Empirical Mode Decomposition

Patrick Flandrin

CNRS & École Normale Supérieure de Lyon, France

thanks to Gabriel Rilling, Paulo Gonçalves, Azadeh Moghtaderi & Pierre Borgnat

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <

990

Patrick Flandrin Empirical Mode Decomposition

Aim

Given an observation x(t), get a representation of the form :

$$\mathbf{x}(t) = \sum_{k=1}^{K} \mathbf{a}_k(t) \,\psi_k(t),$$

where the $a_k(t)$'s measure "amplitude modulations" and the $\psi_k(t)$'s "oscillations".

⇒ "EMD" (Empirical Mode Decomposition)

イロト イボト イヨト イヨト 三日

Aim

Given an observation x(t), get a representation of the form :

$$x(t) = \sum_{k=1}^{K} a_k(t) \psi_k(t),$$

where the $a_k(t)$'s measure "amplitude modulations" and the $\psi_k(t)$'s "oscillations".

\Rightarrow "EMD" (*Empirical Mode Decomposition*)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

ldea

"signal = fast oscillations superimposed to slow oscillations"

"signal = fast oscillations superimposed to slow oscillations"

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <

"signal = fast oscillations superimposed to slow oscillations"

<ロト < 同ト < 三ト < 三ト 三三 の < ()

"signal = fast oscillations superimposed to slow oscillations"

<ロト < 同ト < 三ト < 三ト 三三 の < ()

"signal = fast oscillations superimposed to slow oscillations"

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <

- identify local maxima and minima in the signal
- deduce an upper and a lower envelope by interpolation (cubic splines)
 - subtract the mean envelope from the signal
 - iterate until #{extrema} = #{zeroes} ±1
- Subtract the so-obtained Intrinsic Mode Function (IMF) from the signal
- iterate on the residual

イロト イロト イヨト イヨト 二日

DQC

- identify local maxima and minima in the signal
- deduce an upper and a lower envelope by interpolation (cubic splines)
 - subtract the mean envelope from the signal
 - iterate until #{extrema} = #{zeroes} ±1
- subtract the so-obtained Intrinsic Mode Function (IMF) from the signal
- iterate on the residual

イロト イロト イヨト イヨト 二日

identify local maxima and minima in the signal

・ロト ・ 同ト ・ ヨト ・ ヨト

- identify local maxima and minima in the signal
- deduce an upper and a lower envelope by interpolation (cubic splines)
 - subtract the mean envelope from the signal
 iterate until #{extrema} = #{zeroes} ±1
- subtract the so-obtained Intrinsic Mode Function (IMF) from the signal
- iterate on the residual

・ロト ・ 同ト ・ ヨト ・ ヨト

- identify local maxima and minima in the signal
- deduce an upper and a lower envelope by interpolation (cubic splines)
 - subtract the mean envelope from the signal
 - iterate until #{extrema} = #{zeroes} ±1
- subtract the so-obtained Intrinsic Mode Function (IMF) from the signal
- iterate on the residual

イロト 不同 トイヨト イヨト ニヨー

- identify local maxima and minima in the signal
- deduce an upper and a lower envelope by interpolation (cubic splines)
 - subtract the mean envelope from the signal
 - ② iterate until #{extrema} = #{zeroes} ±1
- subtract the so-obtained Intrinsic Mode Function (IMF) from the signal
- iterate on the residual

<ロト < 同ト < 三ト < 三ト < 三 ・ < への < つ > への >

- identify local maxima and minima in the signal
- deduce an upper and a lower envelope by interpolation (cubic splines)
 - subtract the mean envelope from the signal
 - ② iterate until #{extrema} = #{zeroes} ±1
- ③ subtract the so-obtained Intrinsic Mode Function (IMF) from the signal
- iterate on the residual

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <

- identify local maxima and minima in the signal
- deduce an upper and a lower envelope by interpolation (cubic splines)
 - subtract the mean envelope from the signal
 - ② iterate until #{extrema} = #{zeroes} ±1
- ③ subtract the so-obtained Intrinsic Mode Function (IMF) from the signal
- ④ iterate on the residual

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <

Patrick Flandrin Empirical Mode Decomposition

<ロト < 四ト < 臣ト < 臣ト -

 \exists

<ロ> < 回> < 回> < 回> < 回> < 回> = 三

Patrick Flandrin Empirical Mode Decomposition

IMF 1; iteration 0

Э

Patrick Flandrin Empirical Mode Decomposition

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

в

IMF 1; iteration 1

Patrick Flandrin Empirical Mode Decomposition

<ロト < 回 ト < 三 ト < 三 ト 三 の < ()

Patrick Flandrin Empirical Mode Decomposition

<ロト < 回 ト < 三 ト < 三 ト 三 の < ()

Patrick Flandrin Empirical Mode Decomposition

・ロト ・ 同ト ・ ヨト ・ ヨト

в

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <

<ロト < 同ト < 三ト < 三ト = 三 の < ()

<ロト < 同 ト < 三 ト < 三 ト 三 の < ○</p>

<ロト < 同ト < 三ト < 三ト = 三 の < ()

Э

IMF 1; iteration 5

Э

IMF 2; iteration 2

イロト イロト イヨト イヨト

в

IMF 3; iteration 14

Patrick Flandrin Empirical Mode Decomposition

IMF 4; iteration 42

IMF 5; iteration 13

Patrick Flandrin Empirical Mode Decomposition

Patrick Flandrin Empirical Mode Decomposition

IMF 7; iteration 21

Patrick Flandrin Empirical Mode Decomposition

・ロット 中国・ 小田・ 小田・ トロ・

time

Patrick Flandrin Empirical Mode Decomposition

time

time

- Locality The method operates at the scale of one oscillation.
- Adaptativity The decomposition is fully data-driven.
- Arbitrary oscillation No assumption on the harmonic structure of oscillations ⇒ 1 non linear oscillation = 1 mode.
- Multiresolution The iterative process explores sequentially the "natural" constitutive scales of a signal.
- Performance evaluation The decomposition is defined as the output of the algorithm (no analytic definition) ⇒ need of numerical simulations in well-controlled situations.

() < </p>

- Locality The method operates at the scale of **one** oscillation.
- Adaptativity The decomposition is fully data-driven.
- Arbitrary oscillation No assumption on the harmonic structure of oscillations ⇒ 1 non linear oscillation = 1 mode.
- Multiresolution The iterative process explores sequentially the "natural" constitutive scales of a signal.
- Performance evaluation The decomposition is defined as the output of the algorithm (no analytic definition) ⇒ need of numerical simulations in well-controlled situations.

(日) (四) (王) (王) (日)

- Locality The method operates at the scale of **one** oscillation.
- Adaptativity The decomposition is fully data-driven.
- Arbitrary oscillation No assumption on the harmonic structure of oscillations ⇒ 1 non linear oscillation = 1 mode.
- Multiresolution The iterative process explores sequentially the "natural" constitutive scales of a signal.
- Performance evaluation The decomposition is defined as the output of the algorithm (no analytic definition) ⇒ need of numerical simulations in well-controlled situations.

- Locality The method operates at the scale of **one** oscillation.
- Adaptativity The decomposition is fully data-driven.
- Arbitrary oscillation No assumption on the harmonic structure of oscillations ⇒ 1 non linear oscillation = 1 mode.
- Multiresolution The iterative process explores sequentially the "natural" constitutive scales of a signal.
- Performance evaluation The decomposition is defined as the output of the algorithm (no analytic definition) ⇒ need of numerical simulations in well-controlled situations.

- Locality The method operates at the scale of **one** oscillation.
- Adaptativity The decomposition is fully data-driven.
- Arbitrary oscillation No assumption on the harmonic structure of oscillations ⇒ 1 non linear oscillation = 1 mode.
- Multiresolution The iterative process explores sequentially the "natural" constitutive scales of a signal.
- Performance evaluation The decomposition is defined as the output of the algorithm (no analytic definition) ⇒ need of numerical simulations in well-controlled situations.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- Locality The method operates at the scale of **one** oscillation.
- Adaptativity The decomposition is fully data-driven.
- Arbitrary oscillation No assumption on the harmonic structure of oscillations ⇒ 1 non linear oscillation = 1 mode.
- Multiresolution The iterative process explores sequentially the "natural" constitutive scales of a signal.
- Performance evaluation The decomposition is defined as the output of the algorithm (no analytic definition) ⇒ need of numerical simulations in well-controlled situations.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <

Empirical Mode Decomposition (EMD)

signal = fast oscillation + slow oscillation & iteration

- separation "fast vs. slow" data driven
- "local" analysis based on extrema
- theoretical framework ?

Empirical Mode Decomposition (EMD)

signal = fast oscillation + slow oscillation
&
iteration

- separation "fast vs. slow" data driven
- "local" analysis based on extrema
- theoretical framework?

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

Discrete Wavelet Transform (DWT)

signal = approximation + detail
&
iteration

- separation "approximation vs. detail" based on a priori (dyadic) filtering
- "global" analysis
- sound mathematical grounds

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

Discrete Wavelet Transform (DWT)

- separation "approximation vs. detail" based on a priori (dyadic) filtering
- "global" analysis
- sound mathematical grounds

<ロト < 同ト < 三ト < 三ト < 三 ・ < への < つ > への >
500

EMD vs. wavelets

similarity : both achieve a decomposition into "fluctuations" and "trend"

$$\begin{aligned} x(t) &= \sum_{k} c_{k}(t) + r_{K}(t) \qquad (\text{EMD}) \\ &= \sum_{k} d_{k}(t) + a_{K}(t) \qquad (\text{DWT}) \\ d_{k}(t) &= \sum \langle x, \psi_{kn} \rangle \psi_{kn}(t) \end{aligned}$$

with
$$d_k(t) = \sum_n \langle x, \psi_{kn} \rangle \psi_{kn}(t)$$

and $a_K(t) = \sum_n \langle x, \varphi_{Kn} \rangle \varphi_{Kn}(t)$

Ofference : scales are pre-determined for DWT ({φ, ψ}_{kn}(t) = 2^{-k/2}{φ, ψ}(2^{-k}t - n)) and adaptive (data-driven) for EMD

EMD vs. wavelets

W

а

 similarity : both achieve a decomposition into "fluctuations" and "trend"

$$\begin{aligned} x(t) &= \sum_{k} c_{k}(t) + r_{K}(t) \qquad (\text{EMD}) \\ &= \sum_{k} d_{k}(t) + a_{K}(t) \qquad (\text{DWT}) \end{aligned}$$

with $d_{k}(t) &= \sum_{n} \langle x, \psi_{kn} \rangle \psi_{kn}(t)$
and $a_{K}(t) &= \sum_{n} \langle x, \varphi_{Kn} \rangle \varphi_{Kn}(t)$

difference : scales are pre-determined for DWT
 ({φ, ψ}_{kn}(t) = 2^{-k/2}{φ, ψ}(2^{-k}t - n)) and adaptive
 (data-driven) for EMD
 (□ > (@) > (≥) (2^{-k}t) ≥ (2^{-k}t)

EMD vs. wavelets

W

а

 similarity : both achieve a decomposition into "fluctuations" and "trend"

$$\begin{aligned} x(t) &= \sum_{k} c_{k}(t) + r_{K}(t) \quad (\text{EMD}) \\ &= \sum_{k} d_{k}(t) + a_{K}(t) \quad (\text{DWT}) \\ \text{with } d_{k}(t) &= \sum_{n} \langle x, \psi_{kn} \rangle \psi_{kn}(t) \\ \text{nd } a_{K}(t) &= \sum_{n} \langle x, \varphi_{Kn} \rangle \varphi_{Kn}(t) \end{aligned}$$

2 difference : scales are **pre-determined** for DWT $(\{\varphi, \psi\}_{kn}(t) = 2^{-k/2} \{\varphi, \psi\} (2^{-k}t - n))$ and **adaptive** (data-driven) for EMD

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <

non linear oscillations

- Stochastic frequency approach Decomposition and spectrum analysis, mode by mode, of a wideband noise.
- Model Fractional Gaussian noise (fGn), with spectrum density S(f) ~ |f|^{1-2H}, with 0 < H < 1 (Hurst exponent).

Result

"Spontaneous" emergence of a quasi-dyadic, self-similar, filterbank structure (F., Gonçalvès & Rilling, '03) :

$$\mathcal{S}_{k',H}(f) = \rho_H^{\alpha(k'-k)} \mathcal{S}_{k,H}(\rho_H^{k'-k}f)$$

for any $k'>k\geq$ 2, with lpha – 2H – 1 and $ho_{
m H}pprox$ 2.

・ロト ・ 同ト ・ ヨト ・ ヨト

- Stochastic frequency approach Decomposition and spectrum analysis, mode by mode, of a wideband noise.
- Model Fractional Gaussian noise (fGn), with spectrum density S(f) ~ |f|^{1−2H}, with 0 < H < 1 (Hurst exponent).

Result

"Spontaneous" emergence of a quasi-dyadic, self-similar, filterbank structure (F., Gonçalvès & Rilling, '03) :

$$\mathcal{S}_{k',H}(f) = \rho_H^{\alpha(k'-k)} \mathcal{S}_{k,H}(\rho_H^{k'-k}f)$$

for any $k'>k\geq$ 2, with lpha – 2H – 1 and $ho_{
m H}pprox$ 2.

・ロト ・ 同ト ・ ヨト ・ ヨト

- Stochastic frequency approach Decomposition and spectrum analysis, mode by mode, of a wideband noise.
- Model Fractional Gaussian noise (fGn), with spectrum density S(f) ∼ |f|^{1−2H}, with 0 < H < 1 (Hurst exponent).

Result

"Spontaneous" emergence of a quasi-dyadic, self-similar, filterbank structure (F., Gonçalvès & Rilling, '03) :

$$\mathcal{S}_{k',H}(f) = \rho_H^{\alpha(k'-k)} \, \mathcal{S}_{k,H}(\rho_H^{k'-k} f)$$

for any $k' > k \ge 2$, with lpha - 2H - 1 and $ho_H pprox 2$.

・ロト ・ 同ト ・ ヨト ・ ヨト

- Stochastic frequency approach Decomposition and spectrum analysis, mode by mode, of a wideband noise.
- Model Fractional Gaussian noise (fGn), with spectrum density S(f) ∼ |f|^{1−2H}, with 0 < H < 1 (Hurst exponent).

Result

"Spontaneous" emergence of a quasi-dyadic, self-similar, filterbank structure (F., Gonçalvès & Rilling, '03) :

$$\mathcal{S}_{k',H}(f) = \rho_H^{\alpha(k'-k)} \, \mathcal{S}_{k,H}(\rho_H^{k'-k} f)$$

for any $k' > k \ge 2$, with $\alpha - 2H - 1$ and $\rho_H \approx 2$.

イロト 不同 トイヨト イヨト ニヨー

<ロト < 同ト < 三ト < 三ト - 三 -

500

IMF spectra of fGn

A B > A B > A B > B
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

500

renormalized IMF spectra of fGn

<ロト < 同ト < 三ト < 三ト = 三 の < ()

one or two components?

$$\ll \cos(\omega_1 t) + \cos(\omega_2 t) = 2\cos\left(\frac{\omega_1 + \omega_2}{2}t\right)\cos\left(\frac{\omega_1 - \omega_2}{2}t\right) \gg t^{-1}$$

mathematics vs. physics

Patrick Flandrin

Empirical Mode Decomposition

Э

Patrick Flandrin

Empirical Mode Decomposition

Э

200

Patrick Flandrin

Empirical Mode Decomposition

200

Patrick Flandrin

Empirical Mode Decomposition

200

Patrick Flandrin

Empirical Mode Decomposition

simulations

$x(t) = \underbrace{a_{1}\cos(2\pi f_{1}t)}_{x_{1}(t)} + \underbrace{a_{2}\cos(2\pi f_{2}t + \varphi)}_{x_{2}(t)}, \quad f_{1} > f_{2}$

Analysis of its EMD

- only the first IMF is computed : if separation, it should be equal to the highest frequency component x₁(t)
- criterion (= 0 if separation) :

$$c\left(\frac{a_2}{a_1}, \frac{f_2}{f_1}, \varphi\right) = \frac{\|IMF_1(t) - x_1(t)\|_{\ell_2}}{\|x_2(t)\|_{\ell_2}}$$

 sampling effects are neglected : f₁, f₂ ≪ f_s, with f_s the sampling frequency

DQC

simulations

Signal $x(t) = \underbrace{a_1 \cos(2\pi f_1 t)}_{x_1(t)} + \underbrace{a_2 \cos(2\pi f_2 t + \varphi)}_{x_2(t)}, \quad f_1 > f_2$

Analysis of its EMD

- only the first IMF is computed : if separation, it should be equal to the highest frequency component x₁(t)
- criterion (= 0 if separation) :

$$c\left(\frac{a_2}{a_1}, \frac{f_2}{f_1}, \varphi\right) = \frac{\|IMF_1(t) - x_1(t)\|_{\ell_2}}{\|x_2(t)\|_{\ell_2}}$$

 sampling effects are neglected : f₁, f₂ ≪ f_s, with f_s the sampling frequency

DQC

simulations

Signal

$$x(t) = \underbrace{a_1 \cos\left(2\pi f_1 t\right)}_{x_1(t)} + \underbrace{a_2 \cos\left(2\pi f_2 t + \varphi\right)}_{x_2(t)}, \quad f_1 > f_2$$

Analysis of its EMD

- only the first IMF is computed : if separation, it should be equal to the highest frequency component x₁(t)
- **criterion** (= 0 if separation) :

$$c\left(\frac{a_{2}}{a_{1}}, \frac{f_{2}}{f_{1}}, \varphi\right) = \frac{\|IMF_{1}(t) - x_{1}(t)\|_{\ell_{2}}}{\|x_{2}(t)\|_{\ell_{2}}}$$

 sampling effects are neglected : f₁, f₂ ≪ f_s, with f_s the sampling frequency

Dan

variations on the theme

EMD is based on a general principle that can be extended and connected with other approaches

- Ensemble EMD
- bivariate EMD
- 2D EMD
- wavelets
- synchrosqueezing
- etc.

イロト 不同 トイヨト イヨト ニヨー

variations on the theme

EMD is based on a general principle that can be extended and connected with other approaches

- Ensemble EMD
- bivariate EMD
- 2D EMD
- wavelets
- synchrosqueezing
- etc.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <

variations on the theme

EMD is based on a general principle that can be extended and connected with other approaches

- Ensemble EMD
- bivariate EMD
- 2D EMD
- wavelets
- synchrosqueezing
- etc.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <

ldea

Reduce "mode mixing" by averaging noisy EMDs

In practice (Wu & Huang, '09) :

- add some controlled noise to data
- 2 compute EMD
- reiterate and average

イロト イボト イヨト イヨト 三日

Idea

Reduce "mode mixing" by averaging noisy EMDs

In practice (Wu & Huang, '09) :

- add some controlled noise to data
- 2 compute EMD
- reiterate and average

Patrick Flandrin Empirical Mode Decomposition

イロト 不同 トイヨト イヨト ニヨー

Idea

Reduce "mode mixing" by averaging noisy EMDs

In practice (Wu & Huang, '09) :

- add some controlled noise to data
- 2 compute EMD
- reiterate and average

<ロト < 同ト < 三ト < 三ト < 三 ・ < への < つ > への >

Idea

Reduce "mode mixing" by averaging noisy EMDs

In practice (Wu & Huang, '09) :

- add some controlled noise to data
- 2 compute EMD
- Ineiterate and average

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <

Idea

Reduce "mode mixing" by averaging noisy EMDs

In practice (Wu & Huang, '09) :

- add some controlled noise to data
- ② compute EMD
- Ineiterate and average

Idea

Reduce "mode mixing" by averaging noisy EMDs

In practice (Wu & Huang, '09) :

- add some controlled noise to data
- ② compute EMD
- ③ reiterate and average

Ensemble EMD

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <

Ensemble EMD

イロト イボト イヨト イヨト 三日

<ロト < 同ト < 三ト < 三ト < 三 ・ < への < つ > への >

improved EEMD

Problem

② Noise residual \Rightarrow approximate reconstruction

Idea

Add noise "mode by mode" \Rightarrow "Complete EEMD with Adaptive Noise" (Torres et al., ICASSP'11)

- meaningful averaging
- 2 reduced total number of IMFs as compared to EEMD
- ③ perfect reconstruction

CEEMDAN algorithm 1.

pre-processing step, given a signal *x*[*n*]

- generate *J* realizations of white Gaussian noise $w^{j}[n] \in \mathcal{N}(0, 1)$
- define *E_k*(·) as the operator which, given a signal, produces the *k*-th IMF
- **pre-compute** and **store** the $J \times K$ IMFs $E_k(w^j[n])$ for j = 1, ..., J and k = 1, ..., K
- select (possibly IMF-dependent) SNRs ε_k , with $k = 1, \ldots, K$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

CEEMDAN algorithm 2.

① generate $x^{j}[n] = x[n] + \varepsilon_1 w^{j}[n]$ (j = 1, ..., J) and define

$$\widetilde{IMF}_1[n] = \frac{1}{J} \sum_{j=1}^J E_1(x^i[n])$$

② assign k = 1, compute $r_1[n] = x[n] - \widetilde{IMF}_1[n]$. and define

$$\widetilde{IMF}_{2}[n] = \frac{1}{J} \sum_{j=1}^{J} E_{1}\left(r_{1}[n] + \varepsilon_{2} E_{1}(w^{j}[n])\right)$$

(a) for k = 2, ..., K, compute $r_k[n] = r_{(k-1)}[n] - \widetilde{IMF}_k[n]$ and define

$$\widetilde{IMF}_{(k+1)}[n] = \frac{1}{J} \sum_{j=1}^{J} E_1(r_k[n] + \varepsilon_{k+1} E_k(w^j[n]))$$

④ go to step 3 until no further residue

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

<ロト < 同ト < 三ト < 三ト = 三 の < ()

CEEMDAN — Dirac pulse example

・ロト ・ 同ト ・ ヨト ・ ヨト

200

bivariate EMD

Idea

Decompose "coherently" the two components of bivariate or complex-valued signals

In practice (Rilling *et al.*, '07 + Rehman & Mandic, '10) :

- switch from oscillations to rotations
- replace envelopes by tubes
- apply the usual EMD machinery

Idea

Decompose "coherently" the two components of bivariate or complex-valued signals

In practice (Rilling *et al.*, '07 + Rehman & Mandic, '10) :

- switch from oscillations to rotations
- replace envelopes by tubes
- apply the usual EMD machinery

イロト 不同 ト イヨト イヨト

Idea

Decompose "coherently" the two components of bivariate or complex-valued signals

In practice (Rilling et al., '07 + Rehman & Mandic, '10) :

- switch from oscillations to rotations
- replace envelopes by tubes
- apply the usual EMD machinery

<<p><ロ> < 団> < 団> < 豆> < 豆> < 豆><</p>

Idea

Decompose "coherently" the two components of bivariate or complex-valued signals

In practice (Rilling et al., '07 + Rehman & Mandic, '10) :

- switch from oscillations to rotations
- replace envelopes by tubes
- apply the usual EMD machinery

<ロト < 同ト < 三ト < 三ト < 三 ・ < への < つ > への >

Idea

Decompose "coherently" the two components of bivariate or complex-valued signals

In practice (Rilling et al., '07 + Rehman & Mandic, '10) :

- switch from oscillations to rotations
- 2 replace envelopes by tubes
- apply the usual EMD machinery

<ロト < 同ト < 三ト < 三ト < 三 ・ < への < つ > への >

Idea

Decompose "coherently" the two components of bivariate or complex-valued signals

In practice (Rilling et al., '07 + Rehman & Mandic, '10) :

- switch from oscillations to rotations
- 2 replace envelopes by tubes
- apply the usual EMD machinery

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <

bivariate EMD - example

→ Ξ > → Ξ >

Э

→ Ξ → → Ξ →

Э

→ Ξ → → Ξ →

Э

▶ < ∃ >

< E

< <p>O > < <p>O >

Э

▶ < ∃ >

< E

< <p>O > < <p>O >

Э

ldea

Decompose images in 2D oscillating patterns

In practice (Linderhed, '02 + Nunes *et al.*, '03 + Damerval *et al.*, '05 + Xu *et al.*, '06) :

- ① 2x1D vs. 1x2D schemes
- 2 extrema ?
- interpolation ?

Idea

Decompose images in 2D oscillating patterns

In practice (Linderhed, '02 + Nunes *et al.*, '03 + Damerval *et al.*, '05 + Xu *et al.*, '06) :

- ① 2x1D vs. 1x2D schemes
- 2 extrema ?
- interpolation ?

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

Idea

Decompose images in 2D oscillating patterns

In practice (Linderhed, '02 + Nunes *et al.*, '03 + Damerval *et al.*, '05 + Xu *et al.*, '06) :

- 2x1D vs. 1x2D schemes
- 2 extrema ?
- interpolation ?

Idea

Decompose images in 2D oscillating patterns

In practice (Linderhed, '02 + Nunes *et al.*, '03 + Damerval *et al.*, '05 + Xu *et al.*, '06) :

2 extrema '

interpolation ?

Idea

Decompose images in 2D oscillating patterns

In practice (Linderhed, '02 + Nunes *et al.*, '03 + Damerval *et al.*, '05 + Xu *et al.*, '06) :

- ① 2x1D vs. 1x2D schemes
- 2 extrema?
- interpolation ?

Idea

Decompose images in 2D oscillating patterns

In practice (Linderhed, '02 + Nunes *et al.*, '03 + Damerval *et al.*, '05 + Xu *et al.*, '06) :

- ① 2x1D vs. 1x2D schemes
- ② extrema?
- ③ interpolation?

Figure 4. Decomposition of a simulated texture image: (a) the original image, (b-d) the three original components that form the original image, (e and f) the IMFs and (g) the residue.

from (Xu et al., '07)

(日) (四) (王) (王) (日)

500

some uses

• Pre-processing

- baseline removal
- signal disentanglement
- selection of significant IMFs

Post-processing

- Hilbert transform of IMFs
- grouping of significant IMFs
- (local) trend removal
- denoising from partial coarse-to-fine reconstruction
- gap filling
- scaling analysis

Pre-processing

- baseline removal
- signal disentanglement
- selection of significant IMFs

Post-processing

- Hilbert transform of IMFs
- grouping of significant IMFs
- (local) trend removal
- denoising from partial coarse-to-fine reconstruction
- gap filling
- scaling analysis

イロト 不同 トイヨト イヨト ニヨー

Pre-processing

- baseline removal
- signal disentanglement
- selection of significant IMFs

Post-processing

- Hilbert transform of IMFs
- grouping of significant IMFs
- (local) trend removal
- denoising from partial coarse-to-fine reconstruction
- gap filling
- scaling analysis

・ロト ・ 同ト ・ ヨト ・ ヨト

Pre-processing

- baseline removal
- signal disentanglement
- selection of significant IMFs

Post-processing

- Hilbert transform of IMFs
- grouping of significant IMFs
- (local) trend removal
- denoising from partial coarse-to-fine reconstruction
- gap filling
- scaling analysis

・ロト ・ 同ト ・ ヨト ・ ヨト

Pre-processing

- baseline removal
- signal disentanglement
- selection of significant IMFs

Post-processing

- Hilbert transform of IMFs
- grouping of significant IMFs
- Ilocal) trend removal
- denoising from partial coarse-to-fine reconstruction
- gap filling
- scaling analysis

・ロト ・ 同ト ・ ヨト ・ ヨト

a model-based toy example

a model-based toy example

<ロト < 回 > < 注 > < 注 > - 注 -

500

a model-based toy example

<ロト < 同ト < 三ト < 三ト < 三 ・ < への < つ > への >

more on "detrending"

Observation

A "trend" is a loosely defined object, e.g., a "long-term change in the mean" (Chatfield, '96)

- as opposed to "fluctuations", an EMD-based definition of a "trend" may correspond to (some of) the last IMF(s)
- a possible strategy (Moghtaderi *et al.*, '11) for selecting those relevant modes combine ratios of
 - zero-crossings
 - energy

between successive adjacent modes

a model-free toy example

from (Moghtaderi et al., '11)

- E

Э

200

monthly mean CO₂

from (Moghtaderi et al., '11)

・ロト ・ 同ト ・ ヨト ・ ヨト

Э

monthly mean CO₂

from (Moghtaderi et al., '11)

イロト イロト イヨト

Э

shared bicycles (Lyon Vélo'v system)

from (Moghtaderi et al., '11)

・ロト ・ 同ト ・ ヨト ・ ヨト

Э

200

Patrick Flandrin Empirical Mode Decomposition

shared bicycles (Lyon Vélo'v system)

from (Moghtaderi et al., '11)

- E

< <p>O > < <p>O >

Э

イロト イロト イヨト

Э

500

global Earth surface temperature

Patrick Flandrin Empirical Mode Decomposition

Problem

Analyze and/or reconstruct data with gaps, due to unavailable and/or corrupted measurements

Idea

Carry over the problem to IMFs

- construct gapped IMFs
- ② fill in gaps in each mode, based on geometrical constraints
- add up all gap-filled IMFs

<ロト < 同ト < 三ト < 三ト < 三 ・ < への < つ > への >

from (Moghtaderi et al., '12)

イロト イポト イヨト イヨト

Э

from (Moghtaderi et al., '12)

イロト イ理ト イヨト イヨト

 \exists

from (Moghtaderi et al., '12)

イロト イ理ト イヨト イヨト

 \exists

from (Moghtaderi et al., '12)

イロト イ理ト イヨト イヨト

 \exists

(日) (四) (王) (王) (日)

200

heart rate variability

- Objective Assessment of cardiovascular autonomic control
- Methods Spectrum analysis of RR intervals, LF (0.04–0.15 Hz) vs. HF (0.15–0.4 Hz) contributions quantifying the sympatho-vagal balance
- Issues VLF trends and/or non steady-state measurements

Idea

Switch from fixed, time-invariant, LF/HF filters to data-adaptive, time-varying, slow/fast modes

Objective — Assessment of cardiovascular autonomic control

- Methods Spectrum analysis of RR intervals, LF (0.04–0.15 Hz) vs. HF (0.15–0.4 Hz) contributions quantifying the sympatho-vagal balance
- Issues VLF trends and/or non steady-state measurements

Idea

Switch from fixed, time-invariant, LF/HF filters to data-adaptive, time-varying, slow/fast modes

- Objective Assessment of cardiovascular autonomic control
- Methods Spectrum analysis of RR intervals, LF (0.04–0.15 Hz) vs. HF (0.15–0.4 Hz) contributions quantifying the sympatho-vagal balance
- Issues VLF trends and/or non steady-state measurements

Idea

Switch from fixed, time-invariant, LF/HF filters to data-adaptive, time-varying, slow/fast modes

<ロト < 同ト < 三ト < 三ト < 三 ・ < への < つ > への >

- Objective Assessment of cardiovascular autonomic control
- Methods Spectrum analysis of RR intervals, LF (0.04–0.15 Hz) vs. HF (0.15–0.4 Hz) contributions quantifying the sympatho-vagal balance
- Issues VLF trends and/or non steady-state measurements

ldea

Switch from fixed, time-invariant, LF/HF filters to data-adaptive, time-varying, slow/fast modes

<ロト < 同ト < 三ト < 三ト < 三 ・ < への < つ > への >

- Objective Assessment of cardiovascular autonomic control
- Methods Spectrum analysis of RR intervals, LF (0.04–0.15 Hz) vs. HF (0.15–0.4 Hz) contributions quantifying the sympatho-vagal balance
- Issues VLF trends and/or non steady-state measurements

Idea

Switch from fixed, time-invariant, LF/HF filters to data-adaptive, time-varying, slow/fast modes
HRV analysis. Example 1

HRV analysis. Example 2 (Souza Neto et al., '02)

EMD...

- ... is a model-free, fully data-driven method
- ... naturally copes with nonstationarities and nonlinearities
- ... is intuitive but still lacks from general theory : current on-going work for possible ways out include
 - modifications of the original algorithm, e.g., by constrained variational approaches (Meignen and Perrier, '11; Pustelnik *et al.*, '12) in place of sifting
 - alternative transforms via EMD-like decompositions, e.g., "synchrosqueezing" (WU, Daubechies *et al.*, '10-11)

much work to be done but worth investigating !

200

• ... is a model-free, fully data-driven method

- ... naturally copes with nonstationarities and nonlinearities
- ... is intuitive but still lacks from general theory : current on-going work for possible ways out include
 - modifications of the original algorithm, e.g., by constrained variational approaches (Meignen and Perrier, '11; Pustelnik *et al.*, '12) in place of sifting
 - alternative transforms via EMD-like decompositions, e.g., "synchrosqueezing" (WU, Daubechies *et al.*, '10-11)

much work to be done but worth investigating !

イロト イロト イヨト イヨト 三日

EMD...

- ... is a model-free, fully data-driven method
- ... naturally copes with nonstationarities and nonlinearities
- ... is intuitive but still lacks from general theory : current on-going work for possible ways out include
 - modifications of the original algorithm, e.g., by constrained variational approaches (Meignen and Perrier, '11; Pustelnik *et al.*, '12) in place of sifting
 - alternative transforms via EMD-like decompositions, e.g., "synchrosqueezing" (WU, Daubechies et al., '10-11)

much work to be done but worth investigating !

ヘロン 人間 とく ほとく ほと

- ... is a model-free, fully data-driven method
- ... naturally copes with nonstationarities and nonlinearities
- ... is **intuitive** but still **lacks from general theory** : current on-going work for possible ways out include
 - modifications of the original algorithm, e.g., by constrained variational approaches (Meignen and Perrier, '11; Pustelnik *et al.*, '12) in place of sifting
 - alternative transforms via EMD-like decompositions, e.g., "synchrosqueezing" (WU, Daubechies *et al.*, '10-11)

much work to be done but worth investigating !

・ロト ・ 同ト ・ ヨト ・ ヨト

- ... is a model-free, fully data-driven method
- ... naturally copes with nonstationarities and nonlinearities
- ... is **intuitive** but still **lacks from general theory** : current on-going work for possible ways out include
 - modifications of the original algorithm, e.g., by constrained variational approaches (Meignen and Perrier, '11; Pustelnik *et al.*, '12) in place of sifting
 - alternative transforms via **EMD-like** decompositions, e.g., "synchrosqueezing" (WU, Daubechies *et al.*, '10-11)

much work to be done but worth investigating !

・ロト ・ 同ト ・ ヨト ・ ヨト

method properties variations applications

preprints, Matlab codes & contact

- http ://perso.ens-lyon.fr/patrick.flandrin/
- Patrick.Flandrin@ens-lyon.fr

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <