneÆcient in terms of analysis, computational complexity and readability.



5.5. Locally adapted distributions

A common remark that can be addressed to all of the above-mentioned ways of making a quadratic transform signal-
dependent is that they all involve the analyzed signal as a whole, being therefore much too global to be universally
e�ective (unless in very speci�c signal classes).

Reassignment | Among the many possibilities of locally adapting a distribution to a signal, one is of special interest
and of very general applicability: it is referred to as \reassignment".2,15,18,39,40 In order to explain what reassignment
consists in, it is better to start with a re-interpretation of conventional spectrograms. Classically, a spectrogram is

de�ned as the squared modulus of a STFT: S
(h)
x (t; f) := jF

(h)
x (t; f)j2, but it is well-known21,28 that it can be expressed

as well as a smoothed WVD, according to:

S(h)
x (t; f) =

Z Z +1

�1

Wx(�; �)Wh(� � t; � � f) d� d�:

This relation makes explicit the fact that a spectrogram value cannot be considered as pointwise. In fact, this
value rather results from the summation of all WVD contributions within some time-frequency domain de�ned as the
essential time-frequency support ofWh, properly centered at the location of the considered point of interest. A whole
distribution of values is therefore summarized by a single number, and this number is assigned to the geometrical
center of the domain over which the distribution is considered. Reasoning with a mechanical analogy, the situation
is as if the total mass of an object were assigned to its geometrical center, an arbitrary point which|except in the
very speci�c case of an homogeneous distribution over the domain|has no reason to suit the actual distribution.
A much more meaningful choice is to assign the total mass to the center of gravity of the distribution within the
domain, and this is precisely what reassignment does: at each point where a spectrogram value is computed, we also
compute the local centro��d of the WVD, as seen through the time-frequency window de�ned by the local kernel, and
the distribution value is moved from the point where it has been computed to this centro��d.

In the case of linear FM signals, reassigned spectrograms inherit therefore of the perfect localization property of
the WVD, since the centro��d of any segment of a line distribution necessarily belongs to the line. This property still
remains e�ective in the case of multicomponent linear chirps as long as no more than one chirp is \seen" through
the same time-frequency smoothing window. Similarly, almost perfect localization is achieved for nonlinear chirps
which are locally linear within the window. Finally, one must add that, although it had been historically introduced
for spectrograms only,39,40 reassignment is by no way restricted to this sole family of distributions: its principle can
be applied as well to very general settings (Cohen's class, aÆne class. . . ), in fact to any distribution which can be
expressed as a smoothed version of some mother-distribution with localization properties.2,18

An example of the e�ectiveness of reassignment is given in Figure 4y. The analyzed signal is in this case Riemann's
function:

�(t) :=
1X
n=1

sin�n2t

n2
; (15)

a 2-periodic function which has been shown36 to admit a local approximation, in the vicinity of t = 0, in terms of
power-law chirps with � = �3=2 and � = �1.

Ridges and skeletons|A technique related to reassignment, referred to as \ridges and skeletons", has been developed
for both Gabor and wavelet transforms.13,23 Behind the idea of a \ridge" is the intuition that, in the case of chirp
signals, the largest contributions should lie in the plane along speci�c trajectories. What has been shown is that such
trajectories can be identi�ed from the phase of the transform, and that the corresponding coeÆcients convey most
of the information present in a signal, in the sense that they allow for its almost perfect reconstruction.13,23 By
structure, reassignment has much to share with \ridges and skeletons" and can be viewed as a form of generalization:
indeed, for a �xed time location, the frequency location of a ridge is nothing but the �xed point of a (frequency only)
reassignment operator.15

Connecting power-law chirps and oscillating singularities, the concept of \ridges and skeletons" justi�es that the
largest wavelet coeÆcients live outside from the inuence cone centered at the time of occurrence of the singularity,

yIt has to be remarked that reassigned distributions can be equipped with eÆcient algorithms.2 Matlab codes for
reassigned distributions (as the one used for producing the Figure) are available as part of a freeware time-frequency toolbox.3
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Figure 4. The Riemann function (15) is an example of a mathematical object that can be locally expanded in
terms of power-law chirps at certain points. The top left diagram displays the complete (2-periodic) function over the
fundamental interval [0; 2]. A (detrended) magni�cation of the restriction of the function within the box centered in
(1; 0) is given in the bottom left diagram. This clearly evidences a local chirping behavior, whose rich multi-component
structure is revealed by the reassigned spectrogram plotted in the right diagram.

thus forbidding the use of \classical" wavelet-based estimations aimed at H�older singularities.42 Recognizing this
fact has been the starting point of rigorous mathematical developments36 which basically amount to considering
coeÆcients located along suitable trajectories of the plane rather than within the inuence cone.

Revealing instantaneous frequencies | Both reassigned distributions and \ridges and skeletons" are powerful tech-
niques for evidencing time-varying structures in signals. In the spectrogram case, the local centro��ds involved in the
reassignment process have for coordinates the group delay and the instantaneous frequency of the signal, as seen
through the local time-frequency window Wh. This o�ers a reversed perspective (which could now be referred to as
\think global, act local") to the concept of instantaneous frequency: as opposed to the standard de�nition based on
the analytic signal, reassignment exampli�es the idea that this notion can rather be viewed as a form of emergence of
energy concentration along trajectories on the plane. As such, the time-frequency paradigm is not used for estimating
pre-de�ned quantities, but rather for revealing relevant structures composing a signal.29

6. CONCLUSION

This paper has surveyed a number of issues related to chirps, and has advocated the explicit use of time-frequency
tools for their analysis. In particular, it has been shown how a matched and/or adapted distribution may be localized
in the plane along a curve which is an image of the frequency history of a chirp. In many circumstances, localizing
a chirp is not the ultimate goal, but rather a pre-requisite for simplifying a further processing (one can mention,
e.g., the problem of detecting a chirp via a coherent path integration in the plane,6,17 or of synthesizing music with
additive techniques26). Whatever the objective, it has been argued that the time-frequency plane is a convenient
representation space for chirps, whose internal structure can be revealed via the emergence of localized contributions
and which, as notes on a musical score, can be used as a natural language for numerous time-varying signals.
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