
An Introduction to
Sparse Representations and

Compressive Sensing

Part I

Paulo Gonçalves

CPE Lyon - 4ETI - Cours Semi-Optionnel
Méthodes Avancées pour le Traitement des Signaux

2014

Objectifs

Part I

I The motivation and the rationale of sparse representations
I Linear decompositions (Fourier, DCT, wavelets. . .)
I Sparsity and compression, estimation and other inverse problems
I (X-lets)

Part II

I Compressive sensing : The main idea
I Linear algebra formulation (an invertible ill-posed problem)
I Projection on Random Matrices
I Some striking examples

Bibliography

A wavelet tour of signal processing Stéphane Mallat. Academic Press, 1999
Ten Lectures on Wavelets Ingrid Daubechies. Siam, 1992

Compressive Sampling Emmanuel Candès. Int. Congress of Mathematics, 3, pp.
1433-1452, Madrid, Spain, 2006

Compressive sensing Richard Baraniuk. IEEE Signal Processing Magazine, 24(4),
pp. 118-121, July 2007

Imaging via compressive sampling Justin Romberg. IEEE Signal Processing
Magazine, 25(2), pp. 14 - 20, March 2008

Introduction to compressed sensing M. Davenport, M. Duarte, Y. Eldar, and G.
Kutyniok. Chapter in Compressed Sensing : Theory and Applications, Cambridge
University Press, 2012

Compressive sensing M. Fornasier and H. Rauhut. Chapter in Part 2 of the
Handbook of Mathematical Methods in Imaging (O. Scherzer Ed.), Springer, 2011

Sparsity-Aware Learning and Compressed Sensing : An Overview S.
Theodoridis, Y. Kopsinis, K. Slavakis, arXiv :1211.5231

http ://dsp.rice.edu/cs An updated list of publications related to compressive sensing

An Overview of Sparsity with Applications to Compression, Restoration, and Inverse Problems
Lecture by Justin Romberg, Master 2, Computer Sc. Dept. ENS Lyon. 2012.

http://dsp.rice.edu/cs

Applied and Computational Harmonic Analysis

Signal/image f(t) in the time/spatial domain

Decompose f as a superposition of atoms

f(t) =
∑

i

αiψi(t)

ψi = basis functions

αi = expansion coefficients in ψ-domain

Classical example: Fourier series
ψi = complex sinusoids
αi = Fourier coefficients

Modern example: wavelets
ψi = “little waves”
αi = wavelet coefficients

More exotic example: curvelets (more later)

Taking images apart and putting them back together

Frame operators Ψ, Ψ̃ map images to sequences and back
Two sequences of functions: {ψi(t)}, {ψ̃(t)}
Analysis (inner products):

α = Ψ̃[f], αi = 〈ψ̃i, f〉
Synthesis (superposition):

f = Ψ∗[α], f =
∑

i

αiψi(t)

If {ψi(t)} is an orthobasis, then

‖α‖2`2 = ‖f‖2L2
(Parseval)

∑

i

αiβi =

∫
f(t)g(t) dt (where β = Ψ̃[g])

ψi(t) = ψ̃i(t)

i.e. all sizes and angles are preserved
Overcomplete tight frames have similar properties

ACHA

ACHA Mission: construct “good representations” for
“signals/images” of interest

Examples of “signals/images” of interest
I Classical: signal/image is “bandlimited” or “low-pass”
I Modern: smooth between isolated singularities (e.g. 1D piecewise poly)
I Cutting-edge: 2D image is smooth between smooth edge contours

Properties of “good representations”
I sparsifies signals/images of interest
I can be computed using fast algorithms

(O(N) or O(N logN) — think of the FFT)

Example: The discrete cosine transform (DCT)

For an image f(t, s) on [0, 1]2, we have

ψ`,m(t, s) = 2λ`λm · cos(π`t) cos(πms), λ` =

{
1/
√

2 ` = 0

1 otherwise

Closely related to 2D Fourier series/DFT,
the DCT is real, and implicitly does symmetric extension

Can be taken on the whole image, or blockwise (JPEG)

Image approximation using DCT

Take 1% of “low pass” coefficients, set the rest to zero

original approximated

rel. error = 0.075

Image approximation using DCT

Take 1% of “low pass” coefficients, set the rest to zero

original approximated

rel. error = 0.075

Image approximation using DCT

Take 1% of largest coefficients, set the rest to zero (adaptive)

original approximated

rel. error = 0.057

Image approximation using DCT

Take 1% of largest coefficients, set the rest to zero (adaptive)

original approximated

rel. error = 0.057

Wavelets

f(t) =
∑

j,k

αj,kψj,k(t)

Multiscale: indexed by scale j and location k

Local: ψj,k analyzes/represents an interval of size ∼ 2−j

Vanishing moments: in regions where f is polynomial, αj,k = 0

ψj,k piecewise poly f

j
↓

... wavelet coeffs αj,k

2D wavelet transform

Sparse: few large coeffs, many small coeffs

Important wavelets cluster along edges

Multiscale approximations

Scale = 4, 16384:1

rel. error = 0.29

Multiscale approximations

Scale = 5, 4096:1

rel. error = 0.22

Multiscale approximations

Scale = 6, 1024:1

rel. error = 0.16

Multiscale approximations

Scale = 7, 256:1

rel. error = 0.12

Multiscale approximations

Scale = 8, 64:1

rel. error = 0.07

Multiscale approximations

Scale = 9, 16:1

rel. error = 0.04

Multiscale approximations

Scale = 10, 4:1

rel. error = 0.02

Image approximation using wavelets

Take 1% of largest coefficients, set the rest to zero (adaptive)

original approximated

rel. error = 0.031

DCT/wavelets comparison

Take 1% of largest coefficients, set the rest to zero (adaptive)

DCT wavelets

rel. error = 0.057 rel. error = 0.031

Linear approximation

Linear S-term approximation: keep S coefficients in fixed locations

fS(t) =
S∑

m=1

αmψm(t)

I projection onto fixed subspace
I lowpass filtering, principle components, etc.

Fast coefficient decay ⇒ good approximation

|αm| . m−r ⇒ ‖f − fS‖22 . S−2r+1

Take f(t) periodic, d-times continuously differentiable,
Ψ= Fourier series:

‖f − fS‖22 . S−2d

The smoother the function, the better the approximation
Something similar is true for wavelets ...

Nonlinear approximation

Nonlinear S-term approximation: keep S largest coefficients

fS(t) =
∑

γ∈ΓS

αγψγ(t), ΓS = locations of S largest |αm|

Fast decay of sorted coefficients ⇒ good approximation

|α|(m) . m−r ⇒ ‖f − fS‖22 . S−2r+1

|α|(m) = mth largest coefficient

Linear v. nonlinear approximation

For f(t) uniformly smooth with d “derivatives”

S-term approx. error

Fourier, linear S−2d+1

Fourier, nonlinear S−2d+1

wavelets, linear S−2d+1

wavelets, nonlinear S−2d+1

For f(t) piecewise smooth

S-term approx. error

Fourier, linear S−1

Fourier, nonlinear S−1

wavelets, linear S−1

wavelets, nonlinear S−2d+1

Nonlinear wavelet approximations adapt to singularities

Wavelet adaptation

piecewise polynomial f(t)

wavelet coeffs αj,k

Approximation curves

Approximating Pau with S-terms...

−
lo

g
(r

el
.

er
ro

r)

0 2 4 6 8 10

x 10
4

0

5

10

15

20

25

30

35

S →

wavelet nonlinear, DCT nonlinear, DCT linear

Approximation comparison

original DCT linear (.075)

DCT nonlinear (.057) wavelet nonlinear (.031)

The ACHA paradigm

Sparse representations yield algorithms for (among other things)

1 compression,

2 estimation in the presence of noise (“denoising”),

3 inverse problems (e.g. tomography),

4 acquisition (compressed sensing)

that are

fast,

relatively simple,

and produce (nearly) optimal results

Compression

Transform-domain image coding

Sparse representation = good compression
Why? Because there are fewer things to code

Basic, “stylized” image coder
1 Transform image into sparse basis
2 Quantize

Most of the xform coefficients are ≈ 0
⇒ they require very few bits to encode

3 Decoder: simply apply inverse transform to quantized coeffs

Image compression

Classical example: JPEG (1980s)
I standard implemented on every digital camera
I representation = Local Fourier

discrete cosine transform on each 8× 8 block

Modern example: JPEG2000 (1990s)
I representation = wavelets

Wavelets are much sparser for images with edges
I about a factor of 2 better than JPEG in practice

half the space for the same quality image

JPEG vs. JPEG2000

Visual comparison at 0.25 bits per pixel (≈ 100:1 compression)

JPEG JPEG2000

27 March, 200327 March, 2003 © David Taubman, UNSW© David Taubman, UNSW

JPEG2000 vs. JPEG:JPEG2000 vs. JPEG:

Blocking ArtefactsBlocking Artefacts

JPEG2000 @ 0.25 bits/pixelJPEG2000 @ 0.25 bits/pixel JPEG @ 0.25 bits/pixelJPEG @ 0.25 bits/pixel
27 March, 200327 March, 2003 © David Taubman, UNSW© David Taubman, UNSW

JPEG2000 vs. JPEG:JPEG2000 vs. JPEG:

Blocking ArtefactsBlocking Artefacts

JPEG2000 @ 0.25 bits/pixelJPEG2000 @ 0.25 bits/pixel JPEG @ 0.25 bits/pixelJPEG @ 0.25 bits/pixel

(Images from David Taubman, University of New South Wales)

Sparse transform coding is asymptotically optimal

Donoho, Cohen, Daubechies, DeVore, Vetterli, and others . . .

The statement “transform coding in a sparse basis is a smart thing to
do” can be made mathematically precise

Class of images C
Representation {ψi} (orthobasis) such that

|α|(n) . n−r

for all f ∈ C (|α|(n) is the nth largest transform coefficient)

Simple transform coding: transform, quantize (throwing most coeffs
away)

`(ε) = length of code (# bits) that guarantees the error < ε for all
f ∈ C (worst case)

To within log factors

`(ε) � ε−1/γ , γ = r − 1/2

For piecewise smooth signals and {ψi} = wavelets,
no coder can do fundamentally better

Statistical Estimation

Statistical estimation setup

y(t) = f(t) + σz(t)

y: data

f : object we wish to recover

z: stochastic error; assume zt i.i.d. N(0, 1)

σ: noise level

The quality of an estimate f̃ is given by its risk
(expected mean-square-error)

MSE(f̃ , f) = E‖f̃ − f‖22

Transform domain model

y = f + σz

Orthobasis {ψi}:

〈y, ψi〉 = 〈f, ψi〉 + 〈z, ψi〉
ỹi = αi + zi

zi Gaussian white noise sequence

σ noise level

αi = 〈f, ψi〉 coordinates of f

Classical estimation example

Classical model: signal of interest f is lowpass

time domain Fourier domain
f(t)

t

!

ˆ f (")

!

B

!

"

!

"

Observable frequencies: 0 ≤ ω ≤ Ω

f̂(ω) is nonzero only for ω ≤ B

Classical estimation example

Add noise: y = f + z

time domain Fourier domain
y(t)

t

!

ˆ y (")

!

B

!

"

!

"

Observation error: E‖y − f‖22 = E‖ŷ − f̂‖22 = Ω · σ2

Noise is spread out over entire spectrum

Classical estimation example

Optimal recovery algorithm: lowpass filter (“kill” all ŷ(ω) for ω > B)

!

ˆ y (")

!

B

!

"

!

"

!

ˆ ˜ f (")

!

B

!

"

!

"

Original error Recovered error

E‖ŷ − f̂‖22 = Ω · σ2 E‖ ˜̂
f − f̂‖22 = B · σ2

Only the lowpass noise affects the estimate, a savings of (B/Ω)2

Modern estimation example

Model: signal is piecewise smooth

Signal is sparse in the wavelet domain

time domain f(t) wavelet domain αj,k

t −→ j, k −→
Again, the αj,k are concentrated on a small set

This set is signal dependent (and unknown a priori)
⇒ we don’t know where to “filter”

Ideal estimation (Oracle)

yi = αi + σzi , y ∼ N (α, σ2, I)

• Suppose an ”oracle” tells us which coefficients are above the noise level

• Form the oracle estimate

α̃i
orc =

{
yi , if αi | > σ

0, if αi | ≤ σ

(i.e. keep the observed coefficients above the noise level and ignore the rest)

• Oracle Risk :
E‖α̃orc − α‖2

2 =
∑

i

min
(
α2

i , σ
2
)

error stemming from
removed coefficients smaller than

the noise level
�
�
��

@
@
@I

error due to the ”noisy”
kept coefficients

Ideal estimation

Transform coefficients α
I Total length N = 64
I # nonzero components = 10
I # components above the noise level S = 6

original coeffs α noisy coeffs y oracle estimate α̃orc

10 20 30 40 50 60
−3

−2

−1

0

1

2

3

10 20 30 40 50 60
−3

−2

−1

0

1

2

3

10 20 30 40 50 60
−3

−2

−1

0

1

2

3

E‖y − α‖22 = N · σ2 E‖α̃orc − f‖22 = S · σ2

Interpretation

MSE(α̃orc, α) =
∑

i

min(α2
i , σ

2)

Rearrange the coefficients in decreasing order
|α|2(1) ≥ |α|2(2) ≥ . . . ≥ |α|2(N)

S: number of those αi’s s.t. α2
i ≥ σ2

MSE(α̃orc, α) =
∑

i>S

|α|2(i) + S · σ2

= ‖α− αS‖22 + S · σ2

= Approx Error + Number of terms× noise level

= Bias2 + Variance

The sparser the signal,
I the better the approximation error (lower bias), and
I the fewer # terms above the noise level (lower variance)

Can we estimate as well without the oracle?

Denoising by thresholding

Hard-thresholding (“keep or kill”)

α̃i =

{
yi, |yi| ≥ λ
0, |yi| < λ

Soft-thresholding (“shrinkage”)

α̃i =

yi − λ, yi ≥ λ
0, −λ < yi < λ

yi + λ, yi ≤ −λ

Take λ a little bigger than σ

Working assumption: whatever is above λ is signal, whatever is below
is noise

Denoising by thresholding

Thresholding performs (almost) as well as the oracle estimator!

Donoho and Johnstone:
Form estimate α̃t using threshold λ = σ

√
2 logN ,

MSE(α̃t, α) := E‖α̃t − α‖22 ≤ (2 logN + 1) · (σ2 +
∑

i

min(α2
i , σ

2))

Thresholding comes within a log factor of the oracle performance

The (2 logN + 1) factor is the price we pay for not knowing the
locations of the important coeffs

Thresholding is simple and effective

Sparsity ⇒ good estimation

Recall: Modern estimation example

Signal is piecewise smooth, and sparse in the wavelet domain

time domain f(t) wavelet domain αj,k

t −→ j, k −→
noisy signal y(t) noisy wavelet coeffs

t −→ j, k −→

Thresholding wavelets

Denoise (estimate) by soft thresholding

noisy signal noisy wavelet coeffs

t −→ j, k −→
recovered signal recovered wavelet coeffs

t −→ j, k −→

Denoising the Phantom

noisy lowpass filtered wavelet thresholding, λ = 3σ

Error = 25.0 Error = 42.6 Error = 11.0

Inverse Problems

Linear inverse problems

y(u) = (Kf)(u) + z(u), u = measurement variable/index

f(t) object of interest

K linear operator, indirect measurements

(Kf)(u) =

∫
k(u, t)f(t) dt

Examples:
I Convolution (“blurring”)
I Radon (Tomography)
I Abel

z = noise

Ill-posed: f = K−1y not well defined

Solving inverse problems using the SVD

K = UΛV T

U = col(u1, . . . , un), Λ = diag(λ1, . . . , λn), V = col(v1, . . . , vn)

U = orthobasis for the measurement space,
V = orthobasis for the signal space

Rewrite action of operator in terms of these bases:

y(ν) = (Kf)(ν)⇔ 〈uν , y〉 = λν〈vν , f〉

The inverse operator is also natural:

〈vν , f〉 = λ−1
ν 〈uν , y〉, f = V

λ−1

1 〈u1, y〉
λ−1

2 〈u2, y〉
...

But in general, λv → 0, making this unstable

Deconvolution

Measure y = Kf + σz, where K is a convolution operator

signal f(t) convolution kernel observed y(t)

~ + noise =

Singular basis: U = V = Fourier transform

{ 〈eν , f〉 } { λν } { 〈hν , y〉 }

× + noise =

Regularization

Reproducing formula

f =
∑

ν

λ−1
ν 〈uν ,Kf〉vν

Noisy observations

y = Kf + σz ⇔ 〈uν , y〉 = 〈uν ,Kf〉+ σẑν

Multiply by damping factors wν to reconstruct from observations y

f̃ =
∑

ν

wνλ
−1
ν 〈uν , y〉vν

want wν ≈ 0 when λ−1
ν is large (to keep the noise from exploding)

If spectral density θ2
ν = |〈f, vν〉|2 is known, the MSE optimal weights

are

wν =
θ2
ν

θ2
ν + σ2

=
signal power

signal power + noise power

This is the Wiener Filter

Ideal damping (Oracle)

• In the SVD domain :
λ−1
ν yν = θν + σνzν

yν = 〈uν , y〉, θν = 〈f , vν〉, σν = σ/λν and zν ∼ i.i.d. N (0, 1)

• Again, suppose an oracle tells us which of the θν are above the noise level (signal
dominates)

• Oracle “keep or kill” window (minimise MSE)

wν =

{
1 |θν | > σν

0 |θν | ≤ σν

Take θ̃ν = wν

(
λ−1
ν yν

)
(thresholding)

• SInce V is an isometry, oracle risk reads :

E‖f − f̃‖2
2 = E‖θ − θ̃‖2

2 =
∑
ν

min
(
θ2
ν , σ

2
ν

)

Interpretation

MSE =
∑

ν

min(θ2
ν , σ

2
ν)

=
∑

ν:|θν |λν≤σ
θ2
ν +

∑

ν:|θν |λν>σ

σ2

λ2

= Bias2 + Variance

Again, concentration of the θν := 〈f, vν〉 on a small set is critical for
good performance

But the vν are determined only by the operator K !

Typical Situation

Convolutions, Radon inversion (tomography)

(vν) ∼ sinusoids

f has discontinuities (earth, brain, ...)

SVD basis is not a good representation for our signal

Fortunately, we can find a representation that is simultaneously
I almost an SVD
I A sparse decomposition for object we are interested in

Example: Power-law convolution operators

K = convolution operator with Fourier spectrum ∼ ω−1

!

"#1
!

ˆ k (")

!

"

!

ˆ k (")

!

"

1

1/2

1/4
1/8

Wavelets have dyadic (in scale j) support in Fourier domain

!

"

!

ˆ " j,k (#)

j=4j=3
j=2

j=1

Spectrum of K is almost constant (within a factor of 2) over each
subband

The Wavelet-Vaguelette decomposition (WVD)

Donoho, 1995

Wavelet basis {ψj,k} sparsifies piecewise smooth signals

Vaguelette dual basis uj,k satisfies

〈f, ψj,k〉 = 2j/2〈uj,k,Kf〉

(basis for the measurement space)

For power-law K, vaguelettes ≈ orthogonal, and ≈ wavelets

wavelet vaguelette

Wavelet-Vaguelette decomposition is almost an SVD for Fourier
power-law operators

Deconvolution using the WVD

Observe y = Kf + σz,
K = 1/|ω| power-law operator, z = iid Gaussian noise

Expand y in vaguelette basis

vj,k = 〈uj,k, y〉

almost orthonormal, so noise in new basis is ≈ independent

Soft-threshold

ṽj,k =

{
vj,k − γ sign(vj,k) |vj,k| > γj

0 |vj,k| ≤ γj

for γj ∼ 2j/2σ

Weighted reconstruction in the wavelet basis

f̃(t) =
∑

j,k

2j/2ṽj,kψj,k(t)

Deconvolution example

Measure y = Kf + σz, where K is 1/|ω|

signal f(t) convolution kernel observed y(t)

~ + noise =

WVD recovery Wiener Filter recovery

Curvelets

Wavelets and geometry

Wavelet basis functions are isotropic
⇒ they cannot adapt to geometrical structure

Curvelets offer a more refined scaling concept...

Curvelets

Candes and Donoho, 1999–2004

New multiscale pyramid:

Multiscale

Multi-orientations

Parabolic scaling (anisotropy)

width ≈ length2

Curvelets in the spatial domain

 Parabolic
 Scaling

2
-j

2-j/2

2
-j/2

2
-j

Rotate Translate1

Curvelets parameterized by scale, location, and orientation

Example curvelets

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

Curvelet tiling in the frequency domain

wavelet curvelet

-250 -200 -150 -100 -50 0 50 100 150 200 250
-250

-200

-150

-100

-50

0

50

100

150

200

250

Piecewise-smooth approximation

Image fragment: C2 smooth regions separated by C2 contours

Fourier approximation

‖f − fS‖22 . S−1/2

Wavelet approximation

‖f − fS‖22 . S−1

Curvelet approximation

‖f − fS‖22 . S−2 log3 S

(within log factor of optimal)

Application: Curvelet denoising I

Zoom-in on piece of phantom

noisy wavelet thresholding curvelet thresholding

Application: Curvelet denoising II

Zoom-in on piece of Lena

wavelet thresholding curvelet thresholding

Summary

• Having a sparse representation plays a fundamental role in how well we can :

B compress
B denoise
B restore

signals and images . . .

• The above were accomplished with relatively simple algorithms (in practice, we use
similar ideas + a bag of tricks)

• Better representations (e.g. curvelets) −→ better results

• Next, we will see how sparsity can play a role in data acquisition

