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Objectifs

Part I

I The motivation and the rationale of sparse representations
I Linear decompositions (Fourier, DCT, wavelets. . . )
I Sparsity and compression, estimation and other inverse problems
I (X-lets)

Part II

I Compressive sensing : The main idea
I Linear algebra formulation (an invertible ill-posed problem)
I Projection on Random Matrices
I Some striking examples
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Applied and Computational Harmonic Analysis

Signal/image f(t) in the time/spatial domain

Decompose f as a superposition of atoms

f(t) =
∑

i

αiψi(t)

ψi = basis functions

αi = expansion coefficients in ψ-domain

Classical example: Fourier series
ψi = complex sinusoids
αi = Fourier coefficients

Modern example: wavelets
ψi = “little waves”
αi = wavelet coefficients

More exotic example: curvelets (more later)



Taking images apart and putting them back together

Frame operators Ψ, Ψ̃ map images to sequences and back
Two sequences of functions: {ψi(t)}, {ψ̃(t)}
Analysis (inner products):

α = Ψ̃[f ], αi = 〈ψ̃i, f〉
Synthesis (superposition):

f = Ψ∗[α], f =
∑

i

αiψi(t)

If {ψi(t)} is an orthobasis, then

‖α‖2`2 = ‖f‖2L2
(Parseval)

∑

i

αiβi =

∫
f(t)g(t) dt (where β = Ψ̃[g])

ψi(t) = ψ̃i(t)

i.e. all sizes and angles are preserved
Overcomplete tight frames have similar properties



ACHA

ACHA Mission: construct “good representations” for
“signals/images” of interest

Examples of “signals/images” of interest
I Classical: signal/image is “bandlimited” or “low-pass”
I Modern: smooth between isolated singularities (e.g. 1D piecewise poly)
I Cutting-edge: 2D image is smooth between smooth edge contours

Properties of “good representations”
I sparsifies signals/images of interest
I can be computed using fast algorithms

(O(N) or O(N logN) — think of the FFT)



Example: The discrete cosine transform (DCT)

For an image f(t, s) on [0, 1]2, we have

ψ`,m(t, s) = 2λ`λm · cos(π`t) cos(πms), λ` =

{
1/
√

2 ` = 0

1 otherwise

Closely related to 2D Fourier series/DFT,
the DCT is real, and implicitly does symmetric extension

Can be taken on the whole image, or blockwise (JPEG)



Image approximation using DCT

Take 1% of “low pass” coefficients, set the rest to zero

original approximated

rel. error = 0.075



Image approximation using DCT

Take 1% of “low pass” coefficients, set the rest to zero

original approximated

rel. error = 0.075



Image approximation using DCT

Take 1% of largest coefficients, set the rest to zero (adaptive)

original approximated

rel. error = 0.057



Image approximation using DCT

Take 1% of largest coefficients, set the rest to zero (adaptive)

original approximated

rel. error = 0.057



Wavelets

f(t) =
∑

j,k

αj,kψj,k(t)

Multiscale: indexed by scale j and location k

Local: ψj,k analyzes/represents an interval of size ∼ 2−j

Vanishing moments: in regions where f is polynomial, αj,k = 0

ψj,k piecewise poly f

j
↓

... wavelet coeffs αj,k



2D wavelet transform

Sparse: few large coeffs, many small coeffs

Important wavelets cluster along edges



Multiscale approximations

Scale = 4, 16384:1

rel. error = 0.29



Multiscale approximations

Scale = 5, 4096:1

rel. error = 0.22



Multiscale approximations

Scale = 6, 1024:1

rel. error = 0.16



Multiscale approximations

Scale = 7, 256:1

rel. error = 0.12



Multiscale approximations

Scale = 8, 64:1

rel. error = 0.07



Multiscale approximations

Scale = 9, 16:1

rel. error = 0.04



Multiscale approximations

Scale = 10, 4:1

rel. error = 0.02



Image approximation using wavelets

Take 1% of largest coefficients, set the rest to zero (adaptive)

original approximated

rel. error = 0.031



DCT/wavelets comparison

Take 1% of largest coefficients, set the rest to zero (adaptive)

DCT wavelets

rel. error = 0.057 rel. error = 0.031



Linear approximation

Linear S-term approximation: keep S coefficients in fixed locations

fS(t) =
S∑

m=1

αmψm(t)

I projection onto fixed subspace
I lowpass filtering, principle components, etc.

Fast coefficient decay ⇒ good approximation

|αm| . m−r ⇒ ‖f − fS‖22 . S−2r+1

Take f(t) periodic, d-times continuously differentiable,
Ψ= Fourier series:

‖f − fS‖22 . S−2d

The smoother the function, the better the approximation
Something similar is true for wavelets ...



Nonlinear approximation

Nonlinear S-term approximation: keep S largest coefficients

fS(t) =
∑

γ∈ΓS

αγψγ(t), ΓS = locations of S largest |αm|

Fast decay of sorted coefficients ⇒ good approximation

|α|(m) . m−r ⇒ ‖f − fS‖22 . S−2r+1

|α|(m) = mth largest coefficient



Linear v. nonlinear approximation

For f(t) uniformly smooth with d “derivatives”

S-term approx. error

Fourier, linear S−2d+1

Fourier, nonlinear S−2d+1

wavelets, linear S−2d+1

wavelets, nonlinear S−2d+1

For f(t) piecewise smooth

S-term approx. error

Fourier, linear S−1

Fourier, nonlinear S−1

wavelets, linear S−1

wavelets, nonlinear S−2d+1

Nonlinear wavelet approximations adapt to singularities



Wavelet adaptation

piecewise polynomial f(t)

wavelet coeffs αj,k



Approximation curves

Approximating Pau with S-terms...
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Approximation comparison

original DCT linear (.075)

DCT nonlinear (.057) wavelet nonlinear (.031)



The ACHA paradigm

Sparse representations yield algorithms for (among other things)

1 compression,

2 estimation in the presence of noise (“denoising”),

3 inverse problems (e.g. tomography),

4 acquisition (compressed sensing)

that are

fast,

relatively simple,

and produce (nearly) optimal results



Compression



Transform-domain image coding

Sparse representation = good compression
Why? Because there are fewer things to code

Basic, “stylized” image coder
1 Transform image into sparse basis
2 Quantize

Most of the xform coefficients are ≈ 0
⇒ they require very few bits to encode

3 Decoder: simply apply inverse transform to quantized coeffs



Image compression

Classical example: JPEG (1980s)
I standard implemented on every digital camera
I representation = Local Fourier

discrete cosine transform on each 8× 8 block

Modern example: JPEG2000 (1990s)
I representation = wavelets

Wavelets are much sparser for images with edges
I about a factor of 2 better than JPEG in practice

half the space for the same quality image



JPEG vs. JPEG2000

Visual comparison at 0.25 bits per pixel (≈ 100:1 compression)

JPEG JPEG2000

27 March, 200327 March, 2003 © David Taubman, UNSW© David Taubman, UNSW

JPEG2000 vs. JPEG:JPEG2000 vs. JPEG:

Blocking ArtefactsBlocking Artefacts

JPEG2000 @ 0.25 bits/pixelJPEG2000 @ 0.25 bits/pixel JPEG @ 0.25 bits/pixelJPEG @ 0.25 bits/pixel
27 March, 200327 March, 2003 © David Taubman, UNSW© David Taubman, UNSW

JPEG2000 vs. JPEG:JPEG2000 vs. JPEG:

Blocking ArtefactsBlocking Artefacts

JPEG2000 @ 0.25 bits/pixelJPEG2000 @ 0.25 bits/pixel JPEG @ 0.25 bits/pixelJPEG @ 0.25 bits/pixel

(Images from David Taubman, University of New South Wales)



Sparse transform coding is asymptotically optimal

Donoho, Cohen, Daubechies, DeVore, Vetterli, and others . . .

The statement “transform coding in a sparse basis is a smart thing to
do” can be made mathematically precise

Class of images C
Representation {ψi} (orthobasis) such that

|α|(n) . n−r

for all f ∈ C (|α|(n) is the nth largest transform coefficient)

Simple transform coding: transform, quantize (throwing most coeffs
away)

`(ε) = length of code (# bits) that guarantees the error < ε for all
f ∈ C (worst case)

To within log factors

`(ε) � ε−1/γ , γ = r − 1/2

For piecewise smooth signals and {ψi} = wavelets,
no coder can do fundamentally better



Statistical Estimation



Statistical estimation setup

y(t) = f(t) + σz(t)

y: data

f : object we wish to recover

z: stochastic error; assume zt i.i.d. N(0, 1)

σ: noise level

The quality of an estimate f̃ is given by its risk
(expected mean-square-error)

MSE(f̃ , f) = E‖f̃ − f‖22



Transform domain model

y = f + σz

Orthobasis {ψi}:

〈y, ψi〉 = 〈f, ψi〉 + 〈z, ψi〉
ỹi = αi + zi

zi Gaussian white noise sequence

σ noise level

αi = 〈f, ψi〉 coordinates of f



Classical estimation example

Classical model: signal of interest f is lowpass

time domain Fourier domain
f(t)

t

! 

ˆ f (")

! 

B

! 

"

! 

"

Observable frequencies: 0 ≤ ω ≤ Ω

f̂(ω) is nonzero only for ω ≤ B



Classical estimation example

Add noise: y = f + z

time domain Fourier domain
y(t)

t

! 

ˆ y (")

! 

B

! 

"

! 

"

Observation error: E‖y − f‖22 = E‖ŷ − f̂‖22 = Ω · σ2

Noise is spread out over entire spectrum



Classical estimation example

Optimal recovery algorithm: lowpass filter (“kill” all ŷ(ω) for ω > B)

! 

ˆ y (")

! 

B

! 

"

! 

"

! 

ˆ ˜ f (")

! 

B

! 

"

! 

"

Original error Recovered error

E‖ŷ − f̂‖22 = Ω · σ2 E‖ ˜̂
f − f̂‖22 = B · σ2

Only the lowpass noise affects the estimate, a savings of (B/Ω)2



Modern estimation example

Model: signal is piecewise smooth

Signal is sparse in the wavelet domain

time domain f(t) wavelet domain αj,k

t −→ j, k −→
Again, the αj,k are concentrated on a small set

This set is signal dependent (and unknown a priori)
⇒ we don’t know where to “filter”



Ideal estimation (Oracle)

yi = αi + σzi , y ∼ N (α, σ2, I)

• Suppose an ”oracle” tells us which coefficients are above the noise level

• Form the oracle estimate

α̃i
orc =

{
yi , if αi | > σ

0, if αi | ≤ σ

(i.e. keep the observed coefficients above the noise level and ignore the rest)

• Oracle Risk :
E‖α̃orc − α‖2

2 =
∑

i

min
(
α2

i , σ
2
)

error stemming from
removed coefficients smaller than

the noise level
�
�
��

@
@
@I

error due to the ”noisy”
kept coefficients



Ideal estimation

Transform coefficients α
I Total length N = 64
I # nonzero components = 10
I # components above the noise level S = 6

original coeffs α noisy coeffs y oracle estimate α̃orc

10 20 30 40 50 60
−3

−2

−1

0

1

2

3

10 20 30 40 50 60
−3

−2

−1

0

1

2

3

10 20 30 40 50 60
−3

−2

−1

0

1

2

3

E‖y − α‖22 = N · σ2 E‖α̃orc − f‖22 = S · σ2



Interpretation

MSE(α̃orc, α) =
∑

i

min(α2
i , σ

2)

Rearrange the coefficients in decreasing order
|α|2(1) ≥ |α|2(2) ≥ . . . ≥ |α|2(N)

S: number of those αi’s s.t. α2
i ≥ σ2

MSE(α̃orc, α) =
∑

i>S

|α|2(i) + S · σ2

= ‖α− αS‖22 + S · σ2

= Approx Error + Number of terms× noise level

= Bias2 + Variance

The sparser the signal,
I the better the approximation error (lower bias), and
I the fewer # terms above the noise level (lower variance)

Can we estimate as well without the oracle?



Denoising by thresholding

Hard-thresholding (“keep or kill”)

α̃i =

{
yi, |yi| ≥ λ
0, |yi| < λ

Soft-thresholding (“shrinkage”)

α̃i =





yi − λ, yi ≥ λ
0, −λ < yi < λ

yi + λ, yi ≤ −λ

Take λ a little bigger than σ

Working assumption: whatever is above λ is signal, whatever is below
is noise



Denoising by thresholding

Thresholding performs (almost) as well as the oracle estimator!

Donoho and Johnstone:
Form estimate α̃t using threshold λ = σ

√
2 logN ,

MSE(α̃t, α) := E‖α̃t − α‖22 ≤ (2 logN + 1) · (σ2 +
∑

i

min(α2
i , σ

2))

Thresholding comes within a log factor of the oracle performance

The (2 logN + 1) factor is the price we pay for not knowing the
locations of the important coeffs

Thresholding is simple and effective

Sparsity ⇒ good estimation



Recall: Modern estimation example

Signal is piecewise smooth, and sparse in the wavelet domain

time domain f(t) wavelet domain αj,k

t −→ j, k −→
noisy signal y(t) noisy wavelet coeffs

t −→ j, k −→



Thresholding wavelets

Denoise (estimate) by soft thresholding

noisy signal noisy wavelet coeffs

t −→ j, k −→
recovered signal recovered wavelet coeffs

t −→ j, k −→



Denoising the Phantom

noisy lowpass filtered wavelet thresholding, λ = 3σ

Error = 25.0 Error = 42.6 Error = 11.0



Inverse Problems



Linear inverse problems

y(u) = (Kf)(u) + z(u), u = measurement variable/index

f(t) object of interest

K linear operator, indirect measurements

(Kf)(u) =

∫
k(u, t)f(t) dt

Examples:
I Convolution (“blurring”)
I Radon (Tomography)
I Abel

z = noise

Ill-posed: f = K−1y not well defined



Solving inverse problems using the SVD

K = UΛV T

U = col(u1, . . . , un), Λ = diag(λ1, . . . , λn), V = col(v1, . . . , vn)

U = orthobasis for the measurement space,
V = orthobasis for the signal space

Rewrite action of operator in terms of these bases:

y(ν) = (Kf)(ν)⇔ 〈uν , y〉 = λν〈vν , f〉

The inverse operator is also natural:

〈vν , f〉 = λ−1
ν 〈uν , y〉, f = V



λ−1

1 〈u1, y〉
λ−1

2 〈u2, y〉
...




But in general, λv → 0, making this unstable



Deconvolution

Measure y = Kf + σz, where K is a convolution operator

signal f(t) convolution kernel observed y(t)

~ + noise =

Singular basis: U = V = Fourier transform

{ 〈eν , f〉 } { λν } { 〈hν , y〉 }

× + noise =



Regularization

Reproducing formula

f =
∑

ν

λ−1
ν 〈uν ,Kf〉vν

Noisy observations

y = Kf + σz ⇔ 〈uν , y〉 = 〈uν ,Kf〉+ σẑν

Multiply by damping factors wν to reconstruct from observations y

f̃ =
∑

ν

wνλ
−1
ν 〈uν , y〉vν

want wν ≈ 0 when λ−1
ν is large (to keep the noise from exploding)

If spectral density θ2
ν = |〈f, vν〉|2 is known, the MSE optimal weights

are

wν =
θ2
ν

θ2
ν + σ2

=
signal power

signal power + noise power

This is the Wiener Filter



Ideal damping (Oracle)

• In the SVD domain :
λ−1
ν yν = θν + σνzν

yν = 〈uν , y〉, θν = 〈f , vν〉, σν = σ/λν and zν ∼ i.i.d. N (0, 1)

• Again, suppose an oracle tells us which of the θν are above the noise level (signal
dominates)

• Oracle “keep or kill” window (minimise MSE)

wν =

{
1 |θν | > σν

0 |θν | ≤ σν

Take θ̃ν = wν

(
λ−1
ν yν

)
(thresholding)

• SInce V is an isometry, oracle risk reads :

E‖f − f̃‖2
2 = E‖θ − θ̃‖2

2 =
∑
ν

min
(
θ2
ν , σ

2
ν

)



Interpretation

MSE =
∑

ν

min(θ2
ν , σ

2
ν)

=
∑

ν:|θν |λν≤σ
θ2
ν +

∑

ν:|θν |λν>σ

σ2

λ2

= Bias2 + Variance

Again, concentration of the θν := 〈f, vν〉 on a small set is critical for
good performance

But the vν are determined only by the operator K !



Typical Situation

Convolutions, Radon inversion (tomography)

(vν) ∼ sinusoids

f has discontinuities (earth, brain, ...)

SVD basis is not a good representation for our signal

Fortunately, we can find a representation that is simultaneously
I almost an SVD
I A sparse decomposition for object we are interested in



Example: Power-law convolution operators

K = convolution operator with Fourier spectrum ∼ ω−1

! 

"#1
! 

ˆ k (")

! 

"

! 

ˆ k (")

! 

"

1

1/2

1/4
1/8

Wavelets have dyadic (in scale j) support in Fourier domain

! 

"

! 

ˆ " j,k (#)

j=4j=3
j=2

j=1

Spectrum of K is almost constant (within a factor of 2) over each
subband



The Wavelet-Vaguelette decomposition (WVD)

Donoho, 1995

Wavelet basis {ψj,k} sparsifies piecewise smooth signals

Vaguelette dual basis uj,k satisfies

〈f, ψj,k〉 = 2j/2〈uj,k,Kf〉

(basis for the measurement space)

For power-law K, vaguelettes ≈ orthogonal, and ≈ wavelets

wavelet vaguelette

Wavelet-Vaguelette decomposition is almost an SVD for Fourier
power-law operators



Deconvolution using the WVD

Observe y = Kf + σz,
K = 1/|ω| power-law operator, z = iid Gaussian noise

Expand y in vaguelette basis

vj,k = 〈uj,k, y〉

almost orthonormal, so noise in new basis is ≈ independent

Soft-threshold

ṽj,k =

{
vj,k − γ sign(vj,k) |vj,k| > γj

0 |vj,k| ≤ γj

for γj ∼ 2j/2σ

Weighted reconstruction in the wavelet basis

f̃(t) =
∑

j,k

2j/2ṽj,kψj,k(t)



Deconvolution example

Measure y = Kf + σz, where K is 1/|ω|

signal f(t) convolution kernel observed y(t)

~ + noise =

WVD recovery Wiener Filter recovery



Curvelets



Wavelets and geometry

Wavelet basis functions are isotropic
⇒ they cannot adapt to geometrical structure

Curvelets offer a more refined scaling concept...



Curvelets

Candes and Donoho, 1999–2004

New multiscale pyramid:

Multiscale

Multi-orientations

Parabolic scaling (anisotropy)

width ≈ length2



Curvelets in the spatial domain

    Parabolic 
         Scaling

2
-j

2-j/2

2
-j/2

2
-j

Rotate Translate1

Curvelets parameterized by scale, location, and orientation



Example curvelets
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Curvelet tiling in the frequency domain

wavelet curvelet
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Piecewise-smooth approximation

Image fragment: C2 smooth regions separated by C2 contours

Fourier approximation

‖f − fS‖22 . S−1/2

Wavelet approximation

‖f − fS‖22 . S−1

Curvelet approximation

‖f − fS‖22 . S−2 log3 S

(within log factor of optimal)



Application: Curvelet denoising I

Zoom-in on piece of phantom

noisy wavelet thresholding curvelet thresholding



Application: Curvelet denoising II

Zoom-in on piece of Lena

wavelet thresholding curvelet thresholding



Summary

• Having a sparse representation plays a fundamental role in how well we can :

B compress
B denoise
B restore

signals and images . . .

• The above were accomplished with relatively simple algorithms (in practice, we use
similar ideas + a bag of tricks)

• Better representations (e.g. curvelets) −→ better results

• Next, we will see how sparsity can play a role in data acquisition


