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Why being interested in nonstationarity?

Common concepts attached to nonstationarity:

changes
evolutions
modifications
disturbances

with respect to many different situations:

signals (mean, variance, spectrum, . . . )
systems (models, . . . )
measurements (experimental conditions, baseline, . . . )

Nonstationarity is the rule, not the exception (“Stationarity is a
fairy tale for graduate students” (D.J. Thomson, Proc. IEEE
ICASSP-94))
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Why being interested in nonstationarity?

Speech as a typical example
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Why being interested in nonstationarity?

Trend and fluctuations
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(courtesy of M. Orini)
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How to deal with nonstationarities?

Observation
Two key concepts attached to stationarity:

1 (Fourier) frequency
2 time-invariance

Principle
Wedding time and frequency (at large)

Time-Frequency (TF) and Time-Scale (TS) methods
time-dependent models and/or algorithms (adaptivity)
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TF/TS: what’s new?

1 30 years of theory and applications

energy distributions
wavelets
time-varying models

2 New advances and challenges

TF resolution and estimation trade-offs
(reassignment/synchrosqueezing + multitapering)
data-driven decompositions (Empirical Mode
Decomposition)
bivariate signals (TF coherence and EMD)
decision (stationarity tests + TF machines)
scaling beyond self-similarity (multifractals)
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Today’s agenda

1 30 years of theory and applications

energy distributions
wavelets
time-varying models

2 New advances and challenges

TF resolution and estimation trade-offs
(reassignment/synchrosqueezing + multitapering)
data-driven decompositions (Empirical Mode
Decomposition)
bivariate signals (TF coherence and EMD)
decision (stationarity tests + TF machines)
scaling beyond self-similarity (multifractals)→ P. Abry’s talk
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Quadratic TF distributions

Observation
Many quadratic TF distributions have been proposed in the
literature since more than half a century (e.g., spectrogram and
Wigner-Ville): none fully extends the notion of spectrum
density to the nonstationary case.

Principle of conditional unicity — Classes of quadratic
distributions of the form ρx (t , f ) = 〈x ,Kt ,f x〉 can be constructed
based on covariance requirements :

x(t) → ρx (t , f )
↓ ↓

(Tx)(t) → ρTx (t , f ) = (T̃ρx )(t , f )
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Classes of quadratic TFDs

Cohen’s class — Covariance w.r.t. TF shifts
(Tt0,f0x)(t) = x(t − t0) exp{i2πf0t} leads to Cohen’s class
(Cohen, ’66) :

Cx (t , f ) :=

∫∫
Wx (s, ξ) Π(s − t , ξ − f ) ds dξ,

with Wx (t , f ) the Wigner-Ville distribution (WVD) and Π(t , f )
“arbitrary" (to be specified via additional constraints).
Variations — Other choices possibles, e.g.,
(Tt0,f0x)(t) = (f/f0)1/2x(f (t − t0)/f0)→ affine class (Rioul
& F, ’92), etc.
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An example of definition

Spectrogram — If we consider the case of the spectrogram
with window h(t), one can write:

S(h)
x (t , f ) =

∣∣∣∫ x(s) h(s − t) e−i2πfs ds
∣∣∣2

=
∣∣〈x ,Tt ,f h〉

∣∣2
=

∫∫
Wx (s, ξ) WTt,f h(s, ξ) ds dξ

=
∫∫

Wx (s, ξ) Wh(s − t , ξ − f ) ds dξ

⇒ a spectrogram is a member of Cohen’s class, with kernel

Π(t , f ) = Wh(t , f )
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Cohen’s class and smoothing

From Wigner-Ville to spectrograms — A generalization
amounts to choose a smoothing function Π(t , f ) allowing
for a continuous and separable transition between
Wigner-Ville and a spectrogram (smoothed
pseudo-Wigner-Ville distributions) :

WVD . . . → SPWVD . . . → spectrogram

δ(t) δ(f ) g(t) H(f ) Wh(t , f )

Successful uses in biomedical applications, in particular
HRV and the quantification of LF vs. HF components
during nonstationary events (see Mainardi, ’09)
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SPWVD quantification of HRV

where the last term is the interference term, which is located in between the
two components and oscillates in the time–frequency plane as expected
(Hlawatsch & Boudreaux-Bartels 1992). Equation (3.8) is therefore composed
by the sum of complex sinusoids including both the signal contributions and
the interference terms. Note that the signal components contain information
on the instantaneous frequencies and amplitudes of the LF and HF
components. Equation (3.8) has been derived for two components only, but
the extension to an N-component signal is straightforward using the quadratic
superimposition principle (Flandrin 1984).

Using an exponential window for frequency smoothing hðkÞZeKgjkj and a
rectangular window for time smoothing, it can be shown that the quantity

eK2gjkj
XMK1

pZKMC1

gðpÞrxðtCp; kÞ

 !

z
XI

iZ1

AiðtÞeKbiðtÞkexpð j2p2fiðtÞkÞ; ð3:9Þ

of equation (3.3) can be still approximated with a sum of complex sinusoids,
where the influences of cross-terms are vanished by the application of smoothing
windows and where the remaining components should be mainly related to signal
contributions. For more details on how the assumption holds for a rectangular
time-smoothing window, see Bailón et al. (2006a).

The problem of estimating the HRV spectral parameters is now reduced to the
problem of estimating the Ai(t), fi(t), bi of (3.9). This can be solved using, for
example, the method proposed by Kumaresan & Tufts (1982), which provides
accurate detection and estimation of exponentially damped sinusoidal signals.
The method combines linear backward prediction and singular value decom-
position and it is particularly robust against noise. An example of decomposition
of the SPWV is shown in figure 3.
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Figure 3. (a) (i) RR interval series obtained for a normal volunteer during stress testing, (ii) the
TFR obtained by SPWV and (iii) trend of LF power. (b) (i) RR series, (ii) tracking of LF and HF
frequencies and (iii) trend of HF power. Note that the decrease in LF power during stress (related
to reduction in the overall HRV during effort) is accompanied by the persistence of the HF
component even at a higher workload. The RR stress data were collected during the study by
Bailón et al. (2006b) and kindly provided by the authors.

265Quantification of HRV in time–frequency domain

Phil. Trans. R. Soc. A (2009)

(from Mainardi, Phil. Trans. R. Soc. A, ’09)
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TF trade-offs

Back to Cohen’s class — Given the smoothing relation

Cx (t , f ) =

∫∫
Wx (s, ξ) Π(s − t , ξ − f ) ds dξ,

one is faced with two types of trade-offs:

1 a geometrical trade-off between auto-terms localization
and cross-terms interference for deterministic signals (Cx
as a TFD)

2 a statistical trade-off between bias and variance for
stochastic signals (Cx as an estimator of the WV spectrum
defined as E{Wx (t , f )})
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Geometrical trade-off: TF reassignment

Idea
Replace the geometrical center of the smoothing TF domain
by the center of mass of the WVD over this domain, and
reassign the value of the smoothed distribution to this local
centroïd

Cx (t , f ) 7→
∫∫

Cx (s, ξ) δ
(

t − t̂x (s, ξ), f − f̂x (s, ξ)
)

ds dξ

Remark
Reassignment has been first introduced for the only
spectrogram (Kodera et al., ’76), but its principle has been
further generalized to any distribution resulting from the
smoothing of a localizable mother-distribution (Auger & F., ’95)
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Reassignment
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Reassignment in action

Pros
Efficient, implicit algorithms
Very good properties of localization for chirps (>
spectrogram)

Cons
High sensitivity to noise (< spectrogram)

Aim
Reduce fluctuations while preserving localization
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Back to spectrum estimation

Stationary processes — The power spectrum density
can be viewed as:

Sx (f ) = lim
T→∞

E

 1
T

∣∣∣∣∣
∫ +T/2

−T/2
x(t) e−i2πft dt

∣∣∣∣∣
2


In practice — Only one, finite duration, realization⇒
crude periodogram (squared FT) = non consistent
estimator with large variance
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Classical way out (Welch, ’67)

Principle
Method of averaged periodograms

Ŝ(W )
x ,K (f ) =

1
K

K∑
k=1

S(h)
x (tk , f )

with tk+1 − tk of the order of the width of the window h(t)

Result
Bias-variance trade-off — Given T (finite), increasing K ⇒
reduces variance, but increases bias
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Multitaper solution (Thomson, ’82)

Principle
Compute

Ŝ(T )
x ,K (f ) =

1
K

K∑
k=1

S(hk )
x (0, f )

with {hk (t), k ∈ N} a family of orthonormal windows extending
over the whole support of the observation⇒ reduced
variance, without sacrifying bias

Nonstationary extension — Multitaper spectrogram

Ŝ(T )
x ,K (f )→ Sx ,K (t , f ) :=

1
K

K∑
k=1

S(hk )
x (t , f ),

with localization controlled by most spread spectrogram
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Geometrical & statistical trade-offs: multitaper
reassignment (Xiao & F., ’06)

Idea
Combine the advantages of reassignment (w.r.t. localization)
with those of multitapering (w.r.t. fluctuations)

Sx ,K (t , f )→ RSx ,K (t , f ) :=
1
K

K∑
k=1

RS(hk )
x (t , f )

1 coherent averaging of chirps (localization independent
of the window)

2 incoherent averaging of noise (different TF distributions
for different windows)
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Illustration

sample reass. spectro.
H

er
m

ite
 1

sample reass. spectro.

H
er

m
ite

 2

sample reass. spectro.

H
er

m
ite

 3

sample reass. spectro.

H
er

m
ite

 4

sample reass. spectro.

H
er

m
ite

 5

sample reass. spectro.

H
er

m
ite

 6

sample reass. spectro.

H
er

m
ite

 7

sample mean reass. spectro.

Patrick Flandrin Dealing with nonstationarities in biomedical signals



Nonstationarities
Time-Frequency/Time-Scale

Empirical Mode Decomposition
Revisiting stationarity

quadratic TFDs
reassignment
multitapering
hybrid methods

HRV example (RR intervals)

spectrogram

4−taper spectrogram

reassigned spectrogram
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reassigned 4−taper spectrogram
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A brief summary on quadratic TFDs

Pros
versatile tools for exploratory data analysis
well-established theory, amenable to bivariate signals: TF
coherence (Orini et al., ’09)
allow for decision tasks

feature extraction: NNMF (Ghoraani & Krishnan, ’09)
information measures: Rényi entropies (Baraniuk & al., ’01
+ Tong et al., ’05)
classification: TF machines (Honeine et al., ’07)

Cons
no easy way back from TF to signal⇒ from energy
distributions to signal decompositions?
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Discrete Wavelet Transform (DWT)

Interpretation
signal = approximation + detail

&
iteration

(Meyer, 85 + Mallat, ’86 + Daubechies, ’87 + . . . )

separation “approximation vs. detail” based on a priori
(dyadic) filtering
"global" analysis
other, data-driven, schemes?
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Empirical Mode Decomposition (EMD)
as an alternative

Idea
signal = fast oscillation + slow oscillation

&
iteration

(Huang et al., Proc. Roy. Soc. A., ’98)

separation “fast vs. slow” data driven
"local" analysis based on extrema
still open question: which theoretical framework?
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EMD algorithm

1 identify local maxima and local minima
2 deduce an upper envelope and a lower envelope by

interpolation (cubic splines)
1 subtract the mean envelope from the signal
2 iterate until “mean envelope = 0" (sifting)

3 subtract the obtained mode from the signal
4 iterate on the residual

x(t) = c1(t) + r1(t)
= c1(t) + c2(t) + r2(t)
= . . . . . . . . . . . . . . . . . . =

∑K
k=1 ck (t) + rK (t),

with the ck (t)’s referred to as Intrinsic Mode Functions (IMFs)
Patrick Flandrin Dealing with nonstationarities in biomedical signals
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EMD algorithm in action
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EMD features

Locality — The method operates at the scale of one
oscillation
Adaptivity — The decomposition is fully data-driven
Multiresolution — The iterative process explores
sequentially the “natural" constitutive scales of a signal
Oscillations of any type — No assumption on the (e.g.,
harmonic) nature of oscillations⇒ 1 nonlinear oscillation
= 1 mode
Instantaneous frequency — By construction, IMFs are
zero-mean time-varying waveforms⇒ Hilbert transform
analysis (so-called “Hilbert-Huang Transform”)
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EMD vs. wavelets

1 similarity: both achieve a decomposition into
“fluctuations” and “trend”

x(t) =
∑

k

ck (t) + rK (t) (EMD)

=
∑

k

dk (t) + aK (t) (DWT)

with dk (t) =
∑

n

〈x , ψkn〉ψkn(t)

and aK (t) =
∑

n

〈x , ϕKn〉ϕKn(t)

2 difference: scales are pre-determined for DWT
({ϕ,ψ}kn(t) = 2−k/2{ϕ,ψ}(2−k t − n)) and adaptive
(data-driven) for EMD
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HRV analysis

Sympatho-vagal balance quantified by comparing the
low-frequency (LF) and high-frequency (HF) components
of RR intervals
Frequency bands usually fixed a priori (LF = 0.04-0.15 Hz
and HF = 0.15-0.4 Hz)⇒ use of pre-determined,
time-invariant filters
EMD data-driven⇒ automatic, adaptive selection of
time-varying frequency bands⇒ possibility of dealing
with postural changes in tilt tests

Idea
HF vs. LF→ fast vs. slow oscillations + locality
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HRV analysis. Example 1
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HRV analysis. Example 2 (Souza Neto et al., ’02)

seated standing

RR

time

fre
qu
en
cy

global
HF

LF

Patrick Flandrin Dealing with nonstationarities in biomedical signals



Nonstationarities
Time-Frequency/Time-Scale

Empirical Mode Decomposition
Revisiting stationarity

from wavelets to EMD
an example
further features
applications

Extensions and uses

Some extensions
Ensemble EMD — Increased robustness by adding
controlled noise to data (Wu & Huang, ’09)
Bivariate and multivariate EMD — Analysis of bivariate or
complex-valued signals (oscillations→ rotations) (Rilling
et al., ’07) + Rehman & Mandic, ’10
Synchrosqueezing — Variant of (wavelet-based)
reassignment performing an EMD-like decomposition
(Daubechies et al., ’09)

Some uses
Pre-processing — Baseline removal, signal
disentanglement, selection of significant IMFs
Post-processing — Hilbert transform of IMFs, grouping of
significant IMFs, (local) trend removal, denoising from
partial coarse-to-fine reconstruction, scaling analysis
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Some biomedical EMD applications

HRV and baroreflex (Souza Neto et al., ’02-’04-’07; Magagnin
et al., ’08-’09; Ihlen, ’09; Yeh et al., ’10) + ECG: baseline
removal (Lemay & Vesin, ’06; Pan et al., ’07) + QRS detection
and ventricular fibrillation (Hadj Slimane & Naït-Ali, ’09) +
Sleep apnea (Corthout et al., ’08) + Cardiorespiratory
synchronization (Wu & Huang, ’09)

EEG: seizure detection and ocular artifacts (McKeown et al.,
’05; Pachori, ’08; Raghavendra & Dutt, ’07) + Event-Related
Potential classification (Liang et al., ’05; Williams et al., ’09)

Postural stability analysis (Amoud et al., ’08)

Laser-Doppler flowmetry (Roulier et al., ’05)

Esophageal data analysis (Liang et al., ’05)
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Nonstationarity?

1 Nonstationarity is a non-property⇒ no unique form, but
infinite number of possibilities

2 Nonstationarities to be contrasted with stationarity

Observation
Although well-defined in theory, stationarity doesn’t exist in
practice⇒ dealing with nonstationarity/ies cannot be
disentangled from revisiting stationarity in some operational
sense
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Back to the speech example

~ 3 s
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Nonstationary

~ 3 s
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~ 3 s
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Stationary

~ 3 s

~ 250 ms
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~ 3 s

~ 250 ms
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Nonstationary again!

~ 3 s

~ 250 ms

~ 25 ms
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Relative stationarity

1 Form of invariance, with respect to

time and/or space evolutions
more general transformations (e.g., self-similarity)

2 Relative concept, depending on "scale"
3 Could be stochastic (e.g., mean or variance) as well as

deterministic (e.g., AM/FM)

Idea
Use Time-Frequency (TF) or Time-Scale (TS) as a unified
framework
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Relative stationarity in the TF plane
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Testing for stationarity: local = global?

test calls for a stationary reference: how?

nonstationarity encoded in time evolution or, equivalently,
in spectrum phase
stationarization via spectrum phase randomization

new use of surrogate data technique (Theiler et al., ’92)
basic algorithm:

x̂ = FFT(x) % x = original data1

draw WGN ε(t) and compute ε̂ = FFT(ε)2

x̂ ← |x̂ | exp{i arg ε̂}3

y = IFFT(x̂) % y = surrogate data4
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Stationarization via surrogates 1.
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The proposed approach

Principle
1 compute, from the data, a set of stationary surrogates
2 attach to both data and surrogates a series of features

aimed at comparing local vs. global behaviors
3 construct a test based on the empirical statistical

characterization of such features for surrogates (null
hypothesis of stationarity)

(Xiao et al., EUSIPCO’06]; Xiao et al., IEEE-SSP’07; Borgnat et al., IEEE-TSP’10)
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Two variations

Approach 1
Compute a distance between global and local spectra, and
construct a one-sided test based on the surrogates
distribution

Approach 2
Consider surrogates as a stationary learning set, and
construct an outlier detection test by using the machinery of
one-class SVM
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Variation 1: “local-global” distance
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Variation 2: one-class SVM

rationale: determine the minimum volume hypersphere
that encloses (most of) the training points, up to a small
fraction of data excluded from the domain.
optimization: trade-off between minimizing the radius r∗

of the enclosing hypersphere and controlling the sum of
the slack variables ξ∗i associated with each outlier.
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Fig. 5. Support vector data description algorithm. This algorithm determines
the minimum volume hypersphere that encloses (most of) the training points,
up to a small fraction of data excluded from the domain. The optimization
problem consists of a trade-off between minimizing the radius r∗ of the
enclosing hypersphere and controlling the sum of the slack variables ξ∗i
associated with each outlier.

developments of pattern recognition and statistical learning

theory.

C. Testing stationarity

We shall now use support vector data description to estimate

the support of probability density functions of stationary

surrogate signals. The resulting decision rule will allow us

to distinguish between stationary and nonstationary processes.

Let us assume that we are given a training set

{s1(t), . . . , sJ(t)} of surrogate signals generated from the

signal x(t) under investigation. In all the experiments reported
above, time-frequency features were extracted from the nor-

malized multitaper spectrogram of each signal, defined at time

tn by

Sn(f) :=
Sx,K(tn, f)

∑N
n=1

∫ 1

2

0 Sx,K(tn, f) df
(23)

for n = 1, ..., N and 0 ≤ f < 1/2. More precisely, the local
power Pn of each signal and its local frequency content Fn

summarized below were considered:

Pn :=

∫ 1

2

0
Sn(f) df ; Fn :=

1

Pn

∫ 1

2

0
f Sn(f) df. (24)

Finally, for a sake of clarity, only the following two features

comparing local time-frequency behavior to global one were

retained

P := std(Pn)n=1,...,N ; F := std(Fn)n=1,...,N , (25)

where std(·) denotes the standard deviation. The first one is
a measure of the fluctuations over time of the local power

of the signal, whereas the second one operates the same way

with respect to the local mean frequency. For each experiment

reported in Fig. 6, 200 surrogate signals were generated from
the AM or FM signal x(t) to be tested. Features P and F
were extracted from each surrogate. Next, data were mean-

centered and normalized so that the variance of both features

was one, ending up with a collection of feature vectors zi

composed each of a pair (P, F ). Finally, the support vector
data description algorithm was run using the basic linear kernel

κ(zi, zj) = 〈zi, zj〉 and ν = 0.15. The results are displayed
for T0 = T/20, T and 20 T , allowing to consider stationarity
relatively to the ratio between the observation time T and the

modulation period T0. In each figure, the surrogate signals

are shown with dots and the signal to be tested with a black

triangle. The optimum circle having center at c∗ and radius
r∗ is shown in dashed line. The training data lying on or
outside this circle, and thus associated with non-zero Lagrange

multipliers in (18)-(20), are indicated by the circled dots.

The thin circles represent the decision function (21) tuned

to different false positive probabilities, fixed by γ via the

relation (22). To calculate γ, note that we have neglected the
contribution of the last two terms of equation (22) since they

decay to zero as J tends to infinity. Figs. 6(b) and 6(e) show

that the test signals can be considered as nonstationary with a

false positive probability lower than 0.05. In the other figures,
they are clearly identified as stationary signals.

The findings reported in this learning-theory-based study are

clearly consistent with what had been obtained previously with

the distance-based approach. For a small modulation period or

a large observation time, i.e., when T0 % T , the situation
can be considered as stationary due to the observation of

many similar oscillations over the observed time scale. This

is reflected by the test signal which lies inside the region

defined by the support vector data description algorithm for

the stationary surrogates. For a medium observation time, i.e.,

T ≈ T0, the local evolution due to the modulation is prominent

and the black triangle for the modulated signal is well outside

the stationary region, in accordance with a situation that can

be referred to as nonstationary. Finally, if T0 ' T , the result
turns back to stationarity because no significative change in

the amplitude or the frequency is observed over the considered

time scale.

V. CONCLUSION

A new approach has been proposed for testing stationarity

from a time-frequency viewpoint, relatively to a given observa-

tion scale. A key point of the method is that the null hypothesis

of stationarity (which corresponds to time-invariance in the

time-frequency spectrum) is statistically characterized on the

basis of a set of surrogates which all share the same average

spectrum as the analyzed signal while being stationarized.

The basic principles of the method have been outlined, with

a number of considerations related to its implementation, but it

is clear that the proposed framework still leaves room for more

thorough investigations as well as variations and/or extensions.

In terms of time-frequency distributions for instance, one

could imagine to go beyond spectrograms and take advantage

of more recent advances [25]. Two-dimensional extensions

can also be envisioned for testing stationarity in the sense
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Variation 2: one-class SVM
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Concluding remarks

1 Comprehensive approaches for nonstationary signals

TF/TS, decompositions, models
from exploratory data analysis to processing and
decisions

2 From theory to applications, and back
well-established standard methodologies, equipped with
algorithms, freewares, . . .⇒ improved toolkit for
biomedical signals
specific biomedial problems⇒ sources of inspiration for
new dedicated tools!
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