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ABSTRACT Scaling phenomena have been observed in a wide range of ap-
plications. Self-similar and long-range dependent processes are two of the most
important kinds of random processes that can be used to model scale invariance.
We describe here how to analyze them using the discrete wavelet transform. We
have chosen a didactic approach, useful to practitioners. Focusing on the Discrete
Wavelet Transform, we describe the nature of the wavelet coefficients and their
statistical properties. Pitfalls in understanding and key features are highlighted
and we sketch some proofs to provide additional insight. The Logscale Diagram
is introduced as a natural means to study self-similarity and/or long-range de-
pendence and we show how it can be used to obtain unbiased semi-parametric
estimates of the scaling exponent. We then focus on the case of long-range de-
pendence and address the problem of defining a lower cutoff scale corresponding
to where scaling starts. We also discuss some related problems arising from the
application of wavelet analysis to discrete time series. Numerical examples us-
ing many discrete time models are then presented to show the quality of the
wavelet-based estimator and how it compares with alternative ones. The exam-
ples include strong short range dependence, and non-Gaussian series with both
finite and infinite variance. We conclude with a historical and synthetic section
discussing the close and natural connection between wavelets, self-similarity and
more generally, scaling.

AMS Subject classification: Primary 60G18; secondary 62G07.
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1 Motivation

In the past twenty years, a wide collection of mathematical processes and
systems, as well as data from physical systems in diverse fields covering both
natural phenomena (biology: DNA sequences, heart rate variability, audi-
tory nerves spike trains; physics: turbulence, hydrology, solid-state physics)
and human activity (telecommunications network traffic, finance) have been
seen to exhibit properties of scale invariance. Scale invariance understood in
a loose way means that, within a wide range of scales between some upper
and lower cut-off limits, no characteristic scale can be identified nor plays
a privileged role. The behavior at different scales is in a sense equivalent,
and they can be expressed by a scale invariance property or renormaliza-
tion operation. In other words, the paradigm of scale invariance is “relation
between scales” rather than “dominance of a characteristic scale”. Scale
invariance has been shown to manifest itself in multiple forms the most
important of which are “self-similarity” (two subsets of a whole observed
at different scales are identical, either in themselves or statistically) and
“long-range dependence” (very slowly decaying correlations allow the far
past to influence the future, rather than being independent of it beyond
some relaxation time).

Since we will concentrate here on those two models, we briefly recall their
definitions and discuss how they are related (for more details see Taqqu
[35]). A process {X(t), t € R} is said to be self similar with self-similarity

parameter H (henceforth, H-ss), if and only if Ve > 0, {c ¥ X (ct),t € R} <
{X(t),t € R}. Let {Y(¢),t € R} denote a second-order stationary stochastic
process and ry and gy its covariance function and spectrum. The process
{Y'(t),t € R} is said here to be long-range dependent if either

ry (1) ~ CT|T|7’1, T — 400, v € (0,1) (1.1)
or if,
(V) ~ colu] T =0, 7 € (0,1). (12)

In most practical situations, ry is asymptotically monotone in which case
these relations are in fact equivalent (Zygmund [49], Chapter V 2). There
is a close relationship between LRD and self-similar processes. Indeed, the
increments of any finite variance H-sssi process have LRD, as long as 1/2 <
H <1, with H and + related through

v=2H —1. (1.3)

For instance, the increments of the fractional Brownian motion define the
so-called fractional Gaussian noise. Long-range dependent processes may,
on the other hand, very well exist by themselves, without reference to self-
similarity, for example the FARIMA processes, which will be used in the
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sequel. Throughout this paper the following convention is used: f(z) ~
g(x) as * — a means that lim,,, f(z)/g(z) = 1, and f(z) =~ g(x) as
r — a means that lim,_,, f(z)/g(x) = C where C' is some finite constant.
Moreover, unless specified, > = will stand for Z:{:’_oo. The term scaling will
refer to both “self-similarity” and “long-range dependence”.

To study self-similarity and long-range dependence phenomena in data,
that is, to evidence their presence and to estimate the relevant parameters,
wavelet analysis and wavelet transforms have been shown to be tools of par-
ticular interest. The aim of this article is to provide a brief guided tour of
the wavelet analysis of such phenomena. Since it also intends to give practi-
cal operational tools to practitioners who are not familiar with wavelets, it
starts with a didactic introduction to wavelet techniques in Section 2. The
following section, Section 3, gathers results regarding the statistical prop-
erties of the wavelet coefficients of self-similar and long-range dependent
(LRD) processes. The results are presented in a synthetic and constructive
manner, with only qualitative outlines of some of the proofs, with accessible
rather than original references. Section 4 introduces the idea of a wavelet
based ‘spectrum’, as both a natural way of viewing scaling data through the
wavelet lens, and as a natural basis for estimation. It then describes in detail
the theoretical and practical issues in the estimation of the scaling expo-
nent, the key parameter of scaling phenomena. A more detailed treatment
is given for LRD processes and data, including the special issues associated
with the analysis of discrete time data. The section concludes with a theo-
retical and empirical analysis of the quality of estimation using the wavelet
method in the case of LRD, with an emphasis on the bias-variance trade
off arising from the necessity to select, indeed to define, a lower cutoff scale
where the long-range dependence ‘begins’. Finally, Section 5 offers histori-
cal and thematic perspectives on the development of wavelets as related to
self-similarity, long range dependence and more generally to scaling.

Note finally that other models exhibiting scale invariance, such as fractal,
multifractal and 1/f processes, and multiplicative cascades, exist and can
be analysed in a single common unifying framework by means of wavelets.
This will not be addressed here, see Abry, Flandrin, Taqqu and Veitch [2]
for a review.

2 The discrete wavelet transform : a didactic
introduction

A thorough presentation of the (various) wavelet transforms is not intended
here, instead, we choose to propose a brief, constructive, didactic and op-
erational introduction to the discrete wavelet transform (DWT) and to the
corresponding underlying mathematical theory, the multiresolution analy-
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sis (MRA). For more complete introductions, the reader is referred to, e.g.,
Daubechies [14], Mallat [25].

2.1 Wavelet
A wavelet is a function ¥(t), t € R such that

/@Z)(t)dt —0, (2.1)

which also satisfies some integrability conditions, for instance ¢ € L*(R) N
L*(R). Typically, one requires in addition that the wavelet be bounded,
centered around the origin, and have time support (resp., frequency sup-
port) that is either finite or decreases very fast as [t| — oo (resp., |v| — 00).
Time and frequency concentrations are restricted by the Gabor- Heisenberg
uncertainty principle (see e.g. Mallat [25], page 33), and ideally, one would
like the joint time AND frequency concentration of ¢ to be as close as possi-
ble to the theoretical lower bound. function Intuitively, the term “wavelet”
is reminiscent of these requirements: an oscillating nature (as imposed by
(2.1)), with short duration of the time support.

A wavelet 1) is said to have N zero moments (also called vanishing mo-
ments) if

/tkzp(t)dt =0, k=0,1,...,N — 1. (2.2)
R

In view of the fundamental condition (2.1), the integer N is always at least
equal to 1. Commonly, an increase in the number of vanishing moments
comes with an enlargement of the time support, but brings more regularity
(smoothness, continuity, derivability) and an improved concentration of the
spectral content around a given frequency vy.

Typical examples of wavelets include the derivatives of the standard nor-
mal density ¥ (t) = (d"/dt")((27) Y2e*/2), the so-called Haar wavelet

Pp(t) = 1 0<t<1/2,
-1 1/2<t<1, (2.3)
= 0 otherwise,

and the Daubechies wavelets or the spline wavelets, both constructed from a
multiresolution analysis (see below). The mezican hat wavelet (2nd deriva-
tive of the normal function), for instance, has two vanishing moments and
time and frequency supports that are, strictly speaking, infinite, but are
actually very well concentrated. The Daubechies wavelets constitute a fam-
ily of wavelets which is indexed by their number of vanishing moments,
and which gives rise to an orthonormal wavelet basis. The Haar wavelet is
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the special element of both the Daubechies and the spline families that has
one vanishing moment, and both families have strictly finite time supports.
The so-called poor man’s wavelet 1(t) = 6(t) — §(t — 7) is also sometimes
used though it has poor regularity and frequency resolution. In this case
the wavelet coefficients (as defined below) are equivalent to the increments
of the process.

2.2 Wavelet coefficients

The functions
1 . . . .
Yialt) = 0@ —K) = 2792027 (1= PN), jEZ, kel (24

are “dilations” and “translations” of 1. The function 1)(27'¢), for example,
is a dilation of ¢ by a factor 2, the function ¢ (¢t — k) is the translation of v
to the right by & units, and thus if ¢) has support on [0, 1] then, for example,
(271t — 3) = (271 (¢ — 6)) has support on the interval [6,8]. The factors
2/ and j are called respectively the scale and the octave. Positive values of
j correspond to dilations and negative values correspond to contractions.
The normalization factor 2//2 ensures that for all j € Z and k € Z,

/R V7 (t)dt = /R 2 (t)dt,

that is, it allows the L?(R) norm to be preserved.

Using the functions {;, j,k € Z} in (2.4) as a set of filters, we can now
define the discrete wavelet transform DWT of a function (or of the sample
path of a stochastic process) {X(t), t € R} as

A = /R X (0 a(t)dt, k€. (2.5)

The coefficients d;, are called details, as they encode an information
differential between adjacent scales centered about scale 27, and the time
instant 27k. This ‘detail’ nature of the details is described further below,
and traces back to the band-pass nature of ¢ (cf. Equation (2.1)). To the
scale 27 can be associated a frequency 271y, where v, is a central frequency
characteristic of the wavelet ¢. The details are sometimes written dx(j, k) =
d;r to emphasize that they correspond to X.

The adjective “discrete” in DWT notwithstanding, X is a function of the
continuous time parameter ¢ and the relation (2.5) involves an integration.
The adjective “discrete” refers to the fact that the indices j, k take discrete
values, in contrast to the continuous wavelet transform, where they take
real values.
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Remarks on conventions: When reading a paper or book on wavelets, we
suggest that the reader immediately checks the conventions that the author
makes about N, the wavelet normalization factor and the sign attached to j.
This will avoid many pitfalls. Here are the typical alternative conventions:

o [o t(t)dt is called the first moment, which means that our N becomes
N +1.

o Instead of (2.4), one sets 1 4 (t) = 277¢(277t—k). In this case [ [1;(t)|dt
= [ [¥(t)|dt, and hence it is the L'(R) norm which is preserved.

e Instead of (2.4), one sets ¥;x(t) = 29/%)(2/t — k), so that positive
values of j now correspond to contractions.

2.3 Multiresolution analysis

There exists a specific class of wavelets, called the multiresolution wavelets,
which is of particular interest both because it has potentially stronger math-
ematical properties and because it gives birth to fast recursive pyramidal
decomposition algorithms. The analytic form of such wavelets is not usu-
ally known, however, as explained below this is not an impediment, and
in return one has that i) their key properties, such as the number of zero
moments, regularity, time or frequency support, can be easily and flexibly
tuned, and ii) fast pyramidal algorithms to compute the wavelet coefficients
are available. The construction of such wavelets, of which the Daubechies
and spline families are famous examples, is integral to the so-called mul-
tiresolution analysis theory (see Daubechies [14], Mallat [25]). We do not
intend to present the whole theory in detail but only to state the key facts:

e the wavelet ¢ (the mother wavelet) is defined through a scaling func-
tion, ¢;

e both ¢ and v satisfy so-called two-scale equations:

Y(t/2) = V23, vao(t—n) . '

For instance, for the Haar wavelet, the scale function ¢(t) is the in-
dicator function of the interval [0,1], up = u; = 1/v/2 and u, = 0
otherwise, —v; = vy = 1/\/5 and v,, = 0 otherwise;

e the sequences u and v are said to generate the multiresolution analy-
sis. In particular, they generate ¢ and ¢ and control all their proper-
ties, notably the number of zero moments, regularity, and joint time
frequency resolution;
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e in addition to the wavelet coefficients d;; in (2.5), one defines the
approzimation coefficients a;:

0 = / X(Osu(t)dt, j €T,k €T, (2.7)
R

where ¢; 1 (t) = 279/2¢(277t — k). The relation (2.7) is similar to (2.5)
but where 1) is replaced by ¢.

A major consequence of the two-scale equations, which is essential to
understand for the effective practical use of the methods we propose here,
is the fact that both the approximation and wavelet coefficients a;; and d;
at scale j can be computed from the approximation sequence {a;_1 4, k € Z}
at the finer resolution j — 1:

ajp = [Jo X(8)2792¢(279t — k)dt

Je X )2 1/2\/2 Und(2(279t — k) — n)dt
ZnunfR IHD/2(279F N — 2k — n)dt

2.8
= Zn unaj71,2k+n ( )
= D UnGj—12k—n
= (u'*a_1.)(2k)

and, in a similar way,
djp = (v *aj_1.)(2k) (2.9)

where x stands for the discrete time convolution operation, that is (x. *
y)(k)=>, x(n)y(k —n), u, = u_,, and similarly v,/ = v_,.

The two relations (2.8) and (2.9) can be rewritten using the decimation
operator | (y =2 © means that y, = xy, i.e., that one sample in z out of
two is dropped):

ae = (b (0 xa;)] (F)
b = [ba (0 %a;1)] (k) . (2.10)

PLACE FIGURE 1 HERE

Though they may appear to be the result of trivial calculations, these
equations yield the following fundamental interpretation, central to the in-
tuition of the multiresolution analysis: an approximation a; 1, of the data
at octave j — 1 yields a coarser approximation a;; and a detail d;j. This
procedure is recursively repeated on each approximation a;j so that the
initial sequence {agy, k¥ € Z} is rewritten as a collection of (increasingly
coarse) detail sequences {{d;x, k € Z},j = 1,...,J} and a final most
coarse approximation {asx, k € Z}.

The equations (2.10) call for the following comments.
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e The computation of the d;; can be performed using a recursive pyra-

midal discrete-time filter bank based algorithm, sketched in Figure 1.
Its elementary block consists of two discrete-time filters with impulse
responses u” and v¥, and decimation operators. Because the d;, are
not computed from the original continuous time process X, but from
the discrete-time previous approximation a;_;j, the resulting algo-
rithm has a particularly low computational cost, of the order of O(n)
to compute n wavelet coefficients (see, for instance, Vetterli and Ko-
vacevic [46]).

The only stage where continuous time calculus is involved is the com-
putation of the initial sequence agj which requires a continuous time
inner product, the integral

G0 — / X ()t — k)t (2.11)

The remainder of the calculus involves only discrete time convolutions.
The derivation of this initial sequence is known as the initialization
step and might be difficult because of its continuous time nature.
A classic example which arises in practice is when only a discrete
sampling of the continuous time sample path is available, rather than
the entire path. Specific comments on this step in the case of long-
range dependence in discrete time series will be made later in the
text.

The sequences v and v" play the role of low-pass and high-pass filters
respectively. The sequence uY gives rise to a coarser approximation
(letting the low frequencies go through), whereas the sequence v
tends to preserve the details (high frequencies).

From a more abstract perspective, these sequences allow a decompo-

sition of the space L?(R) into nested subspaces,

L*R) DDV DVyDViD---

For a given j, the ¢, , k € Z, project a signal X (¢) on the j “approx-

imation space” V; and v, k € Z, on the “detail space” V;_; © V}.

3  Wavelet coefficients of self-similar and LRD

Processes

The aim of this section is to describe the statistical properties of the wavelet
coefficients of self-similar and long-range dependent (LRD) processes. We
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will try to understand the extent to which these coefficients exhibit them-
selves self-similarity and LRD, and thus how scale invariance may be studied
in the wavelet domain. Let {X (¢),t € R} denote a stochastic process and
d; i its wavelet coefficients. If the wavelet ) decays in time sufficiently fast
and satisfies other mild conditions, whose exact formulation depends on the
process X, the wavelet coefficients are well-defined random variables. Let
us now list some more important facts.

e The wavelet coefficients d;, are the same for X (¢) and for X (¢) + P(t)
where P is a polynomial of degree N —1, when 1 has N vanishing moments.
Indeed,

/ P(#)i (t)dt = 2172 / P2 (u+ k))(w)du = 0,
R R
since P(2/(u + k)) is a polynomial in u of degree N — 1. Hence, the DWT
is blind to polynomial trends. In particular, X (¢) + u and X (¢) share the
same dj . If P is a smooth function which can be well approximated by a
polynomial, then its effect will also be small, and often negligible compared
to that of X (Abry and Veitch [5]). This can be useful in cases where P is
a nuisance function, for example, in economics, where it may correspond,
for instance, to a smooth evolution of the mean.

e Suppose that the process {X(¢), t € R} has stationary increments,
i.e., the finite-dimensional probabilities of {X (¢ + h) — X (¢),t € R} do not
depend on t. Then, for fixed j € Z, {d;x, k € Z} is a stationary sequence.
It is easy to see that the one dimensional marginal of the sequence does not
depend on k. Take j = 0 for ease of notation, then

doprr, = /R X(O)(t — b — ko)t

_ /RX(quko)w(u—k)du

_ /R[X(u + ko) — X (ko) (u — k)du (3.1)
LX) - X - B (32)
= [ X(y(u = k)du = doy. (3-3)

The step (3.1) makes fundamental use of the wavelet property [; 1 (u)du =
0 (cf. (2.2)). The step (3.2) is justified by approximating the integral by
sums and using the stationarity of the increments (see e.g. Houdré [20]).
Similarly, Y% | 0;do g+, < > bidoy, for arbitrary integer n > 1 and
real constants 6;, which implies that the characteristic functions are equal
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and hence that n-dimensional distributions do not depend on kg, that is,
{djx, k € Z} is stationary in k.

In a similar way, it can be shown that if the wavelet ¢ has N zero mo-
ments then {dx(j,k), k € Z} is stationary if the increments of order N
of X are stationary. One also has that {dx(j, k), k € Z} is stationary if
{X(t), t € R} is itself stationary.

e Let us suppose that {X(¢), ¢ € R} is a self similar process, with self-
similarity parameter H (henceforth, H-ss). Then for fixed j € Z,

dj £ 2 HHD g, (3.4)
as a process in k € Z. This can be roughly argued as follows: After a change
of variables,

dip = / X (27u)2 79 (u— k)27 du £ 20Ty, (3.5)

since X (29u) < 27 X (u). In (3.4), the factor of j in the exponent is H +1/2.
The 1/2 would not have been there, had we used the L!'(R) normalization
for the wavelet, namely v; ;. (t) = 2774 (277t — k).

e Let us assume now that X (¢) is a self-similar process with stationary
increments (henceforth, H-sssi), 0 < H < 1, with mean zero and finite
variance, for example, fractional Brownian motion. Then IEd;; = 0, and it
follows immediately from (3.3) and (3.5) that

Ed;, = C2/CH+ (3.6)

where C' = IEdj . Taking the logarithm of both sides in (3.6) yields a linear
function of j whose slope is 2H + 1. This observation is the basis of the
wavelet estimation method for H, which is described in the sequel.

Beyond the variance, the covariance structure of the wavelet coefficients
of a H-sssi process can also be studied. For a given j, the {d;x, k € Z}
are correlated but this correlation tends rapidly to 0 at large lags if NV is
sufficiently large:

Ed; g, djg, < Clky — ko) (3.7)
where the constant C' depends on j. Relation (3.7) is best regarded as
asymptotic, since the bound can be quite large for small |k — ko, especially
if N is large. In view of (3.7), to avoid long-range dependence for the d;,
i.e., to ensure that Y .° (IE|d;d;o| < 0o, one needs to choose N > H+1/2,
that is, have at least N = 2. The Haar wavelet does not yield enough
decorrelation. In fact, a similar relation holds for wavelet coefficients, d;, x,
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and dj, x, possibly located at different scales 271 and 272, see, for instance,
Tewfik and Kim [42] and Bardet, Lang, Moulines and Soulier [10].

Let us now turn to the Fourier domain. In this paper, we use normalized
frequencies and define the Fourier transform v of a function v as

3w = / ity i (3.8)

We shall focus on the spectral density f;(v) of the stationary sequence
{d;r, k € Z} for each j. When X () is H-sssi with EX?(1) = 6% < oo, one
can obtain it in two steps. First consider the CWT (Continuous Wavelet
Transform) {D(a,7), a, 7 € R} defined by

D(a,7) =a"! /X <t_7>dt.

Assume the following properties of the wavelet: fairly fast decay at infinity,
(1+t*)9(t) € L' (R), controlled amplitude at low frequencies, i.e., for some
€ > 0 supp, <. 1(v)/v| < M < oo, and finally the fundamental relation
(2.1). Then, as shown by Kato and Masry [23], the spectral density of
{D(a,T), T € R} is

[ (av)?

1 _ 2 :
f( )(]/) = (O' F(2H+ 1) sm7rH) GW

where I' is the gamma function. Since {d;x, k € Z } is the sampled version
of D(j,7) at integer values of 7, its spectral density is, for —1/2 < v < 1/2,

. RPN R+ m))?
f]@)(y) = (0°T(2H + 1)sinw H) 27 Ty AT + ZOO 27 (v + m) |2+
m#£0

(3.9)

Although fél)(l/) with a = 2/ and f;z)(u) are different even for —1/2 < v <
1/2, fQ(jl)(z/) ~ f]@)(y) as v — 0, i.e., they do not differ much at small values
of v if the Fourier transform t(v) is well-localized around 0. More precisely,
since 1 (v) is O(|v|¥) as v — 0, we see that fJ@)(z/) is bounded as v — 0
and hence each detail process has short range dependence if N > H +1/2,
in accordance with the comment following (3.7) above.

e Let {Y(¢),t € R} denote a second-order stationary stochastic process
and ry and gy its covariance function and spectrum. Since the relation
Yik(t) = 279/2(279t — k) implies ;4 (v) = 29/%)(27v)e~2™?'V the covari-
ance function of the wavelet coefficients of Y becomes

]Edj,kdjlykl = fR fR Ty w] k )%' k! (’LL + v)dvdu

= o gv () 2902272 (210) (20" y)emi2n 2 K2 D gy, (3.10)
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where TZ* denotes the complex conjugate of 1; The variance of the wavelet
coefficients is

]Edik:/gy(u)2j|z])v(2jy)|2du. (3.11)
R

Let {Y'(t),t € R} denote a long-range dependent process. From Equation
(3.11) above and the spectral definition of long range dependence (1.2), we
obtain that the variance of the wavelet coefficients reproduce the asymptotic
power-law underlying the definition of the LRD:

Bty ~ g2 [ 7100 P, = o (3.12)
R

In the LRD case, this (asymptotic) relation is the basis of the estimation
of v (or H, if v = 2H — 1), as described below. One can also study the
covariance structure of the wavelet coefficients. From Equation (3.10), let
us start with wavelet coefficients located at the same scale (5" = j),

Ed; xdj e = / gy ()27 [ (27v)|2e2r k=K v gy, (3.13)
R

It is clear that IEd;.d; s is a function of k' — k only, whose asymptotic
behavior (k' — k — +oo) is controlled by that of its Fourier transform
gy (1)27)4(27V)|? at the origin. Because the mother wavelet ¢ has N zero
moments, its Fourier transform 1}3 behaves at the origin as |v|", provided
that the Fourier transform is N _times differentiable at the origin. Indeed,
N zero moments translate into 1/)(0) =0, 0 < j < N — 1, and by Taylor,
10()] &~ || (0)]. Therefore, the singular behavior ||~ of the long-
range dependent spectrum at the origin is balanced by the regularity |v|*"
contributed by the wavelet, and hence the stationary sequence {d; s, k € Z}
is not LRD as soon as 2N > v, i.e., provided that the number of vanishing
moments is high enough. One then expects that the covariance of the detail
process at octave j decreases asymptotically as

Ed;pdjp = |k — k7N K — k] = oo, (3.14)

which shows that the higher N the shorter the range of dependence. Re-
lation (3.14) is consistent with (3.7) because, going from an H-sssi pro-
cess X (t) to its increments Y (t) = X(¢) — X (¢ — 1), involves differencing
the process, an operation which introduces in (3.9) a multiplicative fac-
tor of |1 — e 2™ |2 ~ (271)% as v — 0. The term |¢(2/v)[2/ 27|27+ in
(3.9) becomes |1 — e 27 [2|¢)(291)|2/|2mv |2+ ~ i) (200) |2/ |27y [2H-DHL a5
v — 0, effectively changing the original H to H' = H — 1. Then Y is LRD
with v = 2H — 1. The exponents in (3.7) and (3.14) are consistent since
2(H'— N) =2H — 2N — 2 =y — 2N — 1. Note that the relation 2N > ,
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that is N > H — 1/2, now holds even for N = 1, that is, for Haar wavelets.
In practice, one chooses N = 2 or 3 to allow a quicker decrease in (3.14).
Too big an N is not desirable since the wavelets become less localized.
Note finally that most of the LRD processes commonly used are dis-
crete time processes, while the arguments developed here are dedicated to
continuous time processes. We will return to this question later.

e The discussions above show that the wavelet coefficients of self-similar
and long-range dependent processes share the same fundamental proper-
ties: i) stationarity at fixed scale, ii) short range statistical dependence (cf.
Equations (3.7) and (3.14)), and iii) reproduction in the wavelet domain
of the power-laws defining the scale invariance phenomena (cf. Equations
(3.6) and (3.12)). Let us emphasize that these properties result from a deep
correspondence between the analyzed phenomena — processes with scale
invariance — and the analyzing tool — wavelet or multiresolution or mul-
tiscale analysis. More precisely, they rely on the fact that i) the mother
wavelet has at least one zero moment, and ii) that the wavelets are con-
structed from the mother wavelet using a dilation operator (see Equation
(3.5) for instance). One can add that these results extend to other types
of processes with scale invariance or, in other words, without characteris-
tic scales, such as 1/f7 noises, fractal processes, multifractal processes and
more recently even to stochastic multiplicative cascades (Abry, Flandrin,
Taqqu and Veitch [2]).

These key properties of the wavelet coefficients constitute the founda-
tion for the detection, analysis, and estimation tools dedicated to scaling
processes, as detailed in the next section.

4  HEstimation

The core problem in the practical application of scaling models to data is
the detection of a scaling phenomenon, followed by the estimation of its
relevant exponent. In this section we discuss these issues, with a particular
emphasis on the study of long range dependent processes in discrete time.
We include a practical section where the wavelet estimator is used on a
variety of discrete time models, allowing comparison with previous work
using other methods. We begin by describing a natural way of viewing the
underlying quantities which are to be estimated, followed by a description
of their estimation, and leading finally to the estimation of the exponent
itself.

4.1 Logscale Diagrams

Collectively, the variances of the detail processes d;. over all scales {27},
when such processes are stationary, are a second order description of the
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process X, which constitute a kind of ‘wavelet spectrum’. Large values of
j correspond to low frequencies and small values of j to large frequencies.
It was seen in the previous section, notably in Equation (3.12), that a
recurring feature among scaling models is the power-law progression (within
the scaling range) of these variances with scale. This motivates a logarithmic
view of this spectrum, where a straight line over some range, if present,
indicates scaling, with the slope giving the scaling exponent. Accordingly,
we consider a plot of

s; = log, (Ed; ) (4.1)

against j, which we refer to as the Ezact Logscale Diagram (exact LD). This
‘wavelet spectrum’ is a signature of the process in question (in logarithmic
coordinates), which can be defined for example for stationary processes or
those with stationary increments. It is obtained by performing the integra-
tion (in practice numerically) defining the variances in question, for example
Equation (3.11) in the case of stationary processes with a known spectral
density gy (v) against j.

Three examples appear in the left plot in Figure 2 for the LRD sequence
standard fractional Gaussian noise (fGn) with H = 0.8, corresponding to
the Daubechies wavelets with N =1, N = 3 and N = 6 vanishing moments.
It is not surprising that the spectra are not identical since each involves
a different wavelet (the spectra are specific to the underlying family of
analyzing functions v, just as the traditional Fourier spectrum is tightly
bound to the use of sinusoids). Note however that they are very similar
in form (in fact in the case of Daubechies wavelets the spectra converge
pointwise with increasing V), are all close to straight lines except at small
scales, and share the same asymptotic slope v = 2H — 1 at large 5 which
characterizes the LRD nature of fGn. This is an important property which
is characteristic of the Logscale Diagrams of scaling processes in general: in
the scaling regime the specific choice of wavelet ceases to matter.

Just as the Fourier spectrum can be estimated from data, so can the exact
Logscale Diagram. In the right-hand plot of Figure 2 we again trace the
N = 3 exact Logscale Diagram and superpose 5 sets of unbiased estimates
y; = §; (discussed below), obtained from 5 synthetic samples paths each
n = 10000 long. Gaussian 95% confidence intervals corresponding to the
variability of the y; (see discussion below and Equation (4.5)) are shown
as the vertical segments centered on the known values s;. These estimated
exact Logscale Diagrams, with confidence intervals, we call simply Logscale
Diagrams (LDs). Of course in practice the true [Ey; = s; are not known,
and the confidence intervals are drawn centered on the estimates y;.

Note that it follows from the nature of the dilation operator generating
the wavelet basis that the number n; of detail coefficients available to be



1. Self-similarity and long-range dependence through the wavelet lens 15

analyses at octave j halves with each increase in j (in practice the presence
of border effects results in slightly lower values). Confidence intervals there-
fore increase monotonically with 7 as one moves to larger scales, as seen in
the right plot in Figure 2.

PLACE FIGURE 2 HERE

We now discuss the details of the estimators comprising the Logscale
Diagram, and how from them an estimator can be designed for scaling
exponents.

4.2 Estimation within the Logscale Diagram

We have already introduced the estimates y; as random variables with the
property IEy; = s; by definition. To see how they can be constructed, first
consider the following non-parametric, unbiased estimator of the variance
of the detail process at octave j:

1 i
= — > ldixl. (4.2)
" =

The logarithm of this variable would be an estimator of s;, however it would
be biased as the non-linearity of the logarithm implies that E[log(-)] #
log(IE[-]). To deal with this we introduce a small bias correction term g(j),
and define the y; as

y; = logy (1) — 9(3)- (4.3)

Denote the variance of y; by a . Using these a , one can compute the confi-
dence intervals in the LD by using a Gaussian approxnnatlon for y;. Now let
us assume that the scaling range [j1, j2|, where a scaling behavior is present,
that is where the exact LD is straight, has been correctly identified. The
index j; is called the lower-scale or small scale or high frequency cutoff and
the index j5 is called the higher-scale or large scale or low frequency cutoff.
The range [j1,j2] could be detected in practice by looking for a straight
line behavior (consistent with the confidence intervals), in the Logscale Di-
agram. An unbiased estimator of the scaling exponent with low variance
can then be obtained through standard weighted linear regression over the
y; in th1s range. Specifically, defining first the quantities S = 72 . 1/ o3

S| = j/o; and S, = 2202 o7, this estimator ¥4 of v is given by

] = ]7]1
N Yj (SJ
_ ] =Jj1
/y - 552 - ]2]: w]y]7 (44)
1

which is unbiased provided that the exact LD truly aligns over [y, ja].
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We have yet to explain how the g(j) or the 0]2- can be calculated. In general
neither can be calculated exactly, but the following expressions obtained by
idealizing the weak correlations between the wavelet coefficients to complete
decorrelation, are excellent approximations in the case where the d;; are
Gaussian:

90) = T/ (C/2) 02) ~logaly/2) ~
7= /) W~ (45)
n; In"2

where I is the gamma function, I its derivative, and ((2,2) = > 1/(z+
n)? a generalized Riemann Zeta function. The asymptotic large n; formulae
above hold true to a good approximation even for non-Gaussian data (see
Veitch and Abry [44], Abry, Flandrin, Taqqu, Veitch [2] for details). At
large n; and again using the independence idealization, the variance of the
estimator, even in the non-Gaussian case, can be given explicitly as

J2 _J
. 1 (1-27)
Var(§) = E oiw; ~ i T (4.6)

J=j1

where F' = F(j;,J) = In?2 2171 (1—(J?/2+42)274+272), and J = jo—j; +1
is the width of the scaling range.

A major practical advantage of the above methodology is that exactly
the same procedure applies, with the same weights and the same estima-
tor 4 for the slope, irrespective of the kind of scaling (H-sssi, LRD, etc.)
involved. Even the detailed choice of wavelet is not important within the
scaling interval, as mentioned above, provided that the number of vanishing
moments of the wavelet is sufficiently high to ensure the quasi-decorrelation
of the details. The first issue, however, in the practical application of scaling
models to data is the detection of a scaling phenomenon, which involves the
selection of the range [j1,j2]. If one has already decided for example that
a H-ss model applies, then of course one would choose j; = 1 and j, the
largest possible given the data length, and there is nothing to decide, but
for other kinds of scaling behavior both upper and lower cutoffs exist which
must be identified. We now explore this issue in more detail in the interme-
diate case of LRD processes, where j, is the largest possible by definition
and does not pose a problem, but j; is not defined a priori and must be
determined somehow during detection/measurement.

4.3 Estimation of LRD

A subtle but essential point is the fact that the selection of the lower cutoff
scale 7; for LRD is not merely a practical and estimation question, but
involves deeper issues: the cutoff is not well-defined even within the exact
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Logscale Diagram. This is a simple consequence of the asymptotic definition
of LRD, where there is no given frequency at which the scaling regime starts.
There is no ‘real’ cutoff that can be defined by using only the spectrum
gx (v) or the exact LD of the process. The cutoff has meaning only with
reference to some other criterion, which here we choose to be estimation
quality. Specifically, we apply our estimation approach for each j;, and
define the ‘true’ j; = jM5F as the one corresponding to the minimum mean
square error (MSE), where the squared error is defined as

MSE() = E(§ —v)* = (EY — ) + Var(9), (4.7)

where Var(%) is given by (4.6). The value of j is chosen as high as possible.
In practice, we choose it equal to (4.8) below.

In case where multiple j}"s can be found, the smallest only is kept
thus selecting the largest possible measurement range. Intuitively it is clear
that, at fixed n, as we move to lower frequencies with increasing j; the
asymptotic straight line behavior is less and less polluted by departures
at small scales, and so the estimation bias decreases, at the expense of an
increase in variance due to the effective loss of data. An MSE criterion
allows the tradeoff between these two effects to be economically expressed,
as illustrated in the right plot in Figure 3 for a particular model with strong
short-range dependence (SRD). If we now consider increasing n, the balance
shifts toward larger j; values as the variances of the y; all decrease with n,
whereas the bias at each j, which depends on the exact LD only, remains
constant. Thus j}5%(n), far from being an absolute constant for a process
indicating where the LRD ‘truly’ begins, is in fact a non-decreasing function
of n.

We could also describe this choice of cutoff in another way, as being the
crossover point between the SRD and LRD of the process. It is interesting to
note that even for the canonical LRD process, the fGn, the scale invariance
in this sense does not extend to all scales. This is to be expected since
even the spectrum of fGn is note a pure power. In fact, for fGn, when
N = 3 and n = 10000 the MSE defined cutoff is jM5F = 3, which is
consistent with the deviation from the asymptotic slope in relation to the
confidence intervals, seen in the right plot in Figure 2. It is important to note
however, that jM5% is a theoretical quantity introduced here to study the
statistical performance of the wavelet-based estimator. It does not address
the question of how to choose j; practically when analysing a given times
series, this will be considered in a forthcoming article.

4.4 Analysis of discrete data

Another issue which is often overlooked is the fact that the wavelet analysis,
including the Discrete Wavelet Transform, is defined for continuous time
processes, and not for discrete time series such as FARIMA processes and
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discrete fGn. This is significant as time series models in general, including
some of the most popular LRD models, and much real data, fall into this
category. Recall from Section 2, Equation (2.11), that to initialize the DWT
the initial approximation sequence ag; must be obtained via a sequence of
integrals in continuous time, a procedure that has no meaning for discrete
data. Typically what is done if one wants to study a discrete process X (k)
is to set apr = X (k). This is an ad hoc procedure which makes it unclear
what is being studied and it introduces errors. Recent work (Veitch, Taqqu,
Abry [45]) has shown how to use the DWT in a well defined way for the
study of second order properties of discrete wide sense stationary processes,
such as those we consider here. It offers a simple and effective way to allow
the advantages of wavelet analysis to be brought to bear on intrinsically
discrete series.

The approach is conceptually very simple and can be expressed as follows.
To a given discrete series {X(k),k € Z} we associate a closely related
continuous-time process {X (t),t € R}. In fact the process X (¢) is chosen
such that the spectral densities gy of X and gz of X coincide on the principle
interval v € (—1/2,1/2]. The series X (t), being defined in continuous time,
can be studied using the DWT as usual. Since the spectra are equal in
(—1/2,1/2], any conclusion on the spectral density of X in this range, for
example estimates of v in the case of LRD, holds automatically for the
spectral density of X. The only difficulty is the initialization phase of the
MRA which begins the DWT analysis of X (¢). It can be shown that the
two steps of first converting from X to X , and then initializing the MRA
for X, can be accomplished in a single linear discrete filtering (convolution)
operation:

ay = (X« I)(k),

where [ is a discrete filter given by

I(m) = /_OO sin(m(t +m))oo(t)/m(t + m) dt,

oo

which depends only on the wavelet used (/ has infinite support but in
practice can be taken to be quite small, say 100 long or less). The prefiltering
is easy to perform, and corrects errors which would otherwise have been very
significant on the first two octaves, but negligible at coarse scales. In this
paper, for example in Figure 2 which analyses discrete fGn, this filtering has
been performed, and the y; values are therefore valid at all octaves. Note
that there exists another analysis technique, that of generalized quadratic
variations, see e.g., Istas and Lang, [21], which in many aspects is very
close to the wavelet analysis described in this paper. In the specific case of
discrete time series, the generalized quadratic variations method avoids the
prefiltering difficulty.
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4.5 Estimation examples, LRD and SRD

In this subsection we present examples of the wavelet estimation of v for
several discrete time models. These include fGn, and a variety of low order
Fractional Autoregressive Integrated Moving Average (FARIMA) models.
We review FARIMA models rapidly below. The examples are divided into
three main categories, with corresponding tables of results.

In the first category, Table 1.1, are time series with Gaussian innovations,
for which both the exact LD’s, calculated through accurate numerical inte-
gration of Equation (3.11), and the j}°F, are known. All results in this table
can therefore be taken as exact. Within the table two values of j; are used,
the optimal 715" on the left which shows the best result available in the
sense described above, and a fixed j; = 5 on the right, which enables a com-
parison with previous work in Taqqu, Teverovsky and Willinger [40], Taqqu
and Teverovsky [36, 37, 38, 39]. In the second table, Table 1.2, the same
Gaussian models are studied, but this time the results are estimated through
averages of 50 realizations generated using the Splus software. This allows
an idea of the accuracy to be expected in estimation using 50 realizations.
This is useful when considering Table 1.3, which deals with non-Gaussian
models, and even models with infinite variance, for which the theoretical
performance of the estimator is not exactly known, but again has been es-
timated. All time series are of length n = 10, 000. Theoretically, j5 is to be

chosen the largest possible. Practically, it is set equal to
J2 = [logy, n — Const], (4.8)

where [ ] denotes the integer part and Const is a constant (with value
log, (2N + 1) corresponding to the length of the support of the Daubechies
wavelet). This value is chosen as to ensure that on the largest scale, there
remain enough wavelet coefficients not polluted with border effects, in order
to estimate a variance. For instance, with n = 10,000, N = 3, this yields
Jjo = 10.

The realizations we use are exactly the same as those in Taqqu and
Teverovsky [38, 39] and Taqqu, Teverovsky and Willinger [40], where other
estimators were studied. The reader should examine the tables in these
papers with those below in order to compare the effectiveness of the different
estimators*. We give a brief comparison below.

The FARIMA family of models are very widely used. For our purposes

*The sample MSE in the tables is the sum of the sample bias squared and the
sample variance. In this paper, the sample variance based on I = 50 replications,
involving a division by I and not I — 1, is nonetheless unbiased as the known
mean was used, whereas in Taqqu, Teverovsky and Willinger [40], Tagqu and
Teverovsky [38, 39], it involved a division by I — 1, and the known mean was not
used. The resulting differences are negligible.
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they simply offer a convenient family of LRD processes in which both the
LRD and SRD components can be modified, and for which the Fourier
spectra can be written explicitly. We recall here their definition (for more
details see Taqqu [35]).

A Gaussian FARIMA(0,d,0) process is defined by X; = A %, i > 1,
where the ¢; are independent, identically distributed Gaussian random vari-
ables called innovations with zero mean and variance o2, and where A is
the differencing operator /A¢; = ¢; — €;_1. For fractional d we interpret A—¢
via a formal power series expansion: A~% = Y b;(—d)B’, where B is
the backward operator, Be; = €;_1, and b;(—d) = T'(i + d)/T(d)I'(i + 1),
i=1,2,..., [ being the gamma function. For d € (0,1/2) this process is
LRD, where v = 2d. More generally, a FARIMA(1, d, 1) process adds a sin-
gle autoregressive and moving average term to the fractional differencing,
namely:

Xi— 1 Xioy = A% — 0, %, (4.9)

where the ¢; and the 6; are the autoregressive and moving average coeffi-
cient respectively. here.. The Fourier spectrum? for this process is

~i2m |24 1 — 0™

. -1/2<v<1/2. 4.10
|1 _¢167227w|2’ / v / ( )

gx(v) = cfll —e
To give a greater feel for the models used in the tables, an example with
strong SRD is given in Figure 3. It is the FARIMA(1,d, 1) process with
H=d+1/2=0.7, ¢ = 0.3 and ¢, = 0.7, and as can be seen from the
exact LD in the left plot, it deviates strongly from the asymptotic slope of
v = 0.4 over the first four octaves. With n = 10000 and N = 3, the optimal
value according to the MSE criterion is jM5F = 5. The tradeoff between
bias and variance, and the resulting minimum MSE, is shown in detail in
the right-hand plot.

PLACE FIGURE 3 HERE

PLACE THE 3 TABLES HERE
‘MSE

We now comment on the results. In Table 1.1 we see that the j">* vary
from 1 to 5, showing that the models chosen cover a range of SRD / LRD
combinations as desired. In Table 1.2 we first note that the results are
almost identical to those from Table 1.1, indicating that 50 realizations is
a reasonable number from which to determine the j; corresponding to the
minimum MSE, and to estimate the bias, variance, and the MSE itself. In
the two cases where the jM5® chosen empirically differed from the analytic

result (the models with H = 0.7 in the last and third last group), the

2Recall that we use here the definition (3.8) of Fourier transforms.
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MSE for the two alternatives were found to be very close. One of these
is the model illustrated in Figure 3, where the closeness of the MSE at
j1 = b and 6 is apparent. The choice of j; = 5 allows a direct comparison
with other estimators applied to the very same realizations used in Taqqu
and Teverovsky [38, 39], whereas jM5F corresponds to the best possible
performance of the wavelet estimator.

The tables indicate that the wavelet estimator is comparable with the best
semi-parametric estimator in Taqqu and Teverovsky [38, 39|, namely the
local Whittle estimator. The local Whittle estimator, due to Robinson [32],
is a Whittle-type estimator, where one assumes that the spectral density of
the discrete-time process is of the form g(v) = C|v|™" for 0 < v < 27m/n,
where n denotes the number of observations and m is a parameter that
has to be adequately chosen. Since m/n is the high-frequency cutoff, it
corresponds to our scale 2771, In Taqqu and Teverovsky [38, 39], the value
m = n/32 was chosen based on detailed studies performed in Taqqu and
Teverovsky [36, 37]. Since 1/32 = 275, our choice j, = 5 here is compatible
with m = n/32.

Table 1.3 includes an additional column listing the distribution of the
innovations variables. The first two, exponential and lognormal, have finite
variance, the others infinite variance. Note that this does not mean that
the marginal distribution of the process itself will have the distribution
indicated, but it does offer an easy way of generating a variety of non-
Gaussian time series, and the finiteness or lack thereof of the variance is
preserved. In the case of stable innovations the index of stability parameter,
@, is given in the same column, and here H = d + 1/« (see Samorodnitsky
and Taqqu [33, Sect. 7.13]). Otherwise H = d + 1/2 as before, so there is
no need to give the values of d.

An interesting observation is that, despite the variety of different distri-
butions and even in the infinite variance case, the estimator continues to
give very accurate estimates, and with comparable estimation variance in
the finite variance cases. In the infinite variance cases, however, the estima-
tion variance increases markedly, as we might expect given the far higher
variability of these processes, but the bias remains very small. In particular
we see that for each of the two models in Table 1.3, namely FARIMA (0, d, 0)
and the FARIMA (1, d, 1) which appears in Figure 3, the results in each col-
umn are comparable across the different finite variance distributions, and
comparable in terms of bias for all distributions. In comparison to other
estimators, we again note that it is among the best and is as effective as
the local Whittle estimator (again see Taqqu and Teverovsky [38, 39]).
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5 A brief historical overview

We now provide a brief historical overview of the wedding of wavelets and
self-similarity because it has a long and rich history. In fact, as soon as they
appeared in the mid-eighties, it was almost immediately recognized that,
thanks to their built-in multiresolution structure, wavelet transforms were
natural tools for revealing self-similar features in signals, images or pro-
cesses. Whereas the potential usefulness of wavelets for studying “fractal
noises” is incidentally mentioned in one of Mallat’s seminal papers (Mal-
lat [26]), two short notes, one by Flandrin [17], the other by Wornell [47],
pointed out key features in two distinct directions. The first study was de-
voted to fractional Brownian motion and established the stationarization
property of the wavelet transform, while proposing a spectral interpretation.
The second one proposed the construction of “almost 1/f processes,” on the
basis of uncorrelated wavelet coefficients. Both types of results were subse-
quently considered in more general settings: stationarization was shown to
be closely linked to the existence of stationary increments (Masry [27], Cam-
banis and Houdré [11]), whereas efficient fBm synthesis procedures were
further developed by Sellan [34], Abry and Sellan [4] and Meyer, Sellan
and Taqqu [28]. Linking somewhat the analysis and synthesis viewpoints,
the correlation structure of fBm wavelet coefficients was studied in greater
detail by Tewfik and Kim [42] and Flandrin [18], indicating that residual
correlations can be reduced by increasing the number of vanishing moments
of the mother wavelet, thus suggesting that simple and standard tools could
be used in the transformed domain for efficiently estimating scaling param-
eters.

Parallel to the wavelet characterization of scaling processes, effective es-
timation schemes of scaling parameters were developed. Most efforts relied
initially on the assumption of almost uncorrelated coefficients, leading ei-
ther to maximum likelihood procedures (Wornell and Oppenheim [48]) or to
regression techniques across scales (Abry, Goncalves and Flandrin [3]). The
latter approach (“Logscale Diagram”) was thoroughly investigated by Abry
and Veitch [5] and Veitch and Abry [44] (for a review, see Abry, Flandrin,
Taqqu and Veitch [2]), and is still an active area of research from the point
of view of refined statistical performance evaluation, in particular when re-
laxing the idealized assumption of exact decorrelation (Papanicolaou and
Solna [29], Bardet, Lang, Moulines and Soulier [10]). Bardet [9] establishes
asymptotic normality of estimators based on wavelet-like transformations

djg = Y 0 uiXj(i+k), where the first N moments of (ui,...,u,) are zero:
P i%u;=0,¢=0,..., N-1

Initial attempts for applying wavelet-based techniques to scaling pro-
cesses were partly heuristic, and somewhat overlooked the fact that wavelet
theory was then essentially aimed at deterministic finite energy signals.
Cambanis and Houdré [11] and later Averkamp and Houdré [8]), Cohen,
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Froment and Istas [12], and more recently Kato and Masry [23], addressed
general questions regarding both the existence, interpretation and (dis-
tributional) properties of wavelet transforms, when applied specifically to
stochastic processes, and especially those with self-similar properties. This
allowed the first approaches to be made more rigorous and to considerably
extend their initial scope, which was mostly restricted to fBm. In this re-
spect, departing from the fBm model can be thought of as relaxing at least
one the three constructive properties of Gaussianity, stationarity of the in-
crements and self-similarity. It turned out that key properties, essential for
revealing self-similarity, still held in non-Gaussian situations, even when
the variance is infinite: this led to new developments in the direction of cer-
tain non-Gaussian processes, with special attention paid by Delbeke [15],
Pesquet-Popescu [31], Delbeke and Abry [16] to the case of self-similar sta-
ble motions. Allowing increments to be nonstationary was also considered,
although to a lesser extent (tracking time-varying scaling exponents with
time-scale methods was first considered by Gongalves and Flandrin [19]; the
concept of multifractional Brownian motion later led Cohen to also propose
“quasi-wavelet” estimation techniques based on increments (Cohen [13]), as
was the possibility of relaxing the assumption of a global scale invariance,
initially assumed to hold uniformly over all scales. The approaches pro-
posed have been based on either a phenomenological modeling, where the
variance progression from scale to scale can be controlled by a function that
does not necessarily reduce to a strict power-law (Kaplan and Kuo [22]),
or on deeper ideas of cascade analysis, in which probability distribution
functions of detail coefficients at different scales are related to each other
(Arnéodo, Muzy and Roux [7]). Such extensions can possibly be applied for
example to long-range dependent processes, for which scale invariance is
only asymptotically considered in the limit of large scales. From a different
perspective, classes of point processes with scale invariance properties (e.g.,
Poisson processes whose time-dependent density is controlled by fractional
Gaussian noise) were considered too Abry and Flandrin [1].

In all cases, wavelets progressively emerged as a unifying framework for
dealing with many different types of scaling processes, and were identified as
versatile generalizations of previous techniques which may have been used
in specific contexts. A good example is given by the Allan variance, a re-
fined variance estimation technique which had been specifically introduced
in stability studies of atomic clocks, and whose structure turned out to be
equivalently phrased in terms of the Haar transform (Flandrin [18], Perci-
val and Guttorp [30]. Similarly, in classical point process theory, departures
from a Poisson model can be ascertained from the fact that the so-called
Fano factor, i.e., the ratio between the mean and variance of the associated
counting process, differs from unity (for an application to scaling point pro-
cesses, see, e.g., Kumar and Johnson [24]). Multiresolution being naturally
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attached to the ideas of approximation through averaging (scaling func-
tion) and detailed fluctuations (wavelet), it offers a natural framework for
proposing more efficient wavelet-based analogues of the Fano factor (Abry
and Flandrin [1], Teich, Heneghan, Lowen and Turcott [41], Thurner et al.
[43]). One can finally remark that the same applies to aggregation, a con-
cept of successive approximations via windowed averages over larger and
larger scales (Abry, Veitch and Flandrin [6]).

Implicitly or explicitly, wavelet ideas therefore appeared as the naturally
suitable concept for handling scaling processes. In a nutshell, the rationale
of using wavelets in this context can be viewed as the result of the threefold
conjunction of i) offering a natural language for scaling, i7) being versa-
tile enough for tolerating model mismatches and/or uncertainties (such as
asymptotic self-similarity, trend removal), and 4ii) being easy to implement
and naturally equipped with fast and efficient algorithms.
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Model | H | jM* | Bias | Std | VMSE | Bias | Std | vVMSE |

fGn 0.5 2 —0.004 | 0.011 | 0.012 | —0.000 | 0.040 | 0.040
0.6 2 —0.010 | 0.011 | 0.015 | —0.000 | 0.040 | 0.040

0.7 3 —0.005 | 0.017 | 0.017 | —0.000 | 0.040 | 0.040

0.8 3 —0.005 | 0.017 | 0.018 | —0.000 | 0.040 | 0.040

0.9 3 —0.006 | 0.017 | 0.018 | —0.000 | 0.040 | 0.040

farima | 0.6 2 0.000 | 0.011 | 0.011 0.000 | 0.040 | 0.040
(0,d,0) 0.7 2 0.003 | 0.011 | 0.012 0.000 | 0.040 | 0.040
0.8 1 —0.008 | 0.008 | 0.011 0.000 | 0.040 | 0.040

0.9 1 0.002 | 0.008 | 0.008 0.000 | 0.040 | 0.040

farima | 0.5 5 —0.014 | 0.040 | 0.042 || —0.014 | 0.040 | 0.042
(1,d,0) 0.6 5 —0.013 | 0.040 | 0.042 | —0.013 | 0.040 | 0.042
¢ =05 |0.7 5 —0.013 | 0.040 | 0.042 | —0.013 | 0.040 | 0.042
0.8 Y —0.012 | 0.040 | 0.042 || —0.012 | 0.040 | 0.042

0.9 Y —0.011 | 0.040 | 0.042 || —0.011 | 0.040 | 0.042

farima | 0.5 5 0.016 | 0.040 | 0.043 0.016 | 0.040 | 0.043
(0,d,1) 0.6 Y 0.015 | 0.040 | 0.043 0.015 | 0.040 | 0.043
=05 |0.7 Y 0.014 | 0.040 | 0.042 0.014 | 0.040 | 0.042
0.8 5 0.013 | 0.040 | 0.042 0.013 | 0.040 | 0.042

0.9 5 0.012 | 0.040 | 0.042 0.012 | 0.040 | 0.042

farima | 0.5 Y 0.049 | 0.040 | 0.064 0.049 | 0.040 | 0.064
(1,d,1) 0.6 Y 0.046 | 0.040 | 0.061 0.046 | 0.040 | 0.061
$1 =03 |0.7 5 0.044 | 0.040 | 0.059 0.044 | 0.040 | 0.059
=07 |0.8 5 0.041 | 0.040 | 0.058 0.041 | 0.040 | 0.058
0.9 Y 0.039 | 0.040 | 0.056 0.039 | 0.040 | 0.056

farima | 0.5 3 —0.008 | 0.017 | 0.019 | —0.001 | 0.040 | 0.040
(1,d,1) 0.6 3 —0.007 | 0.017 | 0.018 | —0.000 | 0.040 | 0.040
¢ =-03 | 0.7 3 —0.005 | 0.017 | 0.018 | —0.000 | 0.040 | 0.040
6 =-0.7 | 0.8 3 —0.004 | 0.017 | 0.017 | —0.000 | 0.040 | 0.040
0.9 3 —0.003 | 0.017 | 0.017 | —0.000 | 0.040 | 0.040

farima | 0.5 5 —0.043 | 0.040 | 0.058 | —0.043 | 0.040 | 0.058
(1,d,1) 0.6 Y —0.041 | 0.040 | 0.057 || —0.041 | 0.040 | 0.057
$1 =07 |07 5 —0.039 | 0.040 | 0.056 | —0.039 | 0.040 | 0.056
=03 |0.8 5 —0.037 | 0.040 | 0.055 | —0.037 | 0.040 | 0.055
0.9 Y —0.036 | 0.040 | 0.054 | —0.036 | 0.040 | 0.054

TABLE 1.1. Estimation quality for Gaussian series: Theoretical. On the
left the optimal j; value (minimum MSE(j;) of the H estimator) is given along
with the corresponding bias, standard deviation and root MSE (these can all been
calculated theoretically in the Gaussian case). On the right, the same quantities
with j; = 5 are also given for comparison.
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Model | H | jM¥®| Bias | Std | VMSE | Bias | Std | VMSE |

fGn 0.5 2 —0.005 | 0.013 | 0.014 | —0.002 | 0.041 | 0.041
0.6 2 —0.013 | 0.013 | 0.018 | —0.005 | 0.034 | 0.035

0.7 3 —0.006 | 0.017 | 0.018 | —0.006 | 0.044 | 0.044

0.8 3 —0.002 | 0.020 | 0.020 | —0.003 | 0.035 | 0.036

0.9 3 —0.004 | 0.016 | 0.017 | —0.003 | 0.038 | 0.038

farima | 0.6 2 0.000 |0.013| 0.013 || —0.003 | 0.042 | 0.042
(0,d,0) 0.7 2 0.002 | 0.010 | 0.010 | —0.000 | 0.041 | 0.041
0.8 1 —0.009 | 0.008 | 0.012 | —0.001 | 0.040 | 0.040

0.9 1 0.006 | 0.008 | 0.010 0.009 |0.033 | 0.035

farima | 0.5 Y —0.016 | 0.038 | 0.041 | —0.016 | 0.038 | 0.041
(1,d,0) 0.6 5 —0.016 | 0.033 | 0.037 | —0.016 | 0.033 | 0.037
¢ =05 |0.7 5 —0.010 | 0.038 | 0.039 | —0.010 | 0.038 | 0.039
0.8 Y —0.015 | 0.042 | 0.045 | —0.015 | 0.042 | 0.045

0.9 Y —0.022 | 0.043 | 0.048 | —0.022 | 0.043 | 0.048

farima | 0.5 5 0.014 | 0.039 | 0.041 0.014 | 0.039 | 0.041
(0,d,1) 0.6 Y 0.010 | 0.038 | 0.039 0.010 | 0.038 | 0.039
=05 |0.7 Y 0.020 | 0.040 | 0.045 0.020 | 0.040 | 0.045
0.8 5 0.011 | 0.040 | 0.042 0.011 | 0.040 | 0.042

0.9 5 0.019 | 0.036 | 0.041 0.019 | 0.036 | 0.041

farima | 0.5 Y 0.050 | 0.054 | 0.073 0.050 | 0.054 | 0.073
(1,d,1) 0.6 Y 0.038 | 0.043 | 0.057 0.038 |0.043 | 0.057
¢ =03 |07 6 0.006 | 0.063 | 0.063 0.052 | 0.041 | 0.066
=07 |08 5 0.035 | 0.045 | 0.057 0.035 | 0.045 | 0.057
0.9 Y 0.037 | 0.046 | 0.060 0.037 | 0.046 | 0.060

farima | 0.5 3 —0.007 | 0.017 | 0.019 0.012 | 0.036 | 0.038
(1,d,1) 0.6 3 —0.004 | 0.018 | 0.018 0.006 | 0.043 | 0.044
¢ =-03 [ 0.7 3 —0.008 | 0.016 | 0.018 | —0.010 | 0.039 | 0.041
0, =-0.7 | 0.8 3 —0.005 | 0.017 | 0.017 0.004 | 0.042 | 0.042
0.9 3 —0.005 | 0.017 | 0.017 | —0.004 | 0.037 | 0.038

farima | 0.5 5 —0.040 | 0.038 | 0.055 | —0.040 | 0.038 | 0.055
(1,d,1) 0.6 Y —0.050 | 0.044 | 0.066 | —0.050 | 0.044 | 0.066
$1 =07 ]0.7 6 —0.027 | 0.047 | 0.055 | —0.043 | 0.040 | 0.059
=03 |08 5 —0.032 | 0.041 | 0.052 | —0.032 | 0.041 | 0.052
0.9 Y —0.040 | 0.044 | 0.059 | —0.040 | 0.044 | 0.059

TABLE 1.2. Estimation quality for Gaussian series: Empirical. On the left
j1 has been chosen according to the minimum estimated (average over 50 realiza-
tions) MSE(j;1) of the H estimate, with corresponding estimated bias, standard
deviation and root MSE. On the right, the same quantities with j; = 5 are also
given, and are the estimated versions of those in Table 1.1.
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| farima | innov. | H [ ji | Bias | Std | VMSE | Bias | Std | VMSE |
(0,d,0) exp. [ 0.5 2| —0.005]0.015| 0.016 || —0.006 | 0.035 | 0.035

0.6 2| 0.003 |0.014 | 0.014 0.001 | 0.041 | 0.041

0.7 2| 0.005 |0.012 | 0.013 0.003 | 0.041 | 0.041

0.8 1 | —0.009|0.007| 0.012 0.001 | 0.035 | 0.035

091 11| 0.004 |0.009 | 0.010 || —0.005 | 0.039 | 0.040

(0,d,0) logn. | 0.5 2 | —0.004 | 0.018 | 0.019 | —0.003 | 0.040 | 0.041
0.6 2| 0.003 |0.018 | 0.018 0.003 |0.043 | 0.043

0.71 2 | 0.003 |0.019| 0.019 | —0.003 | 0.037 | 0.037

0.8 2| 0.003 |0.012 | 0.012 || —0.002 | 0.043 | 0.043

091 1] 0.001 |0.014| 0.014 | —0.001 | 0.042 | 0.042

(0,d,0) | pareto | 0.5 | 1 | —0.038 | 0.064 | 0.074 0.003 | 0.132 | 0.132
061 1| —0.020 | 0.073 | 0.076 0.020 |0.132 | 0.133

0.7 1| —0.039 | 0.067 | 0.077 0.009 |0.102 | 0.102

081 2| 0.006 |0.072| 0.072 | —0.009 | 0.125 | 0.126

(0,d,0) SaS |05 1 |—0.029 | 0.082 | 0.087 0.018 | 0.200 | 0.201
a=12061] 1 |—-0.011|0.080 | 0.081 0.001 | 0.208 | 0.208

(0,d,0) SaS |05 | 1 | —0.047 | 0.057 | 0.074 0.014 | 0.131 | 0.132
a=15 06| 1 | —0.030 | 0.058 | 0.065 0.004 | 0.124 | 0.124

0.7 1 | —0.016 | 0.054 | 0.057 0.016 | 0.110 | 0.111

0.8 1 | —0.001]0.059 | 0.059 0.004 | 0.091 | 0.091

(1,d,1) | SaS 0.5 | 5| 0.047 | 0.190 | 0.196 0.047 | 0.190 | 0.196
(¢1,61) | =12 | 0.6 || 5| 0.045 | 0.183 | 0.188 0.045 | 0.183 | 0.188

=(0.3,0.7)

(1,d,1) | SaS |05 6 | 0.025 | 0.155 | 0.157 0.062 | 0.172 | 0.183
(¢1,61) | =15 | 0.6 || 5| 0.082 | 0.162 | 0.182 0.082 | 0.162 | 0.182
=(0.3,0.7) 0.71 5| 0.004 |0.118 | 0.118 0.004 |0.118 | 0.118
0.8 6 | 0.023 | 0.126 | 0.128 0.024 |0.130 | 0.132

(0,d,0) | skew. | 0.5 | 2 | —=0.008 | 0.069 | 0.070 0.013 | 0.115 | 0.116
stable | 0.6 || 1 | —0.031 | 0.050 | 0.058 0.007 | 0.115 | 0.115

a=15 07| 1| —0.009 | 0.066 | 0.067 0.015 | 0.128 | 0.129

0.8 1| 0.005 |0.054 | 0.055 || —0.001 | 0.101 | 0.101

TABLE 1.3. Estimation quality for non-Gaussian series: Empirical. The
distribution of the innovations variables is given in the second column (note that
SasS stands for symmetric « stable distribution). For stable processes the index
of stability « is also indicated. On the left j; has been chosen according to the
minimum estimated (average over 50 realizations) MSE(j;) of the H estimate,
with corresponding estimated bias, standard deviation and root MSE. The last
3 columns, which are included for comparison, correspond to the value j; = 5. In
all cases the bias remains small and comparable with the corresponding Gaussian
case. The estimation variance is also comparable for finite variance innovations,
but is much larger with infinite variance.
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FIGURE 1. Fast pyramidal filter-bank based wavelet decomposition al-
gorithm. The continuous signal X is first reduced to an approximation ag
(at scale 0). Continuous time calculus is only involved in this initialization step,
where ag j, is obtained from X. The “signal” illustrated in the figure is in fact
ap k- In a multiresolution analysis, this approximation agj is decomposed into
a detail d;  and a further approximation a;j which now has scale j = 1. The
approximation ay ; is then decomposed into a detail and an approximation, and
this procedure is repeated. Each step increases the scale of the approximation
by 1, and in so doing, reduces the high frequencies. The details d;; and the
approximations a;j can be computed iteratively from agj using discrete time
convolutions and decimations.



1. Self-similarity and long-range dependence through the wavelet lens 33

Exact Logscale Diagram. fGn, H=0.8 Exact LD, N=3, and 5 estimates.
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FIGURE 2. Exact Logscale Diagrams for fGn, H = 0.8. Left: the exact
Logscale Diagrams (LD) are given for N = 1, 3, and 6. The ‘wavelet spectrum’
depends on the wavelet, however the asymptotic slope v = 0.6 (H = 0.8) does
not. Right: the exact LD is given for N = 3, together with confidence intervals
corresponding to estimates at each scale based on n = 10000 points, and Logscale
Diagrams superimposed corresponding to 5 sample paths. The solid line is the
asymptotic slope, v = 0.6, of the exact LD.
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FIGURE 3. Exact LD and j}'F for FARIMA(1,d,1), H = 0.7, ¢; = 0.3,
0, = 0.7. Left: the exact LD for N = 3, and 5 sample paths based on n = 10000
points. Right: the quality of ideal estimates of v based on the exact LD, as judged
by the magnitude of the bias, the standard deviation, and the root MSE as a

function of j;. The value of ji\ASE =) is indicated by a square.
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