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Fourier representation : a paradox for non-stationary signals

x(t) € L2(R) (/ Ix(1)[2dt < oo)
R
X(f) = /[R X(t)e gt —  (x,e)

x(t) = /R X(f) &2 df (X, ef)

Signal = (continuous) superposition of harmonic functions of infinite support. ..
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— dynamic cancellation (destructive interferences) reproduces static cancellation

— time reversal keeps spectral density unchanged (phase encodes time)



Principle of time-frequency representations

Formalise the concept of musical score
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Time-Frequency duality

Uncertainty principle (Weyl-Heisenberg)

q
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h W/"Z\Q(T)I2 dt  (equivalent time support of g)

Define ,then :

|
|

- W/fﬂG(f)\Z df (equivalent bandwidth of g)

1
0202 > — (with equality if |g(t)| = Ce““z)
4
Compact supports (Slepian-Pollack-Landau)

Theorem — If g(t) # 0 has compact support in time, then G(f) cannot be
zero on a whole interval. Reciprocally, if G(f) # 0 has compact
support, then g(t) cannot be zero on a whole interval.

g cannot be simultaneously time limited and frequency limited...
(prolate spheroidal wave functions achieve the best energy concentration in both

domains)
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Local measures

One motivation for time-frequency representation is to characterise the local frequency
content of a signal and to display its time evolution

Example of a pure sine wave : x(t) = sin(2rvot)

the frequency component is invariant with time : vx(t) =g
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One motivation for time-frequency representation is to characterise the local frequency
content of a signal and to display its time evolution

Example of a pure sine wave : x(t) = sin(2rvot)
the frequency component is invariant with time : vx(t) =g

Instantaneous frequency

Define the analytical signal : Ze(t) := F! {2X(f) 1[000)} = |zx(t)| ®<(D
1 do

and the instantaneous frequency : vy (t) = — dox(f)
2 dt

(Fresnel representation . Zann ]
of a rotating vector) — - TE) e
|
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Local measures
Instantaneous frequency is an intricate notion that is not always meaningful.

In particular, it can be questionable in the case of multi-components signals. ..
It is of particular interest for AM-FM type signals :

x(t) = a(t) cos (1)
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Average frequency

W) =2 [T xR = £ [T nolaopa



Examples of non-stationary signals
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Short-time Fourier Transform (STFT)
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STFT on non-stationary signals

Gabor transform : Gaussian window

2

g(u)y=Ce ¥

achieves the best joint time & frequency resolution (uncertainty principle)
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STFT — properties
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STFT — properties

Linear transform

Le(t,f;9) = (X, 9t,r) = <X7 | >

Invertible

X(u) = //Lx(t, . 9) g (u) dt df (iff closure cond. /\g(u)|2du - 1)
tJf
Lx(t, f; g) lies in a Reproducing Kernel Hilbert Space (continuous space R x R)

Lx(t, f; g) is not isomorphic with x

o define a discrete version Ly(nty, mfy; g)

with fp - f < 1 (sub-critical sampling) 1

e revert x(t) from a uniform tiling of the time-frequency plane :

frequency

{ o
¥

x(W) = 3757 Leln, ml Gn,m(u) :

needs to introduce dual frames.

time
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Frames

Frame (definition)  The sequence {gn,m}(n’m)ezg is a frame of H if there exist two
constants 0 < A< B,s.t.forany f € H :

ANFIRSD 1 (Fgnm) P< B .

n,m
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Frames

Frame (definition)  The sequence {gn,m}(n’m)ezg is a frame of H if there exist two
constants 0 < A< B,s.t.forany f € H :

ANFIRSD 1 (Fgnm) P< B .

n,m

Dual frame (defintion)  Let {gn,m}n,m) be a frame. The dual frame defined by

Gnm = (L'L)" ' gnm where L*Lx =" (X,gnm)dnm

n,m

satifies
vieH, x = Z(X,gn,m>§n,m = Z(Xyan,m>gn,m
n,m n,m
Balian-Law (theorem)  If {gn.m}(p m)cz2 is @ windowed Fourier frame with fo - fp = 1,
then - -
/ £lg(t)?dt = +oo or / 2|1G(H2 df = +oo.
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Windowed Fourier frames : Gabor transform

We cannot construct an

orthogonal windowed Fourier basis
with a

differentiable window g of compact support
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The Wavelet revolution
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Wavelet transform

Continuous wavelet transform (definition)

Wy (t,a) = /x(u) Yra(u)du  with oy a(u) == %d} (Ua_ t)

Admissibility condition
2
/ WO 4 — ¢ & W(O):/w(t)dt:O
R £
1 is an oscillating function (wavelet )

Reconstruction formula (invertible)

x(t) = /OOO/_OO W (u, &) u.a(t) 2492

32

Note : the offset value of x can never be recovered. ..
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Wavelet transform

Continuous wavelet transform (definition)

Wy(t,a) = /x(u)ma(u)du with g a(U) := —— o (“_ t)
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Wavelet transform

Continuous wavelet transform (definition)

Wy(t,a) = /x(um,a(u)du with 1 a(U) == —= (“_ t)

Admissibility condition
W) _
/[R ¢ dé=1 = W(O)f/w(t)dtfo

1 is an oscillating function (wavelet )
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Wavelet transform

Continuous wavelet transform (definition)

Wi(t,a) = /x(u) Yra(u)du with oy a(u) == ——1p (“_ t)
Admissibility condition
W ()P
dé =1 w(0) = )dt=0
[ ac=1 = wo = [
1 is an oscillating function (wavelet )

Reconstruction formula (invertible)

X(t) = /O T wwa) vty 5

a2

Note : the offset value of x can never be recovered. ..
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Wavelets : A mathematical breakthrough

Orthogonal bases (I. Daubechies theorems)

There exists compactly supported functions ¢ that generate orthonormal wavelet bases
{0 k(1) (k) € Z2} of L2(R) with (v k, ¥jr k) = &) s O ks

(Batian-Law-theorem since [ t|:(1)|? dt < oo and [ f|W(f)[2 dt < o)
Discrete wavelet transform

A(ty, ap) s.t. (t,a) — (kt a_j, a_’) at critical samplin
(O, 0) ( ) 0 < 0 (k)EZXZ pling

Yjk = ag Y (ayt — ki
'j K 0 < 0 O) x(u) = Z d/Xk IEJ/'_;((U)
ik

Yields strict conditions on the admissible ¢’s (but it turns out “easy” to construct
localised tight frames, e.g. Morlet wavelets, Mexican hat,. . .)
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Wavelets : A mathematical breakthrough
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There exists compactly supported functions ¢ that generate orthonormal wavelet bases
{Wjk(t); (. k) € 22} of LB(R) with (¥ k. vy k) = 6} Ok kr

(Batian-kaw-theorem since [ t|y(t)|? dt < co and [ flW(f)|? dt < oo)
Discrete wavelet transform

I(to, @) st. (t,a) — (k fo ao_j, aO_j)(kj)erZ at critical sampling

and 2120 (4 S RCERCLE
Vjk = ag v (@t — K |
i k 0 < 0 0) X(U) = Z d])fk Ujk(u)
Jik

Yields strict conditions on the admissible «’s (but it turns out “easy” to construct
localised tight frames, e.g. Morlet wavelets, Mexican hat,. . .)
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frequency (Hz)

Continuous — Discrete : Dyadic tiling

® o o o o o o ® o o 0 06 0 0 0 0|00 o o o 4 0

time (sec.)

Commonly, in practice, agp = 2 : dyadic tiling
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Daubechies wavelet bases

¥(t) [W(f)|
1N =1
v
N, =1
0
-1
4 2 0 2 4 05
N =2
05
N =3
-5 0 5 05
time frequency

¥(1) [W(f)]
N-=5
v
N =5
v
-5 0 5 05
N =7
v
N =7
0 0 10 05
N-=10
N =10
v
-10 0 10 05
time frequency

1R /KA



Some properties of (discrete) wavelets

Orthogonal bases

For all series {d} k } (k.j)czxz there exists a unique (up to some dc) signal x € L2 (R) s.t.

x(t) = dikt(t) and ik = (X, %k)
j.k

Vanishing moments and regularity (extension of the admissibility condition)

A wavelet ¢ has N, > 0 vanishing moments iff
vn < Ny : /t”q/)(t)dt —0= we) R0 (g"’w) [\u(")(O) =0, in Taylor expansion]
Sparse decomposition (consequence of N,,)

For a large class of signals, only a few coefficients d; x are (significantly) non zero
= large coefficients localise on singularities of the signal (non differentiable points of x)
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Some properties of (discrete) wavelets

Orthogonal bases

For all series {d] «}(k,jezxz there exists a unique (up to some dc) signal x € L2 (R) s.t.

X(t) = dixti(t) and  djk = (X, 9;k)

.k

Vanishing moments and regularity (extension of the admissibility condition)

A wavelet ¢ has N, > 0 vanishing moments iff
Vn< Ny: [ "ot)dt=0 = w(e) 2% 0 (V) [wM(0) = 0, in Taylor expansion
b p

Sparse decomposition (consequence of Ny,)

For a large class of signals, only a few coefficients d; x are (significantly) non zero
= large coefficients localise on singularities of the signal (non differentiable points of x)

10/ER



Orthogonal wavelet (Daubechies N,, = 6)
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Frequency (f= ol )

Continuous wavelet (2nd derivative of Gauss window)
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Some properties of (discrete) wavelets

Multiresolution analysis

Orthogonal wavelet bases can be associated to multiresolution analysis schemes
(S. Mallat, Y. Meyer), with efficient pyramidal filter-bank implementations

Haar system for signal approximation. ..

29 I RBA



A multiresolution analysis consists of a sequence of successive approximation spaces

Multiresolution analysis (MRA)

V; satisfying the embedding relation

(i)
(iii)
(iv)

ecVoaaocWyecyc-cV,Cc Ve

j=00
N v={o
j=—o0
Jj=o00
| Visdensein L3(R)
j=—o0

X(t) S V] g x(2t) € Vj+1

there exists a function ¢(t) s.t. {¢(t — k) }xcz is a basis for Vj.

vx eV, /\x(t)|2dt:2

k

2

/x(t) #(t — k) dt

(iii) & (iv) = {¢j(t) = 2/2¢(2/t — k)}kcz is a basis for V

j— 00

Orthogonal projector onto V; 1 Pix(t) = > " (x, ¢j.x)¢j.k(1) 23
K
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Multiresolution analysis (MRA)

Consider the orthogonal complement space W; of V;in V4,
Vier =V © W,

There exists a function ¢ such that (basic principle of MRA)

P/+1X—PX+Z s Wi k)i k(1)

and the set {¢; x(t) = 2//29(2/t — k) },_, is an orthogonal basis of W;.

() WL Wforanyj#j

j=d—j+1
(i) Vi=Vy+ @ Wy_m and PR)=EPW,
m=0 jez

(i)  x(t) € Wj < x(2t) € Wj1 and x(t) € W, & x(27/t) € Wy

(iv)  there exists a function v (t) such that the collection

{20/24(2/t — k), j € Z, k € Z} forms a basis for L2(R).

24 / KA



Construction of a MRA system {¢, ¢}
Let {¢o,n}nez be abasis of Vy C V;
hin] = (¢, 1.0) = [H(t) V2p(2t —n)dt ; 3, |h[n]|> =1 (since ¢ is of norm 1)
and ¢(t) = V2>, h[nl¢(2t — n)  the two-scale relation

By Fourier transform and posing H(v) = 2=1/2 3" h[n]e®?™*"
v 1%
o) =H(3)*(3)

a bit of linear algebra (on 1-periodic functions) ... leads to the central relation :

Similarly for 1(t) € Wo C V4, posing  ¥(t) = V2 _ g[n]¢(2t — n)

with g[n] = /w(t) V2¢(2t — n)dt and G(v) =2-1/2%, g[n]e?™" we get

o5 /RA



Construction of a MRA system {¢, v}
Let {¢o n}nez be abasis of Vy C V;
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Construction of a MRA system {¢, ¢}
Let {¢o n}nez be abasis of Vy C V;
hin] = (¢, 1.n) = [ () V2p(2t —n)dt ; 3, |h[n]|> =1 (since ¢ is of norm 1)
and (t) = V23, hlnj¢(2t —n)  the two-scale relation
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v 1%
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a bit of linear algebra (on 1-periodic functions) ... leads to the central relation :
1
H@)P + H + )P =1, W
Similarly for 1(t) € Wo C V4, posing  ¥(t) = V2 _ g[nl¢(2t — n)
n

with g[n] = /w(t) V2¢(2t — n)dt and G(v) =2-1/2%, g[n]e?™" we get

GW)H*(v) + G (V + %) e (,,+ %) —0, W
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Construction of a MRA system {¢, ¢}

]
[HW)P + [Hw + )2 =1, vv

G)H*(v) + G <u + %) H* (u + %) =0, v

25 /KRR



Solving the MRA system equations
For {¢, v} to generate a MRA, H and G must form a pair of quadrature mirror filters (QMF)

IHW)P + |H(v + 3P =1, W
{ GWH (W) +G(v+3)H (v+1) =0, W

22/ BA



Solving the MRA system equations

For {¢, v} to generate a MRA, H and G must form a pair of quadrature mirror filters (QMF)
IHW) + [Hv + DR =1, ¥
G(v)H*(v) + G (1/+ %) H* (1/+ %) =0, Vv
Solution of this system imposes

is a 1-periodic function

. 1
G(v) = A(W)H (V + §) where A(v) { verifies A(v) + A <V + %) =0.
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Solving the MRA system equations

For {¢, v} to generate a MRA, H and G must form a pair of quadrature mirror filters (QMF)
IHW)? + |Hwv + 312 =1, W
Gw)H*(v) + G (u+ %) H* (1/+ ;) =0, Vv

Solution of this system imposes

is a 1-periodic function

. 1
G(v) = A(W)H (V + §) where A(v) { verifies A(v) + A <V + %) =0.

The specific choice (Daubechies ) : A(u) = —e?™ leads to the relation

glnl = (=1)"h"[1 = n]
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Daubechies MRA system

o(1)

1N =2

0

-5 0

11N =3

v
0
-5 0 5 -5 0 5
time time

¥(t) ()
1PN =
N,=5 N,
0
-5 0 -5 0 5
N =7 TIN,=7
v
0
0 0 10 -10 0 10
1IN =10
N =10
0
-10 0 10 -10 0 10
time time
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Pyramidal algorithm (S. Mallat)

X(1) = (%, buk) buk(D)+ DD (X, 9jk) bjk(t), for any arbitrary J
k N——

~—— i>J k .
ax[J,k] d[j,k]
approximation in v, detail in w;

axlj,n] = /x(t) 21122/t — n) dt
/x(t)zf/2 {fzz hIKl6(2(2t — n) — k)
k

decomp. of ®j,nONto )1 k

- Zh[k]/x(t)2(/'+1)/2¢(2f“t7(k+2n))dt
k

= D hlKlax[j+1,k+2n = > hlk —2n]ax[j + 1,K]
k K

= alj+1,] x h[]

ailjn = /x(t)2f/2w(2jt—n)dt

= ali+1.] g ol
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Pyramidal algorithm — decomposition

Assuming a signal x(t) € V, (sampling resolution), its projection on
Voo W, Wy @...,&W_, follows a pyramidal decomposition

a[n] 1 HiGH-pass FILTER (I} DOWN-SAMPLING
h[n] O Low-rass FILTER (T UP-SAMPLING
SIGNAL DETAILS
LI Y 1, ------- e ow
‘I:E:E 1?4!"0 U & #
—I:Eil ,\_!:J—l—t w *
o
. SCALE

pl_l—p(‘!_)—pt - .
LIZI——@—-- . .

APPROXIMATIONS
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Pyramidal algorithm — synthesis

The synthesis of x € V; from its decompositionon V, & W, & W, 1 & ...,&W_4
is perfectly reversible

aln] [ HiGH-pass FILTER 1) DOWN-SAMPLING
h[n] [ Low-pass FILTER @) UP-SAMPLING
SIGNAL DETAILS SIGNAL
weararun ) R L T i S SR
:E : f—— e s s - P = = :T

it
L-i—j =
i

L

- )
. SCALE .

D . B -
LD_.@_.. . o)

APPROXIMATIONS

20 /K8A



Separable wavelet bases for images

To any wavelet orthogonal basis {t;n}; ncz2 Of L?(R),0ne can associate a separable
wavelet orthogonal basis of L?(R?) :

{wh M (x1 )wl'zynz (XZ)}(h Jo,n1,n0)EZ4

But the resulting decomposition mixes information at different scales 2/t and 2%. ..

To process images at different levels of detail, we need multi resolutions approximation
deriving from dilated functions at the same scale
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Definition

Separable multiresolutions

The approximation of an image f(x;, x2) at resolution 2~/ is the
orthogonal projection of f on a space ij that is included in L?(R?)

The space \//.2 is the set of all approximations at the resolution 2~/
When the resolution 2~/ decreases, the size of \//.2 decreases as well

Let {V;}jcz be a multiresolution of L3(R), a separable two-
dimensional multiresolution is composed of the tensor product
space : .

VF=vey

and {V?}cz is a multiresolution approximation of L2(R?).
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Separable multiresolutions

Definition ~ The approximation of an image f(xy, Xo) at resolution 2~/ is the
orthogonal projection of f on a space V]? that is included in L?(R?)
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Separable multiresolutions

Definition ~ The approximation of an image f(xy, Xo) at resolution 2~/ is the
orthogonal projection of f on a space V]? that is included in L?(R?)

The space V/‘2 is the set of all approximations at the resolution 2~/
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Definition

Separable multiresolutions

The approximation of an image f(x1, x2) at resolution 2~/ is the
orthogonal projection of f on a space V]? that is included in L?(R?)

The space V/‘2 is the set of all approximations at the resolution 2~/

When the resolution 2~/ decreases, the size of Vi2 decreases as well
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Definition

Separable multiresolutions

The approximation of an image f(x1, x2) at resolution 2~/ is the
orthogonal projection of f on a space V]? that is included in L?(R?)

The space V/‘2 is the set of all approximations at the resolution 2~/
When the resolution 2~/ decreases, the size of Vi2 decreases as well

Let {V}jez be a multiresolution of L2(R), a separable two-
dimensional multiresolution is composed of the tensor product
space : )

VP =VveV

and {V?};cz is a multiresolution approximation of L(R?).
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Orthogonal bases of a two-dimensional multiresolution

From the theory of tensor product spaces. . .

Theorem

if {¢),n}kez is an orthonormal bases of V;, then, for x = (xy, X2) and n = (ny, n2)

1 —2 —2
{(bﬁn(x) = &jn, (X1)Bj,np (X2) = 59’) <X1 2 M > @ <X2 o n2>}
ncz?

is an orthonormal basis of ij-

Warning : scale convention changed... ¢>/? () obtained by scaling by 2/ the two-dimensional separable scaling

function ¢2(x) = ¢(x1)é(xp) and shifting it on the two-dimensional square grid of intervals of
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Multiresolution vision

Multiresolution approximation a;[n4, nz] of an image at scales 2, for
—5 (coarse!l) > j > —8 (fine )
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Two-Dimensional wavelet bases

Let ¢ be the scaling function of {V? = V; @ V;} ez, a separable two-dimensional
multiresolution. As for the 1-d case, let W/? be the detail space equal to the orthogonal
complement of the lower resolution approximation space V/? - \/].271 :

2 _\2 2
Vi = Ve

Theorem  Let {¢, 1} generate a wavelet orthogonal basis (MRA) of L?(R).
We define three wavelets :

P(x) = p(x)v(x), ¥P(X) = v(x1)e(x), ¥3(X) = ¥(x1)¥(x2)

andfor1 < m<3

1 Xq —2fn1 Xo —2fn2
m _tom

i 1 2 3 i i 2
The wavelet family {@j,n, Y l/,j?n}nezg is an orthonormal basis of W/

The {¢] ,, 2,4} mezs is an orthonormal basis of L2(R?)
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Two-Dimensional separable wavelets
|¢X1 wX2|

‘¢X1 ¢X2 ‘
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Two-Dimensional wavelet decomposition

Separable wavelet transforms of a white square in black background and of Lena,
decomposed on resp. 4 and 3 octaves.
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Pyramidal Algorithm for 2-D wavelet decompositions

Columns
— ™
—r=1h } :&il+aj+|

i} g

=1 151
] .,."g—fdil

——d

e N
R UInlting
Columns Rows

1

el -Jf—z‘gih‘ - _““3 iy -—p—— 2

)

(b)

FIGURE 7.27 (a): Decomposition of a; with 6 groups of one-dimensional con-
volutions and subsamplings along the image rows and columns. (b): Reconstruc-
tion of a; by inserting zeros between the rows and columns of ;. and dj_ |, and
filtering the output.
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Thresholding Estimation

Let B = {gm}o<m<n—1, be a basis of some vector space S.

A diagonal estimator of f € S from the observation X = f + W can be obtained from :

N1
F=DX= Z dm (X [m]) gm

m=0
where the functions {dm}m—o,...n—1 form the diagonal operator that estimates the
component fg[m] independently from Xg[m]
There exist optimality results proving that the estimation risk
N—1
r(f) = Y E{lfs[m] — dm (Xs[m]) [*}

m=0

is close to the Oracle risk rp(f) (the risk one would obtain if f and W were known !)

R0 /ER



Thresholding Estimation
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Thresholding Estimation
Hard Thresholding

x ifx|>T W,

dm(x) = p1(X) = { 0 i <T
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Thresholding Estimation

Hard Thresholding

x ifx|>T

dm(x) = p1(X) = { 0 i <T

Soft Thresholding

X—T ifx>T
dn(x)=pr(x)={ x+T ifx<-T
0 if|x| < T
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Thresholding Estimation
Hard Thresholding A

x ifx|>T W,
pT(X)_{o if x| < T j

x—T ifx>T i
W,

dn(X) =pr(x) =< x+T ifx<-T /
0 if | x] <T

Soft Thresholding

>

Theorem (Donoho, Johnstone)  Let T = o+/2log(N), the risk r;(f) of a hard or soft
thresholding estimator satisfies for all N > 4

r(f) < (2log N + 1) (02 + rp(f)) .

Remark : the same risk bound holds true for coloured white noise cr%1 = E{|Wg[m]|?} and generalises to the

adaptive threshold T = om+/2log N
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Wavelet Thresholding

J 2 o—J
ZZ (X tim)) Yim + D, o1 ((X, $u,m)) u.m
1 m=0 m=0

The thresholding performs an adaptive smoothing of the observation that depends on
the regularity of the signal f : at scale j, wavelet coefficients above the threshold T
localise at the neighbourhood of sharp signal transitions.

(@) (b)
40 40
20 20
(a) : Original signal.
0 0 (b) : Noisy signal obtained by adding a
-20 -20 Gaussian white noise (SNR = 12.9db)
0 2000 4000 0 2000 4000 (c) : Estimation with a hard thresholding in
(c) (d) a Symmlet 4 wavelet basis (SNR = 23.5db)
(d) : Estimation with a wavelet soft threshol-
40 40 ding (SNR = 21.7db)
20 20
0 0
20 2000 4000 2% 2000 4000
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Image denoising with wavelet thresholding
Original Noisy (SNR=14.1dB) Wavelet coefficients

Thresholded coefficients Hard (SNR=19) Soft (SNR=19.7)

Hard denosing, SNA=19 Softdenoising, SNA=19.7

There exits a variety of advanced wavelet thresholding based denoising (e.g. shift
invariant wavelet demonising, block thresholding. . .)
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Deconvolution using a mirror wavelet basis

Frequency tiling of a mirror wavelet basis Deconvolution of an airplane image

FIGURE 10.14 (a): Original airplane image. (b): Simulation of a satellite im-
age provided by the CNES (SNR = 31.1db). (c): Deconvolution with a translation
invariant thresholding in a mirror wavelet basis (SNR = 34.1db). (d): Deconvo-
lution caleulated with a circular convolution, which yields a nearly minimax risk
for bounded variation images (SNR = 32.7db),

al,
0 N4 NR
Ky ky
N2
) MB a
W be \
1Y
14
A, n Ni
v |
[
‘ W WI.
LU
FIGURE 10,13

(ky k) into recta

Dounded factor, The lower frequencies are covered by s

the higher frequencies are covered by separable mirror wavelets 1),y
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Image Compression

Shannon (theorem) Let X be a source whose symbols {xx}1<k<x occur with
probabilities {pk }1<k<k. The average bit rate satisfies

Rx > H(X) = = px logs pk
k

Wavelet image code Let f, a N—by—N image and its wavelet decomposition
N2 —1

f=" tslmym
m=0

All wavelets coefficients are quantised with a uniform quantizer
O(x) = 0 if |x| < A/2
() =1 sign(x)kA if (k—1/2)A < |x| < (k+1/2)A

N2 —1

and the coded image 7 = Z O (fg[m])¥m requires a bit budget (total number of
m=0

bits needed to encode the N2 coefs.) R = N2 Ry.

The specific distribution of wavelet coefficients allows a small bit rate !
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Image Compression

GoldHill

FIGURE 11.6 These images of N? = 5127 pixels are coded with R = 0.5
bit/pixel, by a wavelet ransform coding.
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Image Compression

FIGURE 11.7 PSNR as a function of R. (a): Lena (solid line) and Boats (dottes

line). (b): GoldHill (solid line) and Mandrill (dotted line)

Lena Boats GoldHill Mandrill

o . o . o

am win s s

om o s oo

2 W SN W

0w w0 @ E = e ®

FIGURE 11.8 N lized h of orth 1 wavelet coeffici for | - —

each image,

FIGURE (1.9 Signi of ized wavelet coeffici for images
coded with R = 0.5 bit/pixel.
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Dyadic Wavelets (non-orthogonal)

Application of oriented (dyadic) wavelets in image processing lie in many
physiological and computer vision studies : Textures can be synthesised and
discriminated with oriented two-dimensional wavelet transforms.
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Dyadic Wavelets (non-orthogonal)

Application of oriented (dyadic) wavelets in image processing lie in many
physiological and computer vision studies : Textures can be synthesised and
discriminated with oriented two-dimensional wavelet transforms.

— multiscale edge detection from the local maxima of a wavelet transform.
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Dyadic Wavelets (non-orthogonal)

Application of oriented (dyadic) wavelets in image processing lie in many
physiological and computer vision studies : Textures can be synthesised and
discriminated with oriented two-dimensional wavelet transforms.

— multiscale edge detection from the local maxima of a wavelet transform.

Oriented wavelets (definition) In 2-d, a dyadic wavelet transform is computed with
several mother wavelet {1/%} <k<k Which have different spatial orientations.
For x = (x4, x2), we denote

k s X2
ul) = ot (0 %2)
and the wavelet transform of f € L2(R?) in the direction k, at position u = (uy, u) and
scale 2/

WHf(u,2l) = (f(x), vk (x — u))
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Dyadic Wavelets (non-orthogonal)

We can show that dyadic wavelet transform can generate a frame and there exist
reconstruction (dual) wavelets {dz"} such that
1<k<K

j:oo K . ~
fx)y=>" %;ka(.,zf)*ng(x)

j=—o00
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Dyadic Wavelets (non-orthogonal)

We can show that dyadic wavelet transform can generate a frame and there exist
reconstruction (dual) wavelets {zpk}1<k<K such that

J=00 K
1 .
0= 3 g S0 WHIC,2) w75 ()
j=—o0 k=1
For example, a wavelet in the direction o may be defined as the partial derivative of
order p of a window 6(x) in the direction of the vector 7i = (cos «, sin &)

P P
P(x) = 886’3(:) = (COSa% +sina%) 0(x)

k=p
= Z( k ) (cos a)¥(sina)? vk (x) (K=p+1)

k=0
oPo
and d/‘(x):%, for 0<k<p
Ox{0x;
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Dyadic Wavelets (non-orthogonal)
For appropriate windows 6(x), these K = p + 1 partial derivatives define a family of

dyadic wavelets. In the direction « the wavelet transform W<f (u, 2f) is computed as a
linear combination of the p -+ 1 components WXf (u, 2/).
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Dyadic Wavelets (non-orthogonal)
For appropriate windows 6(x), these K = p + 1 partial derivatives define a family of
dyadic wavelets. In the direction « the wavelet transform W<f (u, 2f) is computed as a

linear combination of the p -+ 1 components WXf (u, 2/).

For example

2 2 WO(x) = 2900 _ _y o(x
e(x)—exp<_X1+Xz> R B e e
i W00 = ) = —x000)
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Dyadic Wavelets (non-orthogonal)

For appropriate windows 6(x), these K = p + 1 partial derivatives define a family of
dyadic wavelets. In the direction « the wavelet transform W< f (u, 2/) is computed as a
linear combination of the p -+ 1 components WXf (u, 2/).

For example
X 423 iy | )= T = e0)
0(x) =exp [ ———2 | and p=1=4(x) = 06(x)
V(X)) = b = —x0(x)

Ondelette dérivée d"une gaussienne Ondelette dérivée d'une gaussienne
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Dyadic Wavelets (non-orthogonal)

Gabor Wavelets

2 4,2
Pk (x) = exp <—X1:X2) exp[—in(xy cos ak + X2 sin ay)]

Gabor Dyadic wavelets Oriented Morlet wavelet

Ondelette orientée de Morlet

I

A
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Dyadic wavelet transform of textures
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Dyadic wavelet transform of textures

classification
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Dyadic wavelet transform of textures

classification segmentation
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Dyadic wavelet transform of textures

classification segmentation

6=0 a=2"3 0=2a=2"

0=0 a=22 0=2a=22

51 /RA



Multiscale edge detection

Goal Detect points of sharp variation in a image f(x1, X2)
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Multiscale edge detection

Goal Detect points of sharp variation in a image f(x1, X2)

) - of of
Canny Algorithm  Calculate the modulus of the gradient vector Vf = (87’ 87)
1 2

The partial derivative of f in the direction fi = (cos «, sin ) is
of

¢ 5= 2" cos + O gin
—=V.-n=— a+ —sina
on 0x4 OXo

f .. . -
‘% is maximum when riis collinear to Vf
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Multiscale edge detection

Goal Detect points of sharp variation in a image f(x1, X2)

. . - f f
Canny Algorithm  Calculate the modulus of the gradient vector Vf = (E?T’ %)
1 2

The partial derivative of f in the direction fi = (cos «, sin ) is

O .= 9 cos + O i
8ﬁ o o 8X1 @ 8X2 @

of |, ) . . -
9 is maximum when riis collinear to Vf

= Vfis parallel to the direction of maximum changes of the surface f(x)
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Multiscale edge detection

Goal Detect points of sharp variation in a image f(x1, X2)

. f f
Canny Algorithm  Calculate the modulus of the gradient vector Vf = (;7, 887)
1 2

The partial derivative of f in the direction fi = (cos «, sin ) is

O .= 9 cos + O i
8ﬁ o o 8X1 @ 8X2 @

of | . . . ) =
9 is maximum when riis collinear to Vf
n

= Vfis parallel to the direction of maximum changes of the surface f(x)

A point y € R? is defined as an edge if |V(x)| is locally maximum at x = y
when x = y + AVf(y) in the vicinity of y (i.e. X small)

Edge points are inflexion points of f
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Multiscale edge detection

Wavelet Maxima for images
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Multiscale edge detection

Wavelet Maxima for images

Let us consider the Gabor dyadic (oriented) wavelet

900 = { ¥ = %) = —xef()

Wi(x) = % = —x0(x)

and the corresponding dyadic wavelet transform

WHf(u,2/) = (f(x), 95 (x — u)), k=01
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Multiscale edge detection

Wavelet Maxima for images

Let us consider the Gabor dyadic (oriented) wavelet

900 = { ¥ = %) = —xef()

w'(x) = B = —xi6(x)

and the corresponding dyadic wavelet transform

WHf(u,2/) = (f(x), 95 (x — u)), k=01

We can show that the wavelet transform components of a image f verifies

WOf(u,2))

Wi(u,2)) = ( W'i(u, 2))

) =2V (fx0y) (u)  (multiscale)
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Multiscale edge detection

Wavelet Maxima for images

Let us consider the Gabor dyadic (oriented) wavelet

900 = { ¥ = %) = —xef()

4100 = et = —x0(x)

and the corresponding dyadic wavelet transform

WHf(u,2/) = (f(x), 95 (x — u)), k=01

We can show that the wavelet transform components of a image f verifies

WOf(u,2))

Wi(u,2)) = ( W'i(u, 2))

) =2V (fx0y) (u)  (multiscale)

An edge point at scale 2/ is a point v such that ‘ Wf(u, 2/)’ is locally maximum

atu = v when u = v+ Aangle { Wt(u, 2/)} (for A small enough)
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Multiscale edge detection
Wavelet Maxima for images

<@

ojo o]

0o
NPy

-
|
_d|

-

- -

(b) ()

FIGURE 6.9 The top image has N? = 128? pixels. (a): Wavelet transform
in the horizontal direction, with a scale 2/ that increases from top to bottom:
{W'F(1,2/)}_gejeo. Black, grey and white pixels correspond respectively to
negative, zero and positive values. (b): Vertical direction: {W?f(1e,2/)} < 0.
(c): Wavelet transform modulus {Mf(4,2/)}_s<j<o. White and black pixels
correspond respectively to zero and large amplitude coefficients. (d): Angles
{Af(u,2)} -6< j<o at points where the modulus is non-zero. (¢); Wavelet modu-
lus maxima are in black.

g

RA/RA



Multiscale edge detection

Wavelet Maxima for images

FIGURE 6.10 Multiscale edges of the Lena image shown in Figure 6.11.
@: (W' (0, 27)} 1cjea. (b): {W2 £ (u,27)} 93 (€0 {Mf(u,27)} 7je s
(): {Af(u,2)} 7<jc_3. (e): Modulus maxima. (f): Maxima whose modulus
values are above a threshold.
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Reconstruction from Wavelet Maxima lines

i)

FIGURE 6.11 (a) Original Lena. (b): Reconstructed from the wavelet maxima
displayed in Figure 6.10(¢) and larger scale maxima. (¢): Reconstructed from the
thresholded wavelet maxima displayed in Figure 6, 100} and larger scale maxima,
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