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random walk

Definition
Brownian motion is the zero-mean Gaussian process
{X (t), t ≥ 0; X (0) = 0} with increments
{∆X (t , s) := X (t)− X (s), t ≥ s} such that

1 var∆X (t , t − 1) = 2D, for any t (stationarity)
2 E∆X (t1, t2)∆X (t3, t4) = 0, if t1 > t2 ≥ t3 > t4

(independence)

Ordinary diffusion — We then have (Einstein, 1905):

varX (t) = E[∆X (t , t − 1) + ∆X (t − 1, t − 2) + . . .+ ∆X (1,0)]2

= t × var∆X (1,0)

= 2Dt ⇒ σX (t) := (varX (t))
1
2 ∝
√

t
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credit: Leonardo da Vinci
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disordered fluids

Prediction (Kolmogorov, ’41)
Assuming homogeneity, isotropy and a constant energy
transfer rate in turbulent flows leads to the following (K41)
predictions for the velocity field v(x) and energy spectrum E(k):

〈
|v(x + r)− v(x)|q

〉
∝ rq/3 (q=2)⇒ E(k) ∝ k−5/3

Experiments — Observed spectra are “in k−5/3", but
scaling laws have anomalous exponents ζq 6= q/3
Issues — Reconsidering initial hypotheses, in terms of
statistics (non-Gaussianity. . . ) and events (coherent
structures. . . )
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velocity spectrum
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complex systems
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network traffic

Observation (Leland & et al., ’94)
Experimental evidence of scaling phenomena and long-range
dependence in Ethernet traffic

Extensions — Similar behaviors observed in other types of
traffic (Internet, VBR, WAN . . . ).
Issues — Traffic control (congestion, dimensioning,
anomalies detection, prediction, protocols . . . )
⇒ modeling and analysis.
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IP Packets
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Nature and finance!
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scaling ubiquitous in many domains

Solid-state physics
Hydrology
Astrophysics
Heart-rate variability
Brain activity (fMRI)
Earthquakes
Social networks
etc.
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scaling and power-laws

Power-law spectra — Power-laws correspond to
homogeneous functions:

S(f ) = C |f |−α ⇒ S(kf ) = C |kf |−α = k−αS(f ),

for any k > 0
Fourier transform — Frequency scaling carries over to the
time domain. If we let s(t) := (F−1S)(f ), we get:
∫
S(kf ) ei2πft df = k−1

∫
S(f ′) ei2πf ′(t/k) df ′ = s(t/k)/k

It follows that s(t/k) = s(t)/kα−1 ⇒ self-similarity
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credit: S. Kim
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no characteristic scale

Definition
A process {X (t), t ∈ R} is said to be self-similar of index H (or
“H-ss") if, for any k > 0,

{X (kt), t ∈ R} d
= kH{X (t), t ∈ R}.

Interpretation
Any zoomed (in or out) version of an H-ss process looks
(statistically) the same

Remark
If a process X is self-similar, it is necessarily nonstationary
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zooming in on an H-ss process

credit: H. Wendt
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stationary increments

Definition
A process {X (t), t ∈ R} is said to have stationary increments if
and only if, for any θ ∈ R, the increment process:

{
X (θ)(t) := X (t + θ)− X (t), t ∈ R

}

has a distributional law which does not depend upon t

Remark
The concept of stationary increments can be naturally extended
to higher orders (“increments of increments")

Definition
H-ss processes with stationary increments are referred to as
“H-sssi" processes
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covariance function of H-sssi processes

Theorem
The structure of the covariance function is the same for all
H-sssi processes

Proof — Assuming that X (t) is H-sssi, with X (0) = 0 and
X (1) 6= 0, we have necessarily:

EX (t)X (s) =
1
2

(
EX 2(t) + EX 2(s)− E (X (t)− X (s))2

)

=
1
2

(
EX 2(t) + EX 2(s)− E (X (t − s)− X (0))2

)

=
varX (1)

2

(
|t |2H + |s|2H − |t − s|2H

)
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asymptotic self-similarity

Definition
A stationary process {X (t), t ∈ R} is said to be asymptotically
self-similar of index β ∈ (0,1) if

(var X (t))−1 EX (t)X (t + τ) ∼ τ−β

when τ →∞

H-sssi processes are asymptotically self-similar of index
β = 2(1− H)

non-summability (and power-law decay) of the
autocorrelation⇒ (power-law) divergence of the PSD at
f = 0
asymptotic self-similarity⇒ long-range dependence (LRD)
(also referred to as long memory)
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fractional Brownian motion

Definition 1
A process BH(t) is referred to as a fractional Brownian motion
(fBm) of index 0 < H < 1, if and only if it is H-sssi and Gaussian

fBm has been introduced in (Mandelbrot & van Ness, ’68),
as an extension of the ordinary Brownian motion
B(t) ≡ BH(t)|H=1/2 (anomalous diffusion)
the index H is referred to as the Hurst exponent, and its
limited range guarantees the non-degeneracy (H < 1) and
the mean-square continuity (H > 0) of fBm
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fractional Brownian motion

Definition 2
fBm admits the moving average representation:

BH(t)− BH(0) =
1

Γ(H + 1
2)

{∫ 0

−∞
[(t − s)H− 1

2 − (−s)H− 1
2 ] B(ds)

+

∫ t

0
(t − s)H− 1

2 B(ds)

}

fBm results from a “fractional integration" of white noise
no specific role attached to time t = 0
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fractional Brownian motion

Definition 3
fBm admits the (harmonizable) spectral representation:

BH(t) = C
∫ +∞

−∞
|f |−(H+ 1

2 ) (ei2πtf − 1) W (df ),

with W (df ) the Wiener measure

the “average spectrum" of fBm behaves as |f |−(2H+1)

fBm is a widespread model for (nonstationary) Gaussian
processes with a power-law (empirical) spectrum

Patrick Flandrin Wavelets and scaling processes



examples concepts wavelets framework multifractals scaling self-similarity fBm/fGn other models

fractional Gaussian noise

Definition

The (stationary) increment process B(θ)
H (t) of fBm BH(t) is

referred to as fractional Gaussian noise (fGn)

Autocorrelation — The (stationary) autocorrelation function of
fGn, cH(τ) := EB(θ)

H (t)B(θ)
H (t + τ), reads:

cH(τ) =
σ2

2

(
|τ + θ|2H − 2|τ |2H + |τ − θ|2H

)

if θ = 1 and H = 1
2 , we have cH(k) = σ2 δ(k), k ∈ Z

(discrete-time white noise)
for large lags τ , one has cH(τ) ∼ σ2θ2H(2H − 1)τ2(H−1)

(subexponential, power-law decay)
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fGn autocorrelation function
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fGn spectrum

Result
If θ = 1, the power spectrum density of discrete-time fGn is
given by:

S(f ) = C σ2 |ei2πf − 1|2
∞∑

k=−∞

1
|f + k |2H+1 ,

with −1
2 ≤ f ≤ +1

2

if H 6= 1
2 , we have S(f ) ∼ C σ2 |f |1−2H when f → 0

0 < H < 1
2 ⇒ S(0) = 0

1
2 < H < 1⇒ S(0) =∞ (spectral divergence)
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fGn power spectrum density
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importance of fGn

1 Aggregation — Renormalized by T H−1, fGn is invariant
under the recomposition rule

X (n) 7→ X T (n) := T−1
nT∑

k=(n−1)T+1

X (k)

2 Attraction — As T →∞, aggregating any asymptotically
H-ss process ends up with a process whose covariance
structure is that of fGn

3 Long-range dependence — fGn is LRD when 1
2 < H < 1
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Bm sample paths
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fBm sample paths 1

Definition
The local regularity of a signal x(t) at a given point t0 is
measured by the Hölder exponent h(t0) defined as the
supremum of α’s such that |x(t)− x(t0)| < C |t − t0|α when
|t − t0| → 0 (the larger the exponent, the smoother the signal)

Result
For any (small enough) ε > 0 and any t ∈ R, we have
|B(ε)

H (t)| ≤ C |ε|H , with probability 1

fBm is everywhere continuous, but nowhere differentiable
sample paths have a uniform Hölder regularity h = H
sample paths have a uniform (Haussdorf and box) fractal
dimension dimB graph BH = 2− H
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examples of fBm sample paths
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correlation between increments

Interpretation
It follows from the covariance structure of fBm that, for any
t ∈ R,

CH(θ) := − EB(−θ)
H (t) B(θ)

H (t)

varB(±θ)
H (t)

= 22H−1 − 1

H = 1
2 : no correlation (Brownian motion, D = 1.5)

H < 1
2 : negative correlation (more erratic, limH→0 D = 2)

H > 1
2 : positive correlation (less erratic, limH→1 D = 1)

Interpretation
H is a roughness measure of sample paths
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“1/f " processes

Definition
A process is said to be of “1/f "-type if its empirical PSD
behaves as f−α (α > 0) over some frequency range [A,B]

Depending on A and B, one can end up with:
LRD, if A→ 0 and B <∞
scaling in some “inertial range", if 0 < A < B <∞
small-scale fractality, if A <∞ and B →∞

Remark
In the fBm case, the only Hurst exponent H controls all 3
situations
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ON/OFF Models 1

ON/OFF sources — Let SN(t) result from the superposition of
N independent ON/OFF sources: SN(t) :=

∑N
i=1 Xi(t)

x1
x2

x3
su
m
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ON/OFF Models 2

Observation
Given N and T , the statistical properties of the cumulative
process:

YN(Tt) :=

∫ Tt

0
SN(s) ds

depend on the pdf’s of the ON and OFF periods τ

Theorem (Willinger et al., ’95)

Assuming that the ON and OFF periods are both heavy-tailed,
i.e., that Prob{τ > x} ∼ c x−α, τ →∞, with 1 < α < 2, then (up
to a linear trend) YN(Tt) behaves asymptotically as fBm of
Hurst exponent H = (3− α)/2 when N and T →∞
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FARIMA

Definition (Hosking, ’81)
In the discrete-time case where k ∈ Z, Fractional
Auto-Regressive Integrated Moving Average (FARIMA)
processes X (k) are defined by

Φ(z)(1− z−1)dX (k) = Θ(z)W (k),

where z is the unit delay operator, Φ and Θ are polynomial of
order p and q, respectively, d ∈]− 1/2,+1/2[ is the order of
fractional differencing and W (k) is white Gaussian noise

Interpretation

FARIMA(p,d ,q) processes generalize the classical random
walk, which is a FARIMA(0,1,0)
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importance of FARIMA

1 FARIMA(0,d ,0) — In the simplest case of a fractionally
integrated white noise, the spectrum reads
S(f ) ∝ | sinπf |−2d and

S(f ) ∼ |f |−2d , f → 0

2 fGn-like — At low frequencies, the spectrum is identical to
that of fGn, with the identification d ≡ H − 1/2

3 Long-range dependence — FARIMA(0,d ,0) processes
are suitable models for asymptotic self-similarity, and
long-range dependence when d > 0

Patrick Flandrin Wavelets and scaling processes



examples concepts wavelets framework multifractals scaling self-similarity fBm/fGn other models

evidencing scaling in data ?

Observation
Different and complementary signatures of scaling can be
observed with respect to time (correlation, fractality,. . . ) or
frequency/scale (spectrum, zooming, . . . )
Iterating aggregation reveals scale invariance

Idea
Use explicitly an approach which combines time and
frequency/scale
Use explicitly a multiresolution approach

⇒Wavelets !
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rationale

Idea
“signal = (low-pass) approximation + (high-pass) detail"

+
iteration

successive approximations (at coarser and coarser
resolutions) ∼ aggregated data
details (information differences between successive
resolutions) ∼ increments

Multiresolution is a natural language for scaling processes
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formalization

Definition (Mallat & Meyer, ’86)

A MultiResolution Analysis (MRA) of L2(R) is given by:
1 a hierarchical sequence of embedded approximation

spaces . . .V1 ⊂ V0 ⊂ V−1 . . ., whose intersection is empty
and whose closure is dense in L2(R)

2 a dyadic two-scale relation between successive
approximations

X (t) ∈ Vj ⇔ X (2t) ∈ Vj−1

3 a scaling function ϕ(t) such that all of its integer translates
{ϕ(t − n),n ∈ Z} form a basis of V0

Patrick Flandrin Wavelets and scaling processes
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multiresolution expansion

Definition
The wavelet ψ(.) is constructed in such a way that all of its
integer translates form a basis of W0, defined as the
complement of V0 in V−1

For a given resolution depth J, any signal X (t) ∈ V0 can be
expanded as :

X (t)︸︷︷︸
signal

=
∑

k

aX (J, k)ϕJ,k (t)

︸ ︷︷ ︸
approximation

+
J∑

j=1︸︷︷︸
J octaves

∑

k

wav. coeffs.︷ ︸︸ ︷
dX (j , k) ψj,k (t)

︸ ︷︷ ︸
details

,

with {ξj,k (t) := 2−j/2 ζ(2−j t − k), j and k ∈ Z}, for ξ = ϕ and ψ
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a simple construction

Example (Haar, 1911)
The simplest choice for a MRA is given by the Haar basis,
attached to the scaling function ϕ(t) = χ[0,1](t) and the wavelet
ψ(t) = χ[0,1/2](t)− χ[1/2,1](t)

Remark
When aggregated over dyadic intervals, data samples identify
to Haar approximants

Interpretation
Wavelet analysis offers a refined way of both aggregating data
and computing increments
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two key properties

1 Admissibility — By construction, a scaling function (resp., a
wavelet) is a low-pass (resp., high-pass) function⇒ an
admissible wavelet ψ(t) is necessarily zero-mean:

Ψ(0) :=

∫ +∞

−∞
ψ(t) dt = 0

2 Cancellation — A further key property for a wavelet is the
number of its vanishing moments, i.e., the integer N ≥ 1
such that

∫ +∞

−∞
tk ψ(t) dt = 0, for k = 0,1, . . .N − 1

Patrick Flandrin Wavelets and scaling processes
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the example of Daubechies wavelets
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effective computation

Theory — The wavelet coefficients dX (j , k) are given by
the inner products:

dX (j , k) := 〈X , ψj,k 〉

Practice — They can rather be computed in a recursive
fashion, via efficient pyramidal algorithms (faster than FFT)

no need for knowing explicitly ψ(t)
enough to characterize a wavelet by its filter coefficients
{g(n) := (−1)n h(1− n),n ∈ Z}, with

h(n) :=
√

2
∫ +∞

−∞
ϕ(t)ϕ(2t − n) dt

Patrick Flandrin Wavelets and scaling processes
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Mallat’s algorithm

Patrick Flandrin Wavelets and scaling processes



examples concepts wavelets framework multifractals multiresolution decomposition algorithm filters

wavelets as filters

Input-output — Given the statistics of the analyzed signal,
statistics of its wavelet coefficients can be derived from
imput-ouput relationships of linear filters
Stationary processes — In the case of stationary
processes with autocorrelation γX (τ) := EX (t)X (t + τ),
stationarity carries over to wavelet sequences:

CX (j ,n) := EdX (j , k)dX (j , k+n) =

∫ +∞

−∞
γX (τ) γψ(2−jτ+n) dτ

∞∑

n=−∞
CX (j ,n) e−i2πfn = ΓX (2−j f ) ×

∞∑

n=−∞
γψ(n) e−i2πfn

Patrick Flandrin Wavelets and scaling processes
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wavelets as stationarizers 1

Theorem (F., ’89 & ’92)

Wavelet admissibility (N ≥ 1) guarantees that, if X (t) has
stationary increments, then dX (j , k) is stationary in k, for any
given scale 2j

Proof — Assuming that X (t) is a s.i. process with X (0) = 0 and
varX (t) := ρ(t), we have

EX (t)X (s) =
1
2

(
EX 2(t) + EX 2(s)− E (X (t)− X (s))2

)

=
1
2

(
EX 2(t) + EX 2(s)− E (X (t − s)− X (0))2

)

=
1
2

(ρ(t) + ρ(s)− ρ(t − s))

. . . /. . .
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wavelets as stationarizers 2

and it follows that

EdX (j ,n)dX (j ,m) =

∫ ∫
EX (t)X (s)ψjn(t)ψjm(s) dt ds

=
1
2

∫
ρ(t)ψjn(t)

(∫
ψjm(s) ds

)

︸ ︷︷ ︸
= 0

dt

+
1
2

∫
ρ(s)ψjm(s)

(∫
ψjn(t) dt

)

︸ ︷︷ ︸
= 0

ds

−1
2

∫ ∫
ρ(t − s)ψjn(t)ψjm(s) dt ds

= −1
2

∫
ρ(τ) γψ(2−jτ − (n −m)) dτ
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wavelets as stationarizers 3

Extension — Stationarization can be extended to
processes with stationary increments of order p > 1, under
the vanishing moments condition N ≥ p
Application — Stationarization applies to H-sssi processes
(e.g., fBm), with ρ(t) = |t |2H

Remark
Nonstationarity is contained in the approximation sequence
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wavelets and scale invariance

Self-similarity — The multiresolution nature of wavelet
analysis guarantees that, if X (t) is H-ss, then

{dX (j , k), k ∈ Z} d
= 2j(H+1/2) {dX (0, k), k ∈ Z}

for any j ∈ Z
Spectral interpretation — Given a “1/f " process, the
wavelet tuning condition N > (α− 1)/2 guarantees that

SX (f ) ∝ |f |−α ⇒ Ed2
X (j , k) ∝ 2jα

Patrick Flandrin Wavelets and scaling processes
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wavelets as decorrelators 1

Theorem (F., ’92; Tewfik & Kim, ’92)

In the case where X (t) is H-sssi, the condition N > H + 1/2
guarantees that

EdX (j , k)dX (j , k + n) ∼ n2(H−N), n→∞

Interpretation
Competition, at f = 0, between the (divergent) spectrum of the
process and the (vanishing) transfer function of the wavelet:

EdX (j , k)dX (j , k + n) ∝
∫ +∞

−∞

|Ψ(2j f )|2
|f |2H+1 ei2πnf df

Patrick Flandrin Wavelets and scaling processes
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LRD and vanishing moments
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wavelets as decorrelators 2

Consequence — Long-range dependence (LRD) of a
process X can be transformed into short-range
dependence (SRD) in the space of its wavelet coefficients
dX (j , .), provided that the number N of the vanishing
moments is high enough

Remark
Residual LRD in the approximation sequence

The case of H-sssi processes — LRD when H > 1/2⇒
wavelet SRD needs N > 1⇒ Haar not suitable
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wavelet correlation of fBm in the Haar case
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wavelet correlation and vanishing moments
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multiresolution building blocks

Brownian motion — The representation

B(t) =

∫ t

0
W (ds),

where W (.) is white Gaussian noise, can be equivalently
expressed as

B(t) =
∞∑

j=−∞

∞∑

k=−∞
dW (j , k)

(
2−j/2

∫ 2j (k+t)

2j k
ψ(s) ds

)

with uncorrelated details (Karhunen-Loève expansion).
Haar — In the Haar case, this is Lévy’s construction (1954)
from the Schauder basis
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approximate construction

Almost K-L expansion — The quasi-decorrelation property
of wavelets (with enough vanishing moments) suggests to
approximate fBm by (Wornell, ’90):

B̃H(t) =
∞∑

j=−∞

∞∑

k=−∞
ε(j , k)ψjk (t),

with uncorrelated weights such that varε(j , k) = σ2 2j(2H+1)

Spectrum — One can, however, only guarantee that

C1 |f |−(2H+1) ≤ SB̃H
(f ) ≤ C2 |f |−(2H+1)
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exact construction

Exact expansion — Taking into account low-pass
contributions leads to (Sellan et al., ’00):

BH(t) =
∞∑

k=−∞
S(k)φ(H)(t−k)+

0∑

j=−∞

∞∑

k=−∞
ε(j , k)ψ

(H)
jk (t)−b0,

with S(k) a sum of k FARIMA(0,H − 1/2,0) processes,
ε(j , k) uncorrelated Gaussian variables with
varε(j , k) = σ2 2j(2H+1), and b0 a correcting term ensuring
that BH(0) = 0
Basis functions — Both φ(H)(t) and ψ(H)(t) have to be
specifically designed for a given H
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assessing scaling via “log-scale” diagrams 1

Idea

Given the variance vX (j) := Ed2
X (j , k), scale invariance is

revealed by the linear relation :

log2 vX (j) = α j + Const.

From theory to practice — The further properties of 1)
stationarization and 2) quasi-decorrelation suggest to use as
estimator of vX (j) the empirical variance

v̂X (j) :=
1
Nj

Nj∑

k=1

d2
X (j , k),

where N0 stands for the data size, and Nj := 2−jN0
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assessing scaling via “log-scale” diagrams 2

Bias correction — Given that “log E 6= E log”, the effective
estimator is yX (j) := log2 v̂X (j)− g(j), with

g(j) = ψ(Nj/2)/ log 2− log2(Nj/2)

and ψ(.) the derivative of the Gamma function, so that
EyX (j) = αj + Const. in the uncorrelated case
Variance — Assuming stationarization and
quasi-decorrelation guarantees furthermore that

σ2
j := varyX (j) = ζ(2,Nj/2)/ log2 2,

where ζ(z, ν) is a generalized Riemann function
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scaling exponent estimation

From yX (j) to α̂ — The slope α is estimated via a weighted
linear regression in a log-log diagram:

α̂ =

jmax∑

j=jmin

S0 j − S1

S0 S2 − S2
1

1
σ2

j
yX (j),

with Sk :=
∑

j k/σ2
j , k = 0,1,2

Bias and variance — We have Eα̂ ≡ α, by construction.
Assuming Gaussianity, the estimator is moreover
asymptotically efficient in the limit Nj →∞ (for any j), with

varα̂ ∼ 1/N0
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examples of log-scale diagrams

Scaling Wavelet Transform Self-similarity and wavelets Multifractal Wavelet Leaders Applications/Conclusions

Scaling analysis : Logscale Diagrams
- Principle :

IE|dX (j , k)|q = |dX (0,0)|q2jqH ⇒ log-log plots

- Estimation : short-range dependence⇒
Ensemble averages→ Time Averages

IE|dX (j , k)|q ⇒ 1/nj
∑

k |dX (j , k)|q = S(2j ,q)

- Logscale Diagrams :
log2 S(2j ,q) versus log2 2j = j ⇒ qH

1 2 3 4 5 6 7 8 9 10
−35

−30

−25

−20

−15

−10

−5

Octave j

y j

α = 2.57

 1 ≤ j ≤ 10
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robustness

Detrending — The vanishing moments condition
∫ +∞

−∞
tk ψ(t) dt = 0, for k = 0,1, . . .N − 1,

guarantees that dT (j ,n) ≡ 0 for any T (t) of the form

T (t) =
N−1∑

k=0

ak tk

In other words, a wavelet with enough vanishing moments
makes the transform of Z (t) := X (t) + T (t) blind to a
superimposed polynomial trend
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robustness to polynomial trends

y = x + P(3) Daubechies2 Daubechies4
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robustness to “jumps”
Scaling Wavelet Transform Self-similarity and wavelets Multifractal Wavelet Leaders Applications/Conclusions

Superimposed Trends - Ethernet Data
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related techniques aimed at scaling processes 1

Aggregation — Wavelets offer a natural generalization to
aggregation: Haar approximants 7→ Haar details 7→ wavelet
details with higher N
Variogram — Wavelets generalize as well variogram
techniques (Matheron, 1967), which are based on the
increment property E(X (t + τ)− X (t))2 = σ2|τ |2H , since
increments can be viewed as constructed on the
“poorman’s wavelet":

ψ(t) := δ(t + τ)− δ(t)

Structure functions — Same relation to the generalization
of the variogram beyond second order
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related techniques aimed at scaling processes 2

Allan variance — A refined notion of variance —
introduced in the study of atomic clocks stability — is the
so-called Allan variance (Allan, ’66), defined by

var(Allan)
X (T ) :=

1
2T 2 E

[∫ t

t−T
X (s) ds −

∫ t+T

t
X (s) ds

]2

in the case of H-ss processes, Allan variance is such that
var(Allan)

X (T ) ∼ T 2H when T →∞
when evaluated over dyadic intervals, Allan variance
identifies to the variance of Haar details:

var(Allan)
X (2j ) = vard (Haar)

X (j , k)

Patrick Flandrin Wavelets and scaling processes



examples concepts wavelets framework multifractals analysis synthesis estimation wavelets and. . .

related techniques aimed at scaling processes 3

Fano factor — In the case of a Poisson process P(t) of
counting process N(.), one can define the Fano factor as:

F (T ) := varN(T )/EN(T )

for a uniform density λ, we have F (T ) = 1 for any T
whereas, for a “fractal" density λ(t) = λ+ B(θ)

H (t), we have
F (T ) ∼ T 2H−1 when T →∞
interpretation as fluctuations/average suggests the wavelet
generalization given by:

F (T ) 7→ FW (j) := 2j/2 vardP(j , k)/EaP(j , k) ∼ 2j(2H−1)

when j →∞, and F (Haar)
W (j) ≡ F (Allan)(2j )
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beyond second order

Idea
Given the renormalized definition
TX (a) := 2−j/2 dX (j ,n)

∣∣
j=log2 a , one can consider scaling laws

which generalize second order behaviors:

E|TX (a)|q ∝ aHq = exp {Hq log a} (“monoscaling”)

↓
exp {H(q) log a} (“multiscaling”)

↓
exp {H(q) n(a)} (“cascade”)
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beyond second order

Idea
Given the renormalized definition
TX (a) := 2−j/2 dX (j ,n)

∣∣
j=log2 a , one can consider scaling laws

which generalize second order behaviors:

E|TX (a)|q ∝ aH(q) =

exp {H(q) log a} (“multiscaling”)
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back to wavelets and regularity

Definition
The local regularity of a signal x(t) at a given point t0 is
measured by the Hölder exponent h(t0) defined as the
supremum of α’s such that |x(t)− x(t0)| < C |t − t0|α when
|t − t0| → 0 (the larger the exponent, the smoother the signal)

Wx (a, t) :=
1√
a

∫
x(s)ψ

(
s − t

a

)
ds

Theorem (Jaffard, ’88)

h(t0) = lim inf
a→0,t→t0

log |Wx (a, t)|
log(a + |t − t0|)
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multifractality

some processes (e.g., fBm) are such that h(t) = h for any
t , but other ones exhibit fluctuating h(t)’s
global characterization for h(t) based on E(h), the set of
points th with the same Hölder exponent (i.e., such that
h(th) = h)

Definition
The multifractal spectrum
is given by
D(h) = dimHE(h), where
dimH stands for the
Hausdorff dimension

Scaling Wavelet Transform Self-similarity and wavelets Multifractal Wavelet Leaders Applications/Conclusions

Multifractal (or singularity) spectrum
- Data : a collection of singularities
|X (t)− X (t0)| ≤ C|t− t0|h(t0)

- Fluctuations of local regularity : h(t) ?
- not interested in h for each (t) !
- Instead, set E(h) of points t with same h : h(t) = h,
- Fractal dimension of E(h),
- Actually Hausdorff dimension of E(h), Hausdorff

- Multifractal spectrum : D(h)

D(h) = dimHaussdorf(E(h)).

0 ≤ D(h) ≤ d ,
D(h) = −∞ if E(h) = {∅} ,

0.4 0.8 1.2
0

1

2

h

D(h)

⇒ Global (geometrical) description of the fluctuations of the
local regularity

- How to measure D(h) from a single finite length
observation ?
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multiplicative cascades as an example
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monofractal vs. multifractal

Scaling Wavelet Transform Self-similarity and wavelets Multifractal Wavelet Leaders Applications/Conclusions

2D Examples
FBM (H-sssi)

0 1 2
0

0.5

1

1.5

2

2.5
D(h) FBM

h
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multifractal formalism (Parisi & Frisch, ’85)

Given an observation x(t) ∈ Rd :
1 start from some multiresolution quantity Mx (a, t) (e.g.,

increments, aggregation, wavelet details, . . . )
2 compute structure functions

Sx (a,q) = 〈|Mx (a, t)|q〉t ∼ aζ(q),a→ 0+

3 estimate the scaling exponents as

ζ(q) = lim inf
a→0+

log Sx (a,q)

log a

4 deduce the spectrum from a Legendre transform

D(h) = min
q 6=0
{d + qh − ζ(q)}
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multifractal formalism and wavelets

Problem
1 instability for q ≤ 0
2 Legendre transform not valid in general

Way out (Jaffard, ’04)
make use of hierarchical multiresolution quantities⇒ wavelet
leaders

Scaling Wavelet Transform Self-similarity and wavelets Multifractal Wavelet Leaders Applications/Conclusions

Wavelet Leaders
- Discrete Wavelet Transform : λj,k = [k2j , (k + 1)2j )

dX (j , k) = 〈 1
2j ψ

(
t−2j k

2j

)
|X (t)〉 ,

- Wavelet Leaders : 3λj,k = λj,k−1 ∪ λj,k ∪ λj,k+1

LX (j , k) = supλ′⊂3λj,k
|dX ,λ′ |

Scaling and Multifractal: From Theory to Applications. - Patrice Abry - ICASSP 2011 - Tutorial 3 - Praha, Czech Republic, 87 / 128
credit: P. Abry
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multifractal formalism and wavelet leaders
Scaling Wavelet Transform Self-similarity and wavelets Multifractal Wavelet Leaders Applications/Conclusions

Multifractal Formalism
X (t)→ dX (a, t)→ LX (a, t) D(h) = minq 6=0 (d + qh − ζ(q))

D(h)

h0

d

⇓ ⇑
S(a,q) = 1

na

∑na
k=1 |LX (a, k)|q

=2qlog
2
 S(  ,  ):qa

alog
2

S(a,q) ' cqaζ(q), a→ 0
ζ(  )q

q0=⇒
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bootstrap

Scaling Wavelet Transform Self-similarity and wavelets Multifractal Wavelet Leaders Applications/Conclusions

Wavelet leaders time-scale blok bootstrap
ESTIMATION BOOTSTRAP RESAMPLES
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monofractal vs. multifractal

Scaling Wavelet Transform Self-similarity and wavelets Multifractal Wavelet Leaders Applications/Conclusions

Multifractal formalism at work : 2D
Fractional Brownian motion
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Multiplicative cascade
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fully developed turbulence

Scaling Wavelet Transform Self-similarity and wavelets Multifractal Wavelet Leaders Applications/Conclusions

Turbulence
• Estimation and confidence intervals :
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VanGogh: original vs. copy

Scaling Wavelet Transform Self-similarity and wavelets Multifractal Wavelet Leaders Applications/Conclusions

Painting : Original versus Copy
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contact, (p)reprints & Matlab codes

patrick.flandrin@ens-lyon.fr

http://perso.ens-lyon.fr/patrick.flandrin/

http://perso.ens-lyon.fr/patrice.abry/
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