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Abstract
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in some detail, theoretical claims are supported by numerical experiments and the importance of the
proposed approach in turbulence studies is underlined.
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1 On 1/f processes

1.1 Power-law spectra and self-similarity

Signals with power-law spectra — or “1/f processes,” i.e., stochastic signals X(t) such that their power
spectrum density ΓX(ν) is proportional to |ν|−α over some decades — are ubiquitous in fields such as
physics, biology, engineering or economics, to name but a few [K2]. In turbulence for instance [B1], the
spectrum of the velocity field is known to obey a power-law decay over a wide range of frequencies
(the so-called inertial range) with an exponent α ∼ 5/3. In this case, a very accurate measurement
of the spectral exponent is highly desirable, since its value is of a key importance for discriminating
between competing theories. Generally speaking, 1/f behaviors at low frequencies are associated with
slowly-decaying correlations, and the interest for 1/f processes has also been recently renewed by the
development of chaos phenomenology, according to which an apparently stochastic behavior can in fact
result from a deterministic mechanism with long-range dependent characteristics [MC].

From another perspective, power-law spectra indicate that a signal exists at all scales and, hence,
has no characteristic scale. This results in self-similar features, according to the following definition:

Definition 1 A process {X(t), t ∈ IR} is said to be (statistically) self-similar of parameter H if and only

if, for any a > 0, X(at)
d
= aHX(t), where

d
= denotes equality of finite-dimensional distributions.

Self-similarity (more precisely, self-affinity) indicates that the graph (t,X(t)) remains statistically un-
changed when the time axis and the amplitude are simultaneously scaled by a factor a and a−H , re-
spectively [F1]. Ordinary Brownian motion is such an example, with sample paths evidencing self-similar
features of a random fractal, with H = 1

2 .
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1.2 The fractional Brownian motion (fBm) model

A useful and common model of self-similar process is given by the so-called fractional Brownian motion
(in short, fBm), defined as follows [MV]:

Definition 2 Fractional Brownian motion of (Hurst) exponent 0 < H < 1 is the zero-mean Gaussian
process {BH(t), t ∈ IR} such that3:

(i) BH(0) = 0

(ii) BH(t+ δ) −BH(t)
d
= N (0, σ |δ|H)

From this definition, we get BH(t)
d
= N (0, σ |t|H) and, more specifically,

IEBH(t)BH(s) =
σ2

2

(

|t|2H + |s|2H − |t− s|2H
)

. (1)

This evidences both the nonstationarity of fBm and the fact that it generalizes ordinary Brownian
motion, obtained as a special case for H = 1

2 . Moreover, it can be easily checked that

IEBH(at)BH(as) = IE (aHBH(t))(aHBH(s)),

property which, together with Gaussiannity, guarantees the self-similarity of fBm. A by-product of this
self-similarity is that sample paths of fBm are fractal curves, with Haussdorff dimension dimH = 2 −H
[F1].

Although nonstationary, fBm does have stationary increments. The increment process of fBm is
referred to as fractional Gaussian noise (in short, fGn) and is defined according to the following definition
[MV]:

Definition 3 Fractional Gaussian noise of (Hurst) exponent 0 < H < 1 is the zero-mean Gaussian
process {GH,δ(t), (t, δ) ∈ IR × IR+} defined by:

GH,δ(t) =
1

δ
(BH(t+ δ) −BH(t)) . (2)

By definition, this is a stationary process, since GH,δ(t)
d
= N (0, σ δH−1). Moreover, for large enough

lags, i.e., when |τ | ≫ δ, we get

IEGH,δ(t+ τ)GH,δ(t) ∼ σ2H(2H − 1)|τ |2H−2,

thus corresponding to a 1/f power spectrum density at low frequencies, namely:

ΓBH,δ
(ν) ∼ |ν|1−2H , 0 < |ν| ≪ δ−1.

1.3 Wavelets and fBm

Definition 4 The continuous wavelet transform of a signal X(t) ∈ L2(IR) is the two-dimensional func-
tion of time t ∈ IR and scale a ∈ IR∗

+

TX(t, a) = a−1/2

∫

∞

−∞

X(s)ψ

(

s− t

a

)

ds, (3)

where the (possibly complex-valued) analyzing wavelet ψ(.) has a Fourier transform Ψ(.) such that Ψ(0) =
0.

Definition 5 The discrete wavelet transform of a signal X(t) ∈ L2(IR) is the two-dimensional function
of time index n ∈ ZZ and scale index j ∈ ZZ

dX [n, j] = 2−j/2
∫

∞

−∞

X(t)ψ
(

2−jt− n
)

dt, (4)

where the analyzing wavelet ψ(.) ∈ IR has a Fourier transform Ψ(.) such that Ψ(0) = 0.

3N (m, σ) denotes a normal law with mean m and variance σ
2.
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Wavelets, both continuous and discrete (for definitions and properties, see e.g., [D]) have been ex-
tensively used for the analysis of fBm and fGn [AG, F2, F3, F5, M1, RZ, TK, W2, W3, WO], since they
match the structure of such processes for at least two reasons:

1. First, whereas fBm is nonstationary, its wavelet transform (which is a random field over IR× IR∗

+ in

the continuous case and over ZZ2 in the dyadic case) is a stationary function of time at each scale.
We get for instance [F2] from eqs. (1) and (3)

IETBH
(t, a)TBH

(s, a) = −
1

2
σ2a2H+1

∫

∞

−∞

|u|2Hγψ

(

t− s

a
− u

)

du,

where γψ(.) stands for the deterministic correlation function of the analyzing wavelet (i.e., the
inverse Fourier transform of |Ψ(.)|2). Taking the Fourier transform on the t−s variable of the above
equation, it follows [F4] that each (band-pass) filtered process TBH

(., a) has for power spectrum

ΓTBH
(ν) ∝ σ2 |ν|−(2H+1) a |Ψ(aν)|2.

Interpreting this equation as the input-output relationship of the “wavelet filter,” this allows to
attach to (nonstationary) fBm a pseudo-spectrum according to

ΓTBH
(ν) ∝ σ2|ν|−(2H+1). (5)

2. A second reason is that although fBm is long-range dependent, its wavelet coefficients are almost
uncorrelated, and hence almost independent for a large enough spacing in the time-scale plane. In
the dyadic case, it can be shown more precisely that the correlation IE dX [n, j]dX [m, k] decays as
O(|2jn−2km|2(H−R)), where R is the number of vanishing moments of the analyzing wavelet [TK].
Therefore, the higher R, the lower the correlation between wavelet coefficients.

2 On spectrum analysis

2.1 The classical Welch estimator

One of the most classical nonparametric spectral estimators for the power spectrum density ΓX(ν) of
a wide-sense stationary process {X(t), 0 ≤ t ≤ T } was introduced by P.D. Welch [W1]. It consists in
averaging short-time periodograms and can be defined as

Γ̂1,X(ν) ≡
1

N

N
∑

n=1

∣

∣

∣

∣

∣

∫ T

0

X(t)wθ(t− τn) e
−ı2πνt dt

∣

∣

∣

∣

∣

2

, (6)

where wθ(t) is some arbitrary (unit energy) weighting function of equivalent duration θ and where the
time instants {τn, n = 1, . . . , N} are chosen such that the different sub-series {Xn(t) ≡ X(τn− θ/2 ≤ t ≤
τn + θ/2)} are almost uncorrelated. This is a biased estimator, since

IE Γ̂1,X(ν) =

∫

∞

−∞

ΓX(f) |Wθ(ν − f)|2 df,

where Wθ(ν) is the Fourier transform of wθ(t). Bias being convolutive, the frequency resolution is fixed by
the spectral width of Wθ(ν), which is of the order of 1/θ. The variance of the estimator is approximatively
(for Gaussian processes)

var Γ̂1,X(ν) ≃
1

N
|ΓX(ν)|2,

thus imposing to take large N ’s for a sake of variance reduction. However, in the case where the time
support of the observation is finite, increasing N necessarily decreases the length of each of the sub-series,
with a corresponding increase in bias as a by-product: this is the well-known bias-variance trade-off [K1].
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Figure 1: Tilling of the time-frequency plane a) the Welch estimator is the time marginal of a partic-
ular bilinear time-frequency distribution called the spectrogram (squared modulus of a Gabor transform);
b) we propose another spectral estimator defined as the time marginal of a particular time-scale distribu-
tion called the scalogram (squared modulus of the wavelet transform). Because the way energy is spread
over the time-frequency plane is changed, the properties of this new spectral estimator are different from
those of the classical one.

2.2 A time-frequency perspective

Let us have a closer look at the way this estimator is constructed. Given a finite observation interval
0 ≤ t ≤ T , the signal X(t) is first chopped in time over N intervals of width θ, and each of the resulting
sub-series is then Fourier transformed, with an imposed frequency resolution of the order of 1/θ. From a
time-frequency perspective, this corresponds to a tiling of the plane by means of almost uncorrelated cells
— each of unit area — centered on equispaced nodes {(τn ∼ nθ, νj ∼ j/θ), (n, j) ∈ ZZ2} of a rectangular
lattice [AG], see Fig. 1. The energetic contribution to each node can be measured by |〈X, gτnνj

〉|2, with
gτnνj

(t) ≡ wθ(t− τn) exp(ı2πνjt) and those different contributions are finally averaged over time:

Γ̂1,X(νj) ≡
1

N

N
∑

n=1

|〈X, gτnνj
〉|2. (7)

Such a rewritting of the Welch estimator enables us to interpret it as the time marginal of a transform
that spreads the energy of the signal over a two dimensional — time and frequency — space. This
particular bilinear distribution is the so-called spectrogram, which is the squared modulus of the short-
time Fourier transform (or equivalently, a Gabor-like transform).

2.3 A wavelet generalization

Using the time-frequency interpretation of Welch estimator, it becomes very easy to modify its definition
— e.g., by changing the way energy is spread over the time-frequency plane — while preserving its overall
structure in terms of time averaging of spectral features.

Considering for instance the wavelet transform as a bank of constant-Q band-pass filters, all derived
by dilations from a prototype filter of central frequency νψ and bandwidth ∆νψ , changing the scale
parameter a amounts to explore the frequency axis with the approximate correspondence ν(a) = νψ/a
and the local frequency resolution ∆ν(a) = ∆νψ/a = νψ/aQ, where Q is the quality factor of the wavelet
filter. For dyadic scales a = 2j , j ∈ ZZ, the corresponding tiling of the plane inherits of a dyadic structure
according to which contributions are located on nodes {(τn ∼ 2−jnθ, νj ∼ 2j/θ), (n, j) ∈ ZZ2} (see Fig.
1), with a number of independent cells Nj which is scale — and, hence, frequency — dependent.

This naturally leads to the definition [AG] of a time-scale based spectral estimator which can be
written as the time marginal of the scalogram (squared modulus of the wavelet transform)
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Γ̂2,X(νj) ≡
1

Nj

Nj
∑

n=1

d2
X [n, j] ≡

1

N

N
∑

n=1

|〈X,ψnj〉|
2, (8)

with ψnj = 2−j/2ψ(2−jt− n).
This is again a biased spectral estimator, since

IE Γ̂2,X(νj) =

∫

∞

−∞

ΓX(f) (νψ/νj) |Ψ(f νψ/νj)|
2 df,

the main difference with the previous — time-frequency based — estimator being that bias is frequency-
dependent in a constant-Q fashion. Note that the above spectral estimator could have been defined using
other various versions of the wavelet transform, to which we will come in the last section. Yet, the main
properties of this time-scale based spectral estimator — adequation to 1/f processes — presented in the
next section hold for any variations and are therefore given in details with the discrete transform.

3 Estimating the spectral exponent of 1/f processes

3.1 Bias: why using a wavelet-based estimator?

Let us assume that the observation X(t) corresponds to a 1/f process whose power spectrum is of the
form ΓX(ν) = σ2 |ν|−α, and let us address the problem of estimating the spectral exponent α.

From a model point of view, it is clear that we have logΓX(ν) = log σ2 −α log |ν|, thus suggesting to
get the value of α from a slope measurement in a log-log plot of the power spectrum. From an estimation
point of view however, such a procedure can only be applied to some estimate of the power spectrum,
with no guarantee that a similar linear relation still holds.

Considering first the time-frequency based spectral estimator Γ̂1,X(ν), we get, when applied to a 1/f
process,

IE Γ̂1,X(ν) = σ2|ν|−α
(
∫

∞

−∞

|1 + f/ν|−α |Wθ(f)|2 df

)

. (9)

This evidences that such an estimation of the power spectrum is affected by a bias which is mul-
tiplicative and furthermore frequency-dependent. The consequence is that, when rewritten in log-log
coordinates, eq. (9) does not reduce to a linear function, inducing therefore a bias in the estimation of α
when using a linear regression in a log-log plot (cf. Fig. 2).

On the contrary, if we consider the time-scale based spectral estimator Γ̂2,X(ν), we get, when applied
to the same 1/f process,

IE Γ̂2,X(ν) = σ2|ν|−α
(
∫

∞

−∞

|f/νψ|
−α |Ψ(f)|2 df

)

. (10)

This shows that, while the estimation of the power spectrum is still affected by a multiplicative bias,
this bias is no more frequency-dependent, thus making of the linear regression in a log-log plot an effective
way to get an unbiased estimate of α. Let us remark that, for the integral (10) to exist, the number R of
vanishing moments of the analyzing wavelet ψ(.) must be such that R ≥ (α− 1)/2.

In order to illustrate the behavior of both estimators with respect to bias, we can make use of the
oversimplification of a rectangular shape for the spectrum of either the short-time window (time-frequency
case) and the wavelet (time-scale case). The result is that

IE Γ̂X(ν)

ΓX(ν)
=

Q(ν)∆ν0
1 − α

.

[

(

1 +
1

2Q(ν)

)1−α

−

(

1 −
1

2Q(ν)

)1−α
]

,

where∆ν0 and Q(ν) are respectively the frequency resolution and the quality factor of the mother window
or wavelet. In the time-frequency case, Q(ν) increases with ν, thus inducing a decrease in bias. As a result,
the linear regression in a log-log plot leads systematically to an overestimation of the slope α (cf. Fig. 2),
in clear contrast with the time-scale case for which Q(ν) is constant.
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Figure 2: Bias in spectrum estimation of 1/fα-processes — Time-frequency versus time-scale.
Given a fBm with H = 1/3 (and, hence, a spectral exponent α = 5/3), the figure illustrates the theoretical
result according to which a time-frequency based estimator of the parameter α (top) is biased, whereas
a time-scale based estimator (bottom) is not. (For the comparison to be fair, the time-frequency based
estimation has been performed with the most favorable window, i.e. the one corresponding to the largest
scale factor in the time-scale based analysis.)

3.2 Efficiency

According to the fact that Γ̂2,X(νj) provides us with an unbiased estimation of the long-dependence
parameter α, we can introduce the quantity

δj ≡

Nj
∑

n=1

(

dX [n, j]
√

Nj σj

)2

,

with σ2
j ≡ IE d2

X [n, j]. This quantity consists in a sum of squared Gaussian variables which are all zero-
mean. For wavelets with a high enough number of vanishing moments, they are furthermore uncorrelated
— as recalled previously in Section 1.3 —, with a variance 1/Nj. The result is that δj is approximatively
distributed according to a chi-squared law with Nj degrees of freedom. In analogy with the classical
spectrum estimation problem, we can therefore consider the (base 2) logarithm of δj — a quantity which
could be referred to as a normalized log-scalogram —: ηj ≡ log2 δj , whose probability density function is
given by

p(ηj) =
(Nj/2)(Nj/2) ln 2

Γ (Nj/2)
exp

{

(Nj/2)
(

ηj ln 2 − eηj ln 2
)}

.

Given an observation of N0 data points, we have Nj = 2−j N0 and, asymptotically — i.e., when
N0 → ∞ —, we get from Stirling’s formula that

ηj
d
→ N (0, Sj),

with S2
j ≡ 2j+1/(N0 ln2 2). Estimation of α can therefore be achieved via least-squares fit techniques

applied to the pair (j, log2(ηj)).
The simplest (unweighted) procedure consists in computing:

α̂1(J) ≡

∑J
j=1 jηj −

∑J
j=1 j

∑J
j=1 ηj

∑J
j=1 j

2 − (
∑J
j=1 j)

2
,

J being the number of scales involved in the linear regression, with the constraint that Nj be kept
large enough for the previous asymptotic assumptions to hold. The variance of this — unbiased and
asymptotically normally distributed — estimator can be evaluated in closed form, leading to
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Figure 3: Wavelet-based spectrum estimation of 1/fα processes – Variance of the unweighted
estimator. The time-scale based estimation of parameter α shows a minimum of variance for a small
number of scales (J = 5). The reduction of variance one could expect from an increase of the number of
scales is balanced by the exponential growth of the own variance of the data on larger scales. We obtain an
excellent agreement between the asymptotic closed form (solid line) and numerical simulations (dashed
line, the simulations are performed on about 3000 repeated trials of 1/fα processes, with α = 5/3 and
N0 = 215). The quantitative difference that occurs at larger scales is caused by a too small number of
points Nj involved in numerical simulations.

IE α̂2
1(J) =

144

N0 ln2 2

2J(J2 − 6J + 17)− (J2 + 6J + 17)

J2(J2 − 1)2
.

A simulation experiment supporting this theoretical expression is given in Fig. 3. It also illustrates
a typical behavior of the estimator according to which an optimum number of scales to be used exists,
beyond which performance of the estimation is degraded. This is simply due to the fact that, whereas
increasing the number of scales J allows to base the linear regression on more variables ηj , the variability
in the estimation of these variables is increased — because less and less samples are available at coarser
scales —, so that their use turns out to be a penalization.

Taking into account the increase of the variance S2
j as a function of scale, an improved (weighted)

procedure consists in computing:

α̂2(J) =

∑J
j=1 S

−2
j

∑J
j=1 jηjS

−2
j −

∑J
j=1 jS

−2
j

∑J
j=1 ηjS

−2
j

∑J
j=1 S

−2
j

∑J
j=1 j

2S−2
j − (

∑J
j=1 S

−2
j j)2

.

This corresponds in fact to a maximum likelihood estimate, whose variance is now given by

IE α̂2
2(J) =

1

N0 ln2 2

1 − 2−J

1 − 2−(J+1)(J2 + 4) + 2−2J
.

This result — which is supported by the simulation experiment reported in Fig. 4 — indicates that,
in contrast with the previous case, variance is a strictly decreasing function of J , with an asymptotic
limit given by

lim
J→∞

IE α̂2
2(J) =

1

N0 ln2 2
.

It is worthwhile to remark that only few scales (J ∼ 6) are sufficient for this limit to be almost
attained. In any case (i.e., even for finite J ’s), and under the assumptions which have been made, the
variance of α̂2(J) is the best achievable, since it can be shown that it is equal to the Cramér-Rao lower
bound [WO, LO].
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Figure 4: Wavelet-based spectrum estimation of 1/fα processes – Variance of the weighted
estimator. Both the asymptotic closed form (solid line) and numerical simulations (dashed line) show
that there is no use to involve a large number of scales to obtain the minimum variance estimation.

3.3 Number of vanishing moments of the wavelet: an illustration of the bias-variance
trade-off.

The number of vanishing moments R of the analysing wavelet needs to be high enough to balance the
divergence of f−α at the null frequency and therefore to insure the convergence of the multiplicative
integral in eq. (10). From a practical point of view, if the inequality R ≥ (α − 1)/2 is not satisfied, this
results in a systematic underestimation of α. Moreover, practically, a relevant estimation is achieved only
if R is chosen slightly above (α− 1)/2.

From the variance point of view, one theoretically expects less and less correlation between wavelet
coefficients and therefore less variance from the increase of R. For finite length data, yet, the number of
points polluted by border effects also increases with R, therefore limiting the effective number of points
involved in the summation and the reduction of variance. This may even lead to an increase of variance
with increasing R’s.

We, therefore, have a practical trade-off in the choice of R: once the inequality R ≥ (α − 1)/2 is
comfortably satisfied, there is no advantage (and it can even turn to be a drawback) to increase R.

4 Further remarks on the use of various wavelet transforms

More on discrete wavelets: semi- and bi-orthogonal transforms. Most of the time, one restricts the
label of discrete wavelet transform to the use of orthonormal wavelets decomposition, yet, in the present
framework, there is no need to use orthogonal wavelets: it works as well with semi- or bi-orthogonal
transforms.

Let us recall that [JS], whereas orthogonal transforms make use of only one family of waveforms
{ψnj(t) = 2−j/2ψ(2−jt − n), (n, j) ∈ ZZ2}, semi- and bi-orthogonal transforms use simultaneously one

extra family {
◦

ψnj(t) = 2−j/2
◦

ψ(2−jt− n), (n, j) ∈ ZZ2}, both families being said to be dual, according to
the orthogonality property

〈ψnj ,
◦

ψmk〉 = δnm δjk, ∀n,m, j, k.

In the semi-orthogonal case, orthogonality between the wavelet subspaces Wj (or equivalently, be-
tween wavelets with different j’s) is preserved and therefore 〈X,ψnj〉 still stands for the orthogonal
projection of X onto Wj . This contrasts with the biorthogonal case, for which the projection onto some
multiresolution space is performed along the direction of one of its duals and is therefore no longer
orthogonal.

Moreover, we can propose a modified version of the spectral estimator (8), given by:

Γ̂3,X(νj) =
1

Nj

Nj
∑

n=1

dX [n, j]
◦

dX [n, j], (11)
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Figure 5: Initialization of the fast pyramidal algorithm and spectral estimation Example of
a white noise wavelet-based spectral estimation, with an orthogonal (Daubechies6) decomposition (top),
with a semi-orthogonal (cubic spline) decomposition (bottom), when the initialization of the fast algorithm
is performed (solid line) and when it is not (dashed line). With the orthogonal transform, the whiteness
of the data is preserved and therefore the initialization is not necessary. On the contrary, in the semi-
orthogonal case, if no initialization is made, the data are given a color, that of the analysing family of
atoms.

where
◦

dX [n, j] = 〈X,
◦

ψnj〉. Because we get

IE Γ̂3,X(νj) =

∫

∞

−∞

ΓX(f) 2j Ψ(2jf)
◦

Ψ(2jf) df,

this estimator still provides an unbiased estimate of α.

On the implementation of the spectral estimator: initialization of the fast pyramidal algo-
rithm. In any case, orthogonal, semi-orthogonal or bi-orthogonal, the discrete transform and therefore
the associated spectral estimator can be implemented using the celebrated fast pyramidal algorithm [M2].
A correct use of this algorithm requires to perform an initialization step [AF] that computes the starting
sequence aX [n, 0] = 〈X,ϕn0〉 from the samples X [k], k ∈ ZZ of the continuous-time signal X(t), t ∈ IR (by
definition, one has ϕnj(t) = 2−j/2ϕ(2−jt− n), (n, j) ∈ ZZ2, where ϕ(t) is the scaling function from which
the mother wavelet ψ(t) is derived). If this initialization step can be omitted (i.e., if we can assume that
aX [n, 0] = X [n]) without important consequences when using an orthogonal decomposition to perform
spectral analysis, it turns out to be crucially necessary with the two other types of transforms. Fig. 5
presents spectral estimations of a white noise with (solid line) and without (dashed line) initialization
from an orthogonal (top) and a semi-orthogonal (bottom) transform. In this latter case, when no initial-
ization is performed, the data are given a color which, in fact, is that of the correlation of the analysing
family of atoms.

Moreover, as a side remark, one can mention the following result concerning the modified version

of the spectral estimator (11). Because ψ(t) and
◦

ψ(t) are dual functions, their spectral behaviors are
balancing each other so that a correct spectral estimation is achieved, even in the absence of initialization.

On discrete times. In signal analysis, a common objection to the use of the discrete wavelet transform
concerns its lack of time-shift invariance, due to the dyadic sampling. One can, of course, enlarge the
previous definitions of the time-scale based spectral estimators to versions which, while keeping the dyadic
sampling in scale, would be continuous in time (or, at least, sampled as fast as the analyzed signal at any
scale):
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TX(t, a = 2j ] = 2−j/2
∫

∞

−∞

X(s)ψ(2−j(s− t))ds.

All properties and results on bias for 1/f processes obviously still hold in this case. For a sampled
signal consisting in N0 data points, one could expect that the constant number of points at each scale
(N0 instead of Nj = 2−jN0, with the discrete transform) would provide some extra reduction of variance,
but this actually does not occur because the inserted samples TX [n, a = 2j ] for n 6= 2jk remain strongly
correlated. This qualitative statement is conforted by numerical simulations: the use of a continuous time
variable provides us, on the spectrum itself, with a reduction of variance that hardly reaches a factor of
2 for j = 8 (instead of the expected factor 2j !) but does not supply any reduction of variance on the
estimation of α. Hence, the use of a quasi-continuous time variable — which furthermore prevents from
using the fast pyramidal algorithm — does not enable any substantial improvement in the statistical
properties of the estimator.

On discrete scales. The discrete wavelet-based spectral estimator is certainly attractive because of its
satisfying statistical properties as well as of its extremely low computational cost, but there are some
instances for which its dyadic sampling in scale constitutes a severe limitation. This is, for instance, espe-
cially true in turbulence, a domain where much is still to be learned from systematic spectral estimations
over large amounts of data. It remains, indeed, a important matter to decide whether the spectral expo-
nent α of Kolmogorov is exactly equal to 5/3 or slightly above, but first experiments made on real data
tend to cool this enthusiasm. In laboratory experiments for instance, the inertial range (i.e., the limited
range of frequencies in which the power-law model holds) exists over 1 or 2 decades at most — that is 4
or 5 octaves — with upper and lower bounds which are not precisely predicted from theory. Therefore,
the fluctuations on the estimation of α which are due to the choice of the octaves involved in the linear
fitting are larger than what is required to discriminate between the competing theories.

To avoid this severe drawback of only one single estimation by octave, one has to use a transform
that is quasi-continuous in the scale variable. One could, of course, imagine to make use of the continuous
wavelet transform (3), but this would imply the use of a (quasi-)continuous time variable which is compu-
tationally expensive and statistically useless. We can however propose [AC] to use another version of the
wavelet transform based on a finer sampling of the scale axis while preserving a dyadic time sampling:

TX [n = 2jk, a = 2j+m/M ] = 〈x, ψmkj〉,

with
ψmkj(t) ≡ 2−(j/2+m/2M) ψ(2−(j+m/M)(t− 2jk)) , m = 0, 1, . . . ,M − 1.

The associated spectral estimator then reads:

Γ̂4,X

(

νmj = 2−(j+m/M)νψ

)

≡
1

Nj

Nj
∑

k=1

T 2
X [2jk, 2j+m/M ].

We have shown elsewhere [AC, FC] that, using the multiresolution analysis framework, it is possible
to design an algorithm that enables a fast and efficient implementation of this variation on the wavelet
transform and therefore on the spectral estimator, in so far as it preserves the pyramidal structure of
the Mallat algorithm. The key point of this algorithm lies in the possibility, from any arbitrarily chosen
wavelet, to design a multiresolution wavelet that provides us with an excellent approximation of the
starting pattern [AA].

When applied to velocity data in turbulence, this estimator highlights the existence of a small bump
in the higher part of the inertial range (see Fig. 6). This phenomenon, known in the literature as the
bottle-neck effect [LM], drastically limits the range of existence of the power-law spectrum and prevents
from an accurate estimation of the parameter α. This is the most interesting result given by the time-scale
based spectral estimator in the context of turbulence.
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Figure 6: Wavelet-based spectral estimation for any chosen frequency Making use of the mul-
tiresolution framework, it is possible to define a spectral estimator for frequencies that no longer have
to be dyadic. Such an estimator can be implemented with a fast pyramidal algorithm. When applied to
turbulence velocity data, this estimator evidences a departure from the power-law behaviour in the higher
part of the so-called inertial range that calls into question the asymptotic power-law model of turbulence.
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