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Stationarity, from theory to practice

• concept of stationarity
• ubiquitous in signal/image processing
• prerequisite for many tasks (analysis, modeling, . . . )

• theory: definition heavily constrained

1. stochastic framework, e.g., Ex(t) x(t − τ) = γx (τ)
2. invariance w.r.t. any time t and any shift τ

• practice: definition loosely twisted

1. deterministic frameworks as well, e.g., x(t) ∼ x(t − kT )
2. invariance w.r.t. selected times t and limited shifts (τ or kT )
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Objective and agenda

• consider stationarity as a relative concept and develop an
operational framework

• encompassing both stochastic and deterministic situations
• incorporating an observation scale in the definition
• allowing for a possibility of a quantitative test

1. time-frequency framework
2. stationary reference from surrogates
3. distance-based test
4. 3 variations

4.1 machine learning approach
4.2 2D time-scale extension
4.3 transient detection
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A time-frequency approach 1.

• 2nd order stationarity: frequency description via the Power
Spectrum Density (PSD)

Γx (f ) :=

∫ +∞

−∞
γx (τ) e−i2πfτ dτ

• (harmonizable) nonstationary processes: PSD→
Time-Varying Spectra (TVS) ρx (t , f ), with the key property:
ρx (t , f ) = Γx (f ),∀t in the stationary case.



A time-frequency approach 1.

• 2nd order stationarity: frequency description via the Power
Spectrum Density (PSD)

Γx (f ) :=

∫ +∞

−∞
γx (τ) e−i2πfτ dτ

• (harmonizable) nonstationary processes: PSD→
Time-Varying Spectra (TVS) ρx (t , f ), with the key property:
ρx (t , f ) = Γx (f ),∀t in the stationary case.



A time-frequency approach 1.

• 2nd order stationarity: frequency description via the Power
Spectrum Density (PSD)

Γx (f ) :=

∫ +∞

−∞
γx (τ) e−i2πfτ dτ

• (harmonizable) nonstationary processes: PSD→
Time-Varying Spectra (TVS) ρx (t , f ), with the key property:
ρx (t , f ) = Γx (f ), ∀t in the stationary case.



A time-frequency approach 2.

• estimation of TVS by means of multitaper spectrograms (or
scalograms)

Sx ,K (t , f ) =
1
K

K∑
k=1

∣∣∣∣∫ +∞

−∞
x(s) hk (s − t) e−i2πfs ds

∣∣∣∣2 ,
Ωx ,K (t , f ) =

1
K

K∑
k=1

∣∣∣∣∫ +∞

−∞
x(s) hk

(
s − t
f0/f

)
ds
∣∣∣∣2 ,

with the K first Hermite (or Morse) functions used as
short-time windows (or wavelets) hk (t)

• rationale: “ensemble” averaging without any extra time
averaging (conflicting with nonstationarity)
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A time-frequency approach 3.
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• advantage: common framework for both stochastic and
deterministic situations

• rationale: relative stationarity = “homogeneity” within an
observation scale⇒ comparison local vs. global
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Local = global?

• test calls for a stationary reference: how?
• nonstationarity encoded in time evolution or, equivalently, in

spectrum phase
• stationarization via spectrum phase randomization (Richard

et al., IEEE-ICASSP’10)

• new use of surrogate data technique (Theiler et al., ’92)
• basic algorithm:

x̂ = FFT(x) % x = original data1

draw WGN ε(t) and compute ε̂ = FFT(ε)2

x̂ ← |x̂ | exp{i arg ε̂}3

y = IFFT(x̂) % y = surrogate data4
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Stationarization via surrogates
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The proposed approach

[Xiao et al., EUSIPCO’07] [Xiao et al., IEEE-SSP’07]
[Borgnat et al., IEEE T-SP’10]

1. compute, from the data, a set of stationary surrogates
2. attach to both data and surrogates a series of features

aimed at comparing local vs. global behaviors
3. construct a test based on the empirical statistical

characterization of such features for surrogates (null
hypothesis of stationarity)
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Principle of distance-based test
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More on distance-based test 1.

• comparison local vs. global for the data

c(x)
n := D

(
Sx ,K (tn, ·), 〈Sx ,K (tn, ·)〉n

)
,

with D(·, ·) some dissimilarity measure
• creation of a set of surrogates and similar comparisons

x(t)→ {sj(t), j = 1, . . . J}

{c(sj )
n := D

(
Ssj ,K (tn, ·), 〈Ssj ,K (tn, ·)〉n

)
, j = 1, . . . J}}



More on distance-based test 2.

• measure the `2 fluctuations of D for data and surrogates

Θ1 = L
(

c(x), 〈c(x)〉n
)

;
{

Θ0(j) = L
(

c(sj ), 〈c(sj )〉n
)
, j = 1, . . . J

}
with

L(g,h) :=
1
N

N∑
n=1

(gn − hn)2

• construct the one-sided test{
Θ1 > γ : “nonstationarity”
Θ1 < γ : “stationarity”

with γ some threshold derived from the empirical pdf of Θ0



Associated quantities

• index of nonstationarity

INS :=

√
Θ1

〈Θ0(j)〉j

• scale of nonstationarity

SNS :=
1
T

arg max
Th
{INS(Th)} ,

with T the observation span and Th the window length



Choosing a distance

• typical nonstationarities captured by time-varying spectra:
AM (level change) and FM (shape change)

• motivates a combination of log-spectral deviation (AM) and
Kullback-Leibler divergence (FM)

D(G,H) := DKL(G̃, H̃). (1 + DLSD(G,H)) ,

with

DKL(G,H) :=

∫
Ω

(G(f )− H(f )) log
G(f )

H(f )
df

DLSD(G,H) :=

∫
Ω

∣∣∣∣ log
G(f )

H(f )

∣∣∣∣ df



Choosing surrogates
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Synthetic data
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Variation 1: machine learning

• approaches via distances are model-based since they
require some (parametric) knowledge of surrogates
features pdf

• possible way out by considering surrogates as a learning
set attached to stationarity

• stationarity test recast as outlier detection by using the
machinery of one-class SVM



Principle of SVM-based test
• rationale: determine the minimum volume hypersphere

that encloses (most of) the training points, up to a small
fraction of data excluded from the domain.

• optimization: trade-off between minimizing the radius r∗ of
the enclosing hypersphere and controlling the sum of the
slack variables ξ∗i associated with each outlier.

BORGNAT, FLANDRIN, HONEINE, RICHARD AND XIAO: TESTING STATIONARITY WITH SURROGATES 7

a∗

r∗

√
ξi

√

ξj

zi

zj

Fig. 5. Support vector data description algorithm. This algorithm determines
the minimum volume hypersphere that encloses (most of) the training points,
up to a small fraction of data excluded from the domain. The optimization
problem consists of a trade-off between minimizing the radius r∗ of the
enclosing hypersphere and controlling the sum of the slack variables ξ∗i
associated with each outlier.

developments of pattern recognition and statistical learning

theory.

C. Testing stationarity

We shall now use support vector data description to estimate

the support of probability density functions of stationary

surrogate signals. The resulting decision rule will allow us

to distinguish between stationary and nonstationary processes.

Let us assume that we are given a training set

{s1(t), . . . , sJ(t)} of surrogate signals generated from the

signal x(t) under investigation. In all the experiments reported
above, time-frequency features were extracted from the nor-

malized multitaper spectrogram of each signal, defined at time

tn by

Sn(f) :=
Sx,K(tn, f)

∑N
n=1

∫ 1

2

0 Sx,K(tn, f) df
(23)

for n = 1, ..., N and 0 ≤ f < 1/2. More precisely, the local
power Pn of each signal and its local frequency content Fn

summarized below were considered:

Pn :=

∫ 1

2

0
Sn(f) df ; Fn :=

1

Pn

∫ 1

2

0
f Sn(f) df. (24)

Finally, for a sake of clarity, only the following two features

comparing local time-frequency behavior to global one were

retained

P := std(Pn)n=1,...,N ; F := std(Fn)n=1,...,N , (25)

where std(·) denotes the standard deviation. The first one is
a measure of the fluctuations over time of the local power

of the signal, whereas the second one operates the same way

with respect to the local mean frequency. For each experiment

reported in Fig. 6, 200 surrogate signals were generated from
the AM or FM signal x(t) to be tested. Features P and F
were extracted from each surrogate. Next, data were mean-

centered and normalized so that the variance of both features

was one, ending up with a collection of feature vectors zi

composed each of a pair (P, F ). Finally, the support vector
data description algorithm was run using the basic linear kernel

κ(zi, zj) = 〈zi, zj〉 and ν = 0.15. The results are displayed
for T0 = T/20, T and 20 T , allowing to consider stationarity
relatively to the ratio between the observation time T and the

modulation period T0. In each figure, the surrogate signals

are shown with dots and the signal to be tested with a black

triangle. The optimum circle having center at c∗ and radius
r∗ is shown in dashed line. The training data lying on or
outside this circle, and thus associated with non-zero Lagrange

multipliers in (18)-(20), are indicated by the circled dots.

The thin circles represent the decision function (21) tuned

to different false positive probabilities, fixed by γ via the

relation (22). To calculate γ, note that we have neglected the
contribution of the last two terms of equation (22) since they

decay to zero as J tends to infinity. Figs. 6(b) and 6(e) show

that the test signals can be considered as nonstationary with a

false positive probability lower than 0.05. In the other figures,
they are clearly identified as stationary signals.

The findings reported in this learning-theory-based study are

clearly consistent with what had been obtained previously with

the distance-based approach. For a small modulation period or

a large observation time, i.e., when T0 % T , the situation
can be considered as stationary due to the observation of

many similar oscillations over the observed time scale. This

is reflected by the test signal which lies inside the region

defined by the support vector data description algorithm for

the stationary surrogates. For a medium observation time, i.e.,

T ≈ T0, the local evolution due to the modulation is prominent

and the black triangle for the modulated signal is well outside

the stationary region, in accordance with a situation that can

be referred to as nonstationary. Finally, if T0 ' T , the result
turns back to stationarity because no significative change in

the amplitude or the frequency is observed over the considered

time scale.

V. CONCLUSION

A new approach has been proposed for testing stationarity

from a time-frequency viewpoint, relatively to a given observa-

tion scale. A key point of the method is that the null hypothesis

of stationarity (which corresponds to time-invariance in the

time-frequency spectrum) is statistically characterized on the

basis of a set of surrogates which all share the same average

spectrum as the analyzed signal while being stationarized.

The basic principles of the method have been outlined, with

a number of considerations related to its implementation, but it

is clear that the proposed framework still leaves room for more

thorough investigations as well as variations and/or extensions.

In terms of time-frequency distributions for instance, one

could imagine to go beyond spectrograms and take advantage

of more recent advances [25]. Two-dimensional extensions

can also be envisioned for testing stationarity in the sense
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Variation 2: 2D extensions

• extension 1: apply the same strategies to 2D TF spectra
• extension 2: replace mutatis mutandis TF by space-scale

(e.g., spectrograms→ scalograms)

1. multiresolution⇒ selection of observation scale
2. possibility of directional tests
3. here: undecimated dyadic (“symmlet-4”) tensor wavelet

transform, with test based on the `1-norm of the mixed
distance map (Kullback-Leibler + log-spectral deviation)
computed pointwise in the 3 directions
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Back to the 2D example
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Variation 3: transient detection

1. TF model = localized events in smoothly spread noise
2. In practice, only one observation
⇒ statistical fluctuations in the estimated noise background
⇒ false transients

3. Way out = compare data to a TF stationarized reference
⇒ surrogates from a 2D phase randomization with a
positivity constraint (spectrogram)

4. Detection via an entropy measure (Rényi)
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Algorithm

Ax = 2D-FFT(Sx ) % Sx = spectrogram1

draw WGN ε(t) and compute Aε = 2D-FFT(Sε)2

Ax ← |Ax | exp{i arg Aε} % Ax = surrogate ambiguity function3

test = test0 > thresh4

r = 05

while test ≥ thresh do6

r ← r + 17

draw WGN ε(t) and compute Aε = 2D-FFT(Sε)8

Ax = 2D-FFT([2D-IFFT(Ax )]+)9

Ax ← |Ax | exp{i(arg Ax + λr arg Aε)}10

test← vol(Sx < 0)/vol(Sx )11
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Performance
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Concluding remarks

• stationarity revisited from an operational perspective

1. explicitly considered as a relative concept
2. tested based on data-driven surrogate data

• further variations

1. from detection to classification [Amoud et al., GRETSI’09]
2. global, features-free, learning strategies [Amoud et al.,

IEEE-SSP’09]
3. softened transitional surrogates [Borgnat et al., ICASSP’11]

• extension to generalized forms of stationarity (Lamperti)
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More

(p)reprints and Matlab codes available at

http://perso.ens-lyon.fr/patrick.flandrin


