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“chirps”

Waves and vibrations — Bird songs, bats , music
(“glissando”), speech, “whistling atmospherics”, tidal waves,

gravitational waves , wide-band impulses propagating in a dispersive
medium, pendulum , diapason (string, pipe) with time-varying
length, vibroseismics, radar, sonar, Doppler effect . . .

Biology and medicine — EEG (epilepsy), uterine EMG
(contractions),. . .

Disorder and critical phenomena — Coherent structures in
turbulence, accumulation of earthquake precursors,
“speculative bubbless” prior a financial crash,. . .

Mathematical special functions — Weierstrass, Riemann . . .
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Definition

A “chirp” is any complex-valued signal reading
x(t) = a(t) exp{iϕ(t)}, where a(t) ≥ 0 is a low-pass amplitude
whose evolution is slow as compared to the phase oscillations ϕ(t).

Slow evolution? — Usual heuristic conditions assume that:

1 |ȧ(t)/a(t)| � |ϕ̇(t)|: the amplitude is alomost constant at
the scale of a pseudo-period T (t) = 2π/|ϕ̇(t)|.

2 |ϕ̈(t)|/ϕ̇2(t) � 1: the pseudo-period T (t) is itself slowly
varying from one oscillation to the enxt.
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modulations

Monochromatic wave — In the case of a harmonic model
x(t) = a cos(2πf0t + ϕ0), observing x(t) leads in an
unambiguous way to the amplitude a and to the frequency f0.

Amplitude and frequency modulations — Moving to an
evolutive model amounts (intuitively) to achieve the
transformation a cos(2πf0t + ϕ0) → a(t) cos ϕ(t) with a(t)
variable and ϕ(t) nonlinear. In an observation context, the
unicity of the representation is however lost since

a(t) cos ϕ(t) =

[
a(t)

b(t)

]
[b(t) cos ϕ(t)] =: ã(t) cos ϕ̃(t)

for any function 0 < b(t) < 1.
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Fresnel

Monochromatic wave — The real-valued harmonic model can
be written as

x(t) = a cos(2πf0t + ϕ0) = Re {a exp i(2πf0t + ϕ0)} ,

with
a exp i(2πf0t + ϕ0) = x(t) + i (Hx)(t)

and where H is the Hilbert transform (quadrature).

Interpretation

A monochromatic wave (prototype of a “stationary” deterministic
signal) is described, in the complex plane, by a rotating vector
whose modulus and rotation speed are constant along time.
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instantaneous amplitude and frequency

Generalisation — A wave modulated in amplitude and in
frequency (prototype of a “nonstationary” deterministic signal) is
described, in the complex plane, by a rotating vector whose
modulus and rotation speed are varying along time,
complexification mimicking the “stationary” case:

x(t) → zx(t) := x(t) + i (Hx)(t).

Definition (Ville, ’48)

The instantaneous amplitude and frequency follow from this
complex-valued representation, called analytic signal, as :

ax(t) := |zx(t)| ; fx(t) := (d/dt) arg zx(t)/2π.

[freqinst1.m]
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limitations

Multiple components — By construction, the instantaneous
frequency can only attach one frequency value at a given time
⇒ weighted average in the case of multicomponent signals.

[freqinst2.m]

Trends — Same problem with a monocomponent signal with
a DC component or a very low frequency trend.

[freqinsttrend.m]

Possible improvement with an “osculating” Fresnel
representation (Aboutajdine et al., ’80).

[freqinstosc.m]

Noise — Differential definition very sensitive to additive
noise, even faint.

[freqinst1b.m]
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stationarity

Definition

A process {x(t), t ∈ R} is said to be (second order) stationary if
its statistical properties (of orders 1 and 2) are independent of
some absolute time.

Mean value — The expectation E{x(t)} is constant (→ 0)

Covariance — The covariance function
rx(t, t

′) := E{x(t) x(t ′)} is such that

rx(t, t
′) =: γx(t − t ′).
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spectral representation

Result (Cramér)

x(t) =

∫
e i2πft dX (f )

with E{dX (f ) dX (f ′)} = δ(f − f ′) dΓx(f ) df ′

Simplification — dΓx(f ) abs. cont. wrt Lebesgue
⇒ dΓx(f ) =: Sx(f ) df with Sx(f ) power spectral density.

Duality (Bochner, Wiener, Khintchine) — One thus gets

rx(τ) =

∫
e i2πf τ dΓx(f )

(
=

∫
e i2πf τ Sx(f ) df

)
.
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nonstationarit(y/ies)

Spectral representation — Always valid, but without the
orthogonality of spectral increments ⇒ the spectral
distribution is no more diagonal but a function of two
frequencies.

Covariance – Depends explicitly of two times (e.g., one
absolute time and one relative time).

Interpretation

The “power spectrum density” becomes time-dependent ⇒
time-frequency.
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chirp spectrum

Stationary phase — In the case where the phase derivative ϕ̇(t)
is monotonous, one can approach a chirp spectrum

X (f ) =

∫
a(t) e i(ϕ(t)−2πft) dt

by its stationary phase approximation X̃ (f ), leading to

|X̃ (f )| ∝ a(ts) |ϕ̈(ts)|−1/2,

with ts such that ϕ̇(ts) = 2πf .

Interpretation

The “instantaneous frequency” curve ϕ̇(t) puts in a one-to-one
correspondence one time and one frequency. The spectrum follows
by weighting the visited frequencies by the corresponding
residence durations.
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time-frequency interpretation
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intuition

Idea

Give a mathematical sense to musical notation

Aim

Write the “musical score” of a signal with multiple, evolutive
components with that additional constraint of getting, in the case
of an isolated chirp x(t) = a(t) exp{iϕ(t)}, a localized
representation

ρ(t, f ) ∼ a2(t) δ (f − ϕ̇(t)/2π) .
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local methods and localization

The example of the short-time FT — One defines the
local quantity

F
(h)
x (t, f ) =

∫
x(s) h(s − t) e−i2πfs ds,

where h(t) is some short-time observation window.

Measurement — The representation results from an
interaction between the signal and a measurement device
(the window h(t)).

Trade-off — A short window favors the “resolution” in time
at the expense of the “resolution” in frequency, and vice-versa.

[spectrodemo.m]
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adaptation

Chirps — Adaptation to pulses if h(t) → δ(t) and to tones
if h(t) → 1 ⇒ adapting the analysis to arbitrary chirps
suggests to make h(t) (locally) depending on the signal.

Linear chirp — In the linear case fx(t) = f0 + αt, the
equivalent frequency width δfS of the spectrogram

S
(h)
x (t, f ) := |F (h)

x (t, f )|2 behaves as:

δfS ≈
√

1

δt2
h

+ α2 δt2
h

for a window h(t) with an equivalent time width δth ⇒
minimum for δth ≈ 1/

√
α (but α unknown. . . ).
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self-adaptation and Wigner-Ville distribution

Matched filtering — If one takes for the window h(t) the
time-reversed signal x−(t) := x(−t), one readily gets that

F
(x−)
x (t, f ) = Wx(t/2, f /2)/2, where

Wx(t, f ) :=

∫
x(t + τ/2) x(t − τ/2) e−i2πf τ dτ

is the Wigner-Ville Distribution (Wigner, ’32; Ville, ’48).

Linear chirps — The WVD perfectly localizes on straight
lines of the plane:

x(t) = exp{i2π(f0t+αt2/2)} ⇒ Wx(t, f ) = δ (f − (f0 + αt)) .

Remark — Localization via self-adaptation leads to a
quadratic transformation (energy distribution).
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interpretation

Mirror symmetry — Indexing the analyzed signalwrt a local
frame as xt(s) := x(s + t), one gets :

Wx(t, f ) :=

∫ [
xt(+τ/2) xt(−τ/2)

]
e−i2πf τ dτ,

[WVdemo.m]

Phase signal — If xt(s) = exp{iϕt(s)}, Wx(t, f ) is, as a
function of t, the FT od a phase signal
Φt(τ) := ϕt(+τ/2)− ϕt(−τ/2), with “instantaneous
frequency”

f̃xt (τ) =
1

2π

∂

∂τ
Φt(τ) =

1

2
[fxt (+τ/2) + fxt (−τ/2)]

Localization — It follows that f̃xt (τ) = f0 if fxt (τ) = f0 + α τ ,
for any modulation rate α.

[spectrovsWV.m]
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further properties

Energy ∫∫
Wx(t, f ) dt df = ‖x‖2

Marginals∫
Wx(t, f ) dt = |X (f )|2;

∫
Wx(t, f ) df = |x(t)|2

Unitarity (“Moyal’s formula)∫∫
Wx(t, f ) Wy (t, f ) dt df = |〈x , y〉|2

Conservation of supports, covariance wrt scaling, linear
filtering and modulation, etc.
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further properties

Local moments∫
f Wx(t, f ) df /|x(t)|2 = fx(t);

∫
t Wx(t, f ) dt/|X (f )|2 = tx(f )

Interpretation

Wx(t, f ) quasi-probability (joint) density of energy in time and
frequency :

Wx(t, f ) = Wx(t|f )

∫
Wx(t, f ) dt = Wx(f |t)

∫
Wx(t, f ) df

fx(t) = E{f |t}; tx(f ) = E{t|f }

Limitation — Wx(t, f ) ∈ R but /∈ R+.

Patrick Flandrin Elements of time-frequency analysis



observing
describing

representing

time-frequency, from Fourier to Wigner
beyond Wigner
the stochastic case
localization
time-frequency decisions

interferences

Quadratic superposition — For any pair of signals
{x(t), y(t)} and coefficients (a, b), one gets

Wax+by (t, f ) = |a|2 Wx(t, f )+|b|2 Wy (t, f ) +2 Re
{
a b Wx ,y (t, f )

}
,

with

Wx ,y (t, f ) :=

∫
x(t + τ/2) y(t − τ/2) e−i2πf τ dτ

Drawback — Interferences between disjoint component
reduce readability.

Advantage — Inner interferences between coherent
components guarantee localization.
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interferences

Janssen’s formula (Janssen, ’81) — It follows from
theunitarity of Wx(t, f ) that:

|Wx(t, f )|2 =

∫∫
Wx

(
t +

τ

2
, f +

ξ

2

)
Wx

(
t − τ

2
, f − ξ

2

)
dτ dξ

Geometry (Hlawatsch & F., ’85) — Contributions located
in any two points of the plane plan interfere to create a third
contribution

1 midway of the segment joining the two components
2 oscillating (positive and negativ values) in a direction

perpendicular to this segment
3 with a “frequency” proportional to their “time-frequency

distance”.

[WV2trans.m, WVinterf.m]
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interferences and readability

somme des WV (N = 16) WV de la somme (N = 16)
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interferences and localization

sum(WV) (N = 16) WV(sum) (N = 16)
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classes of quadratic distributions

Observation

Many quadratic distributions have been proposed in the literature
since more than half a century (e.g., spectrogram and DWV):
none fully extends the notion of spectrum density to the
nonstationary case.

Principle of conditional unicity — Classes of quadratic
distributions of the form ρx(t, f ) = 〈x ,Kt,f x〉 can be constructed
based on covariance requirements :

x(t) → ρx(t, f )
↓ ↓

(Tx)(t) → ρTx(t, f ) = (T̃ρx)(t, f )
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classes of quadratic distributions

Cohen’s class — Covariance wrt shifts
(Tt0,f0x)(t) = x(t − t0) exp{i2πf0t} leads to Cohen’s class
(Cohen, ’66) :

Cx(t, f ) :=

∫∫
Wx(s, ξ) Π(s − t, ξ − f ) ds dξ,

with Π(t, f ) “arbitrary” (and to be specified via additional
constraints).

Variations — Other choices possibles, e.g.,
(Tt0,f0x)(t) = (f /f0)

1/2x(f (t − t0)/f0) → affine class (Rioul
& F, ’92), etc.
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an alternative interpretation of Cohen’s class

Duality between distribution and correlation — In the
“stationary” case, the frequency energy distribution can be
estimated as the Fourier image of the time correlation
〈x ,Tτx〉, possibly weighted.

Extension — In the “nonstationary” case, one must consider
a time-frequency correlation Ax(ξ, τ) ∝ 〈x ,Tτ,ξx〉
(ambiguity function) which, after weighting and Fourier
transformation, leads again to Cohen’s class:

Cx(t, f ) =

∫∫
ϕ(ξ, τ) Ax(ξ, τ) e−i2π(ξt+τ f ) dξ dτ.

[WVvsAF.m]
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why “Cohen-type” classes?

Unification — Specifying a kernel (i.e., Π(t, f )) defines a
distribution: unifying framework or most propositions of the
literature (Wigner-Ville, spectrogram, Page, Levin, Rihaczek,
etc.).

Parameterization — Properties of a distribution are directly
connected with admissibility conditions of the associated
kernel ⇒ simplified possibility of evaluation and design.
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an example of definition

Spectrogram — If we consider the case of the spectrogram with
window h(t), one can write:

S
(h)
x (t, f ) =

∣∣∣∫ x(s) h(s − t) e−i2πfs ds
∣∣∣2

= |〈x ,Tt,f h〉|2
=

∫∫
Wx(s, ξ) WTt,f h(s, ξ) ds dξ

=
∫∫

Wx(s, ξ) Wh(s − t, ξ − f ) ds dξ

⇒ a spectrogram is a member of Cohen’s class, with kernel

Π(t, f ) = Wh(t, f )
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an example of admissibility constraint

Marginal in time — If one wants to have
∫

Cx(t, f ) df = |x(t)|2,
one can write:∫

Cx(t, f ) df =
∫ (∫∫

ϕ(ξ, τ) Ax(ξ, τ) e−i2π(ξt+τ f ) dξ dτ
)

df
=

∫
ϕ(ξ, 0) Ax(ξ, 0) e−i2πξt dξ

=
∫

ϕ(ξ, 0)
(∫
|x(θ)|2 e i2πξθ dθ

)
e−i2πξt dξ

=
∫
|x(θ)|2

(∫
ϕ(ξ, 0) e i2πξ(θ−t) dξ

)
dθ

⇒ the associated kernel must necessarily satisfy

ϕ(ξ, 0) = 1,∀ξ

(true for Wigner-Ville but not for spectrograms)

Patrick Flandrin Elements of time-frequency analysis



observing
describing

representing

time-frequency, from Fourier to Wigner
beyond Wigner
the stochastic case
localization
time-frequency decisions

Cohen’s class and smoothing

Spectrogram — Given a low-pass window h(t), one gets the
smoothing relation:

S
(h)
x (t, f ) := |F (h)

x (t, f )|2 =

∫∫
Wx(s, ξ) Wh(s−t, ξ−f ) ds dξ

From Wigner-Ville to spectrograms — A generalization
amounts to choose a smoothing function Π(t, f ) allowing for
a continuous and separable transition between Wigner-Ville
and a spectrogram (smoothed pseudo-Wigner-Ville
distributions) :

Wigner − Ville . . . → PWVL . . . → spectrogram

δ(t) δ(f ) g(t) H(f ) Wh(t, f )

[WV2Smovie.m]
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time-frequency spectrum

Definition (Martin, ’82)

One of the most “natural” extensions of the power spectrum
density is given by the Wigner-Ville Spectrum :

Wx(t, f ) :=

∫
rx

(
t +

τ

2
, t − τ

2

)
e−i2πf τ dτ

Interpretation — FT of a local correlation.

Properties — PSD if x(t) stationary, marginals, etc.

Relation with the WVD — Under simple conditions, one
has Wx(t, f ) = E{Wx(t, f )}.
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estimation of the Wigner-Ville spectrum

Aim

Approach E{Wx(t, f )} on the basis of only one realization.

Assumption — Local stationnarity (in time and in
frequency).

Estimators — Smoothing of the DWV :

Ŵx(t, f ) = (Π ∗ ∗Wx)(t, f )

i.e., Cohen’s classe.

Properties — Statistical (bias-variance) and geometrical
(localization) trade-offs, both controlled by Π(t, f ).
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global vs. local

Global approach — The Wigner-Ville Distribution localizes
perfectly on straight lines of the plane (linear chirps). One
can construct other distributions localizing on more general
curves (ex.: Bertrand’s distributions adapted to hyperbolic
chirps).

Local approach — A different possibility consists in revisiting
the smoothing relation defining the spectrogram and in
considering localization wrt the instantaneous frequency as it
can be measured locally, at the scale of the short-time
window ⇒ reassignment.
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reassignment

Principle — The key idea is (1) to replace the geometrical
center of the smoothing time-frequency domain by the center
of mass of the WVD over this domain, and (2) to reassign
the value of the smoothed distribution to this local centröıd:

S
(h)
x (t, f ) 7→

∫∫
S

(h)
x (s, ξ) δ

(
t − t̂x(s, ξ), f − f̂x(s, ξ)

)
ds dξ.

Remark — Reassignment has been first introduced for the
only spectrogram (Kodera et al., ’76), but its principle has
been further generalized to any distribution resulting from the
smoothing of a localizable mother-distribution (Auger & F.,
’95).
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reassignment
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reassignment

Wigner-Ville
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reassignment in action

Spectrogram — Implicit computation of the local centröıds
(Auger & F., ’95) :

t̂x(t, f ) = t + Re

{
F

(T h)
x

F
(h)
x

}
(t, f )

f̂x(t, f ) = f − Im

{
F

(Dh)
x

F
(h)
x

}
(t, f ),

with (T h)(t) = t h(t) and (Dh)(t) = (dh/dt)(t)/2π.

Beyond spectrograms — Possible generalizations to other
smoothings (smoothed pseudo-Wigner-Ville, scalogram, etc.).
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independence wrt window size
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an example of comparison
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signal model Wigner−Ville  (log scale)

spectrogram  (log scale) reassigned spectrogram
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comparison with noise

signal (sans bruit)

pseudo−Wigner−Ville

pseudo−Wigner−Ville liss�

spectrogramme

spectrogramme r�allou�
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comparison with noise

signal (RSB = 20 dB)

pseudo−Wigner−Ville

pseudo−Wigner−Ville liss�

spectrogramme
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reassignment and estimation

Advantage — Very good properties of localization for chirps
(> spectrogram).

Limitation — High sensitivity to noise (< spectrogram).

Aim

Reduce fluctuations while preserving localization.

Idea (Xiao & F., ’06)

Adopt a multiple windows approach.
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back to spectrum estimation

Stationary processes — The power spectrum density can
be viewed as:

Sx(f ) = lim
T→∞

E

 1

T

∣∣∣∣∣
∫ +T/2

−T/2
x(t) e−i2πft dt

∣∣∣∣∣
2


In practice — Only one, finite duration, realization ⇒ crude
periodogram (squared FT) = non consistent estimator with
large variance
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classical way out (Welch, ’67)

Principle — Method of averaged periodograms

Ŝ
(W )
x ,K (f ) =

1

K

K∑
k=1

S
(h)
x (tk , f )

with tk+1 − tk of the order of the width of the window h(t).

Bias-variance trade-off — Given T (finite), increasing K ⇒
reduces variance, but increases bias
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multitaper solution (Thomson, ’82)

Principle — Computing

Ŝ
(T )
x ,K (f ) =

1

K

K∑
k=1

S
(hk )
x (0, f )

with {hk(t), k ∈ N} a family of orthonormal windows
extending over the whole support of the observation ⇒
reduced variance, without sacrifying bias

Nonstationary extension — Multitaper spectrogram

Ŝ
(T )
x ,K (f ) → Sx ,K (t, f ) :=

1

K

K∑
k=1

S
(hk )
x (t, f )

Limitation — Localization controlled by most spread
spectrogram.
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Multitaper reassignment

Idea

Combining the advantages of reassignment (wrt localization) with
those of multitapering (wrt fluctuations) :

Sx ,K (t, f ) → RSx ,K (t, f ) :=
1

K

K∑
k=1

RS
(hk )
x (t, f )

1 coherent averaging of chirps (localization independent of
the window)

2 incoherent averaging of noise (different TF distributions for
different windows)
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in practice

Choice of windows — Hermite functions

hk(t) = (−1)k
e−t2/2

√
π1/22kk!

(Dkγ)(t); γ(t) = et2

rather than Prolate Spheroidal Wave functions

Two main reasons
1 WVD with elliptic symmetry and maximum concentration

in the plane.
2 recursive computation of hk(t), (T hk)(t) and (Dhk)(t) ⇒

better implementation in discrete-time. In particular:

(Dhk)(t) = (T hk)(t)−
√

2(k + 1) hk+1(t)
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example 1

1 
ta

pe
r

sample spectro. sample reass. spectro. sample Wigner
10

 ta
pe

rs

sample mean spectro. sample mean reass. spectro.

10
 s

am
pl

es

average mean spectro. average mean reass. spectro. average Wigner
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example 2

 

 
spectro. (M = 1)

 

 

reass. spectro. (M = 1)

 

 

spectro. (M = 2)

 

 

reass. spectro. (M = 2)

 

 

spectro. (M = 3)

 

 

reass. spectro. (M = 3)

 

 

spectro. (M = 4)

 

 

reass. spectro. (M = 4)

 

 

spectro. (M = 5)

 

 

reass. spectro. (M = 5)

 

 

spectro. (M = 6)

 

 

reass. spectro. (M = 6)
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detection/estimation of chirps

Optimality — Matched filtering, maximum likelihood,
contrast,. . . : basic ingredient = correlation “received signal
— copy of emitted signal”.

Time-frequency interpretation — Unitarity of a
time-frequency distribution ρx(t, f ) guarantees the
equivalence:

|〈x , y〉|2 = 〈〈ρx , ρy 〉〉.

Chirps — Unitarity + localization ⇒ detection/estimation via
path integration in the plane (e.g., Wigner-Ville and linear
chirps).

[detectTF.m]
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VIRGO example

chirp de binaire coalescente + reference pour le filtre adapte

observation bruitee, SNR = −10 dB

enveloppe de la sortie du filtre adapte
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VIRGO example (Chassande-Mottin & F., ’98)
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time-frequency detection ?

Language — The time-frequency viewpoint offers a natural
language for addressing detection/estimation problems
beyond nominal situations.

Robustness — Incorporation of uncertainties in the chirp
model by replacing the integration curve by a domain
(example of post-newtonian approximations in the case of
gravitational waves).

time

fr
eq

ue
nc

y

gravitational wave

?
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interpretation example: Doppler-tolerance

Localization of a moving target — When estimating a
delay by matched filtering with some unknown Doppler effect,
estimations of delay and Doppler are coupled ⇒ bias and
contrast loss at the detector output.

Addressed problem — Suppress bias on delay and minimize
contrast loss.

Signal design — Specification of performance via a
geométric interpretation of the time-frequency structure of a
chirp.

[dopptol.m, faTFdopp.m]
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L. Cohen, Time-Frequency Analysis, Prentice-Hall, 1995.

S. Mallat, A Wavelet Tour of Signal Processing, Academic
Press, 1997.

R. Carmona, H.L. Hwang & B. Torrésani, Practical
Time-Frequency Analysis, Academic Press, 1998.

F. Hlawatsch, Time-Frequency Analysis and Synthesis of
Linear Signal Spaces, Kluwer, 1998.

P. Flandrin, Time-Frequency/Time-Scale Analysis, Academic
Press, 1999.
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A. Papandreou-Suppappola (ed.), Applications in
Time-Frequency Signal Processing, CRC Press, 2003.

B. Boashash (ed.), Time-Frequency Signal Analysis and
Processing, Elsevier, 2003.

Ch. Doncarli & N. Martin (eds.), Décision dans le Plan
Temps-Fréquence, Traité IC2, Hermes, 2004.

F. Auger & F. Hlawatsch (eds.), Temps-Fréquence —
Concepts et Outils, Traité IC2, Hermes, 2005.
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preprints & Matlab codes

http://tftb.nongnu.org/

http://perso.ens-lyon.fr/patrick.flandrin/
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contact

Patrick.Flandrin@ens-lyon.fr
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[expendule.m]
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θ̈(t) + (g/L) θ(t) = 0

Constant length — L = L0 ⇒ small oscillations are
sinusoidal, with constant period T0 = 2π

√
L0/g .

“Slowly” varying length — L = L(t) ⇒ small oscillations
are quasi-sinusodal, with varying pseudo-period
T (t) ∼ 2π

√
L(t)/g .

back
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[binaire.m]
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gravitational waves

time

gravitational wave

back
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[chauvesouris.m]
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bat echolocation

time

bat echolocation call + echo

time

bat echolocation call (heterodyned)
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System —(Active) navigation system, natural sonar

Signals — Ultrasound acoustic waves, transient (a few ms)
and “wideband” (some tens of kHz between 40 and 100kHz)

Performance — Close to optimality, with adaption of the
waveforms to multiple tasks (detection, estimation,
recognition, interference rejection,. . . )

back
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[exdoppler.m]
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Doppler effect

Moving monochromatic source — Differential perception
of the emitted frequence.

f + ∆ f f - ∆ f "chirp"

back
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Riemann function

σ(t) :=
∞∑

n=1

n−2 sin πn2t

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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