Dealing with nonstationarities
in biomedical signals

Patrick Flandrin

CNRS & Ecole Normale Supérieure de Lyon
Physics Department, SiSyPh Group, Lyon, France

ENS DE LYON

EMBC-10 (Buenos Aires), Aug. 31 — Sept. 4, 2010

Dealing with nonstationarities in biomedical signals



Nonstationarities why

Time-Frequency/Time-Scale examples
Empirical Mode Decomposition how
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Why being interested in nonstationarity?

Common concepts attached to nonstationarity:

o changes

o evolutions

@ modifications
o disturbances

with respect to many different situations:
o signals (mean, variance, spectrum, ...)

o systems (models, ...)
@ measurements (experimental conditions, baseline, .. .)
Nonstationarity is the rule, not the exception (“Stationarity is a

fairy tale for graduate students” (D.J. Thomson, Proc. IEEE
ICASSP-94))
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Why being interested in nonstationarity?

Speech as a typical example
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How to deal with nonstationarities?

Observation
Two key concepts attached to stationarity:

@ (Fourier) frequency
@ time-invariance

Principle
Wedding time and frequency (at large)

o Time-Frequency (TF) and Time-Scale (TS) methods
o time-dependent models and/or algorithms (adaptivity)
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TF/TS: what’s new?

why
examples
how
agenda

@ 30 years of theory and applications

o energy distributions
o wavelets
o time-varying models

@ New advances and challenges

o TF resolution and estimation trade-offs
(reassignment/synchrosqueezing + multitapering)
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data-driven decompositions (Empirical Mode

bivariate signals (TF coherence and EMD)
decision (stationarity tests + TF machines)
scaling beyond self-similarity (multifractals)
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Today’s agenda

why
examples
how
agenda

@ 30 years of theory and applications

o energy distributions
o wavelets
o time-varying models

@ New advances and challenges

o TF resolution and estimation trade-offs
(reassignment/synchrosqueezing + multitapering)

©

Decomposition)

© 0 ©
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data-driven decompositions (Empirical Mode

bivariate signals (TF coherence and EMD)
decision (stationarity tests + TF machines)
scaling beyond self-similarity (multifractals) — P. Abry’s talk
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Quadratic TF distributions

Observation

Many quadratic TF distributions have been proposed in the
literature since more than half a century (e.g., spectrogram and
Wigner-Ville): none fully extends the notion of spectrum
density to the nonstationary case.

Principle of conditional unicity — Classes of quadratic
distributions of the form px(t, f) = (x,K; ¢x) can be constructed
based on covariance requirements :

x(t) - px(t, f)
!
(T — prx(t. ) = (Tox)(t. 1)
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Classes of quadratic TFDs

o Cohen’s class — Covariance w.r.t. TF shifts
(Ts, 1, X)(t) = x(t — fy) exp{i2nfyt} leads to Cohen’s class
(Cohen, ’66) :

Cu(t,f) = / Wy(s,6)N(s — 1. — f)dsde,

with Wi (t, f) the Wigner-Ville distribution (WVD) and I1(t, f)
“arbitrary” (to be specified via additional constraints).

o Variations — Other choices possibles, e.g.,
(Ti,1,X)(1) = (f/f)1/2x(f(t — ty)/fy) — affine class (Rioul
& F,’'92), etc.
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An example

Spectrogram — If we consider the case of the spectrogram
with window h(t), one can write:

- . 2
st f) = ] [ x(s)h(s — 1) &2 ds
= [T

= ff Wx(S,f) WT,’,h(S,f) def
= [ Wi(s,&) Wy(s - t,.£ — f)dsde

= a spectrogram is a member of Cohen’s class, with kernel

N(t, f) = Wi(t, )
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Cohen’s class and smoothing

o From Wigner-Ville to spectrograms — A generalization
amounts to choose a smoothing function I(t, f) allowing
for a continuous and separable transition between
Wigner-Ville and a spectrogram (smoothed
pseudo-Wigner-Ville distributions) :

wvb ... — SPWVD ... — spectrogram

a(t)a(f) g(t) H(f) Wh(t, f)

o Successful uses in biomedical applications, in particular
HRV and the quantification of LF vs. HF components
during nonstationary events (see Mainardi, 09)
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Figure 3. (a) (i) RR interval series obtained for a normal volunteer during stress testing, (ii) the
TFR obtained by SPWV and (iii) trend of LF power. (b) (i) RR series, (i) tracking of LF and HF
frequencies and (iii) trend of HF power. Note that the decrease in LF power during stress (related
to reduction in the overall HRV during effort) is accompanied by the persistence of the HF
component even at a higher workload. The RR stress data were collected during the study by
Bail6n et al. (2006b) and kindly provided by the authors.

(from Mainardi, Phil. Trans. R. Soc. A, '09)
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TF trade-offs

Back to Cohen’s class — Given the smoothing relation

Cu(t,f) = / Wy(s,€)M(s — t,¢ — f)ds de,

one is faced with two types of trade-offs:

@ a geometrical trade-off between auto-terms localization
and cross-terms interference for deterministic signals (Cx
as a TFD)

@ a statistical trade-off between bias and variance for
stochastic signals (Cx as an estimator of the WV spectrum
defined as E{ W(t,f)})
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Geometrical trade-off: TF reassignment

Idea

Replace the geometrical center of the smoothing TF domain
by the center of mass of the WVD over this domain, and
reassign the value of the smoothed distribution to this local
centroid

Cu(t.0) ~ [[ Culs.)3 (1~ bu(s.€). - h(s.6)) dsae

Remark

Reassignment has been first introduced for the only
spectrogram (Kodera et al., ’76), but its principle has been
further generalized to any distribution resulting from the
smoothing of a localizable mother-distribution (Auger & F., '95)
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Reassignment

Wigner-Ville spectrogram

frequency
frequency

time time
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Reassignment

Wigner-Ville reassigned spectrogram
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time time
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Reassignment in action

Pros
o Efficient, implicit algorithms

o Very good properties of localization for chirps (>
spectrogram)

Cons
High sensitivity to noise (< spectrogram)

Aim
Reduce fluctuations while preserving localization
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o Stationary processes — The power spectrum density

can be viewed as:

1 +T/2 ) 2

Sy(f) = fim E{ 2 / x(t) e di
T—oo T —T/2

o In practice — Only one, finite duration, realization =
crude periodogram (squared FT) = non consistent
estimator with large variance
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Classical way out (Welch, '67)

Principle
Method of averaged periodograms

K
A 1
800N = 2> 8t 1)
k=1
with 1 — tx of the order of the width of the window h(t)

Result

Bias-variance trade-off — Given T (finite), increasing K =
reduces variance, but increases bias
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Multitaper solution (Thomson, '82)

Principle
Compute

K
A 1
AN = >80, 1)
k=1
with {hx(t), k € N} a family of orthonormal windows extending
over the whole support of the observation = reduced

variance, without sacrifying bias

o Nonstationary extension — Multitaper spectrogram

SUN(F) — Sx(t.f) KZSW (t,f),

with localization controlled by most spread spectrogram
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Geometrical & statistical trade-offs: multitaper
reassignment (Xiao & F., '06)

Idea

Combine the advantages of reassignment (w.r.t. localization)
with those of multitapering (w.r.t. fluctuations)

K
Syk(t,f) — RS k(t,f) : Z RS{™(t, f)

@ coherent averaging of chirps (localization independent
of the window)

@ incoherent averaging of noise (different TF distributions
for different windows)
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[llustration

sample reass. spectro.  sample reass. spectro.  sample reass. spectro.  sample reass. spectro.
o _

Hermite 1

Hermite 2
Hermite 3
Hermite 4

sample reass. spectro.  sample reass. spectro.  sample reass. spectro. sample mean reass. spectro.

Hermite 5
Hermite 6
Hermite 7
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HRV example (RR intervals)

spectrogram

frequency

time
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A brief summary on quadratic TFDs

Pros
o versatile tools for exploratory data analysis
o well-established theory, amenable to bivariate signals: TF
coherence (Orini et al., '09)
o allow for decision tasks
o feature extraction: NNMF (Ghoraani & Krishnan, '09)
o information measures: Rényi entropies (Baraniuk & al., ‘01

+ Tong et al., '05)
o classification: TF machines (Honeine et al., '07)

Cons
O no easy way back from TF to signal = from energy
distributions to signal decompositions?
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from wavelets to EMD
an example

further features
applications

Discrete Wavelet Ti

Interpretation

signal = approximation + detail
&
iteration

(Meyer, 85 + Mallat, ‘86 + Daubechies, '87 +...)

o separation “approximation vs. detail” based on a priori
(dyadic) filtering

o "global" analysis

o other, data-driven, schemes?
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from wavelets to EMD
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further features
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amplitude

time

frequency

time
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from wavelets to EMD
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further features
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from wavelets to EMD
an example

further features
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Time-Frequency/Time-Scale an example
Empirical Mode Decomposition further features
Revisiting stationarity applications
signal 1 signal 2 lower component
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Empirical Mode Decomposition (EMD)
as an alternative

Idea

signal = fast oscillation + slow oscillation
&
iteration

(Huang et al., Proc. Roy. Soc. A., '98)

o separation “fast vs. slow” data driven
o "local" analysis based on extrema
o still open question: which theoretical framework?
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from wavelets to EMD
an example

further features
applications

Revisiting stationarity
EMD algorithm

identify local maxima and local minima

deduce an upper envelope and a lower envelope by
interpolation (cubic splines)

Q
@

@ subtract the mean envelope from the signal
@ iterate until “mean envelope = 0" (sifting)

@ subtract the obtained mode from the signal
@ iterate on the residual

x(t) =

ci(t) + ri(t)
ci(t) + ca(t) + ra(t)

= ot ak(t) + (1),

with the c(t)’s referred to as Intrinsic Mode Functions (IMFs)

Patrick Flandrin Dealing with nonstationarities in biomedical signals



IMF 1; iteration O

I I I I I
50 100 150 200 250 300

I
350

400

IMF 1; iteration O



Nonstationarities from wavelets to EMD
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o Locality — The method operates at the scale of one
oscillation

o Adaptivity — The decomposition is fully data-driven

o Multiresolution — The iterative process explores
sequentially the “natural” constitutive scales of a signal

o Oscillations of any type — No assumption on the (e.g.,
harmonic) nature of oscillations = 1 nonlinear oscillation
= 1 mode

o Instantaneous frequency — By construction, IMFs are
zero-mean time-varying waveforms = Hilbert transform
analysis (so-called “Hilbert-Huang Transform”)
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from wavelets to EMD
an example

further features
applications

EMD vs. wavel

@ similarity: both achieve a decomposition into
“fluctuations” and “trend”

x(t) = Salt)+r(t)  (EMD)
k

— Y ddt)+ac(t)  (DWT)
k

with dk(t) = Z(X,@bkn)lbkn(t)

n

and ak(t) = > (X, kn) pra(t)

n

@ difference: scales are pre-determined for DWT
({, ¥} an(t) = 27%/2{p,4}(27¥t — n)) and adaptive
(data-driven) for EMD
_ Dealing with nonstationarities in biomedical signals



Nonstationarities from wavelets to EMD

Time-Frequency/Time-Scale an example
Empirical Mode Decomposition further features
Revisiting stationarity applications

o Sympatho-vagal balance quantified by comparing the
low-frequency (LF) and high-frequency (HF) components
of RR intervals

o Frequency bands usually fixed a priori (LF = 0.04-0.15 Hz
and HF = 0.15-0.4 Hz) = use of pre-determined,
time-invariant filters

o EMD data-driven = automatic, adaptive selection of
time-varying frequency bands = possibility of dealing
with postural changes in tilt tests

ldea
HF vs. LF — fast vs. slow oscillations + locality
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HRV analysis. Example 1

frequency

RR
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HRV analysis. Example 2 (Souza Neto et al., ’02)

global

frequency
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Extensions and uses

o Some extensions

o Ensemble EMD — Increased robustness by adding
controlled noise to data (Wu & Huang, '09)

o Bivariate and multivariate EMD — Analysis of bivariate or
complex-valued signals (oscillations — rotations) (Rilling
et al.,’07) + Rehman & Mandic, '10

o Synchrosqueezing — Variant of (wavelet-based)
reassignment performing an EMD-like decomposition
(Daubechies et al., '09)

o Some uses

o Pre-processing — Baseline removal, signal
disentanglement, selection of significant IMFs

o Post-processing — Hilbert transform of IMFs, grouping of
significant IMFs, (local) trend removal, denoising from
partial coarse-to-fine reconstruction, scaling analysis
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Some biomedical EMD applications

@ HRV and baroreflex (Souza Neto et al., '02-'04-'07; Magagnin
et al.,’08-'09; lhlen, '09; Yeh et al., '10) + ECG: baseline
removal (Lemay & Vesin, ’06; Pan et al., ’'07) + QRS detection
and ventricular fibrillation (Hadj Slimane & Nait-Ali, '09) +
Sleep apnea (Corthout et al., '08) + Cardiorespiratory
synchronization (Wu & Huang, '09)

o EEG: seizure detection and ocular artifacts (McKeown et al.,
’05; Pachori, ’08; Raghavendra & Dutt, '07) + Event-Related
Potential classification (Liang et al., '05; Williams et al., ’09)

o Postural stability analysis (Amoud et al., '08)
o Laser-Doppler flowmetry (Roulier ef al., '05)

o Esophageal data analysis (Liang et al., '05)
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Nonstationarity ?

back to stationarity
relative stationarity
stationarity tests

@ Nonstationarity is a non-property = no unigue form, but
infinite number of possibilities

@ Nonstationarities to be contrasted with stationarity

Observation

Although well-defined in theory, stationarity doesn’t exist in
practice = dealing with nonstationarity/ies cannot be
disentangled from revisiting stationarity in some operational
sense
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Nonstation

~250ms

~25ms
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Relative stationarity

back to stationarity
relative stationarity
stationarity tests

@ Form of invariance, with respect to

o time and/or space evolutions
o more general transformations (e.g., self-similarity)

@ Relative concept, depending on "scale"

@ Could be stochastic (e.g., mean or variance) as well as
deterministic (e.g., AM/FM)

Idea

Use Time-Frequency (TF) or Time-Scale (TS) as a unified
framework
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Relative stationarity in the TF plane

back to stationarity
relative stationarity
stationarity tests

speech

frequency

frequency
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Testing for stationarity: local = global?

back to stationarity
relative stationarity
stationarity tests

o test calls for a stationary reference: how?

o nonstationarity encoded in time evolution or, equivalently,
in spectrum phase

o stationarization via spectrum phase randomization

o new use of surrogate data technique (Theiler et al., ’92)
@ basic algorithm:

1 X = FFT(x) % x = original data

2 draw WGN ¢(t) and compute é = FFT(e)
3 X «— |X| exp{iargé}

4 y = IFFT(X) % y = surrogate data
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Stationarization via surro

original 1 surrogate

signal

time time

mean over 40 surrogates marg.

frequency
frequency
frequency

time

marg.

[

time time time
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The proposed approach

back to stationarity
relative stationarity
stationarity tests

Principle
@ compute, from the data, a set of stationary surrogates

@ attach to both data and surrogates a series of features
aimed at comparing local vs. global behaviors

@ construct a test based on the empirical statistical
characterization of such features for surrogates (null
hypothesis of stationarity)

(Xiao et al., EUSIPCO’06]; Xiao et al., [IEEE-SSP’07; Borgnat et al., IEEE-TSP’10)
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back to stationarity
relative stationarity
stationarity tests

Two variations

Approach 1

Compute a distance between global and local spectra, and
construct a one-sided test based on the surrogates
distribution

Approach 2

Consider surrogates as a stationary learning set, and
construct an outlier detection test by using the machinery of
one-class SVM

Patrick Flandrin Dealing with nonstationarities in biomedical signals



Variation 1: “loc

signal

5

0

-5

0 1000 2000 3000 4000
time

4

2

0

-2

-4

0 500 1000
time

-2

-4

0 50 100
time

back to stationarity
relative stationarity
stationarity tests

test®, (black) and threshold (red)

4
22
7+é$=%.4<::$j:‘t
0
0.1 0.2 0.3 0.4 0.5
TIT
h
4
22
|
0
0.1 0.2 0.3 0.4 0.5
TIT
h
4
B2 L
L e e e e S
0 H
0.1 0.2 0.3 0.4 0.5
T/T

Dealing with nonstationarities in biomedical signals



back to stationarity
relative stationarity
stationarity tests

Variation 2: one-cla

o rationale: determine the minimum volume hypersphere
that encloses (most of) the training points, up to a small
fraction of data excluded from the domain.

o optimization: trade-off between minimizing the radius r*
of the enclosing hypersphere and controlling the sum of
the slack variables & associated with each outlier.

_ Dealing with nonstationarities in biomedical signals
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Concluding remarks

back to stationarity
relative stationarity
stationarity tests

@ Comprehensive approaches for nonstationary signals

o TF/TS, decompositions, models
o from exploratory data analysis to processing and
decisions

@ From theory to applications, and back

o well-established standard methodologies, equipped with
algorithms, freewares, ... = improved toolkit for
biomedical signals

o specific biomedial problems = sources of inspiration for
new dedicated tools!

Patrick Flandrin Dealing with nonstationarities in biomedical signals
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