Where do wavelets come from? — A personal point of view
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The subject area of wavelets, developed mostly over the last fifteen years, is con-
nected to older ideas in many other fields, including pure and applied mathematics,
physics, computer science, and engineering. The history of wavelets can therefore
be represented as a tree with roots reaching deeply and in many directions. In this
picture, the trunk would correspond to the rapid development of “wavelet tools”
in the second half of the 1980’s, with shared efforts by researchers from many dif-
ferent fields; the crown of the tree, with its many branches, would correspond to
different directions and applications in which wavelets are now becoming a standard
part of the mathematical tool kit, alongside other more established techniques. The
bulk of this issue represents several of these branches; this historical introduction is
concerned with the roots and the bottom part of the trunk.

Because of the many roots of the subject, there are many approaches to tackling
its history. Lacking the time, space, and expertise (historical research has its tools
and techniques too!) to give a truly scholarly history, I have chosen to be resolutely
subjective, and to start from the root through which I entered this field. This is
not the most ancient or the mathematically deepest root, but it does have one good
claim to be at the start of this story: it is the root where wavelets acquired their
name. [ also believe it is the direction which catalyzed the whole wavelet synthesis.
As we proceed up the root system, and simultaneously advance in time, we will
come to points where different syntheses were made, with developments from other
disciplines; at these points we will peek back for a short description of what happened
earlier along those other roots. To emphasize the informality of this story, I decided
not to give any precise references.

It is clear that all this results in a highly personal version of the development of
wavelets; similar stories told by a harmonic analyst or an approximation theorist
or an electrical engineer would all be quite different from mine or from each other.
Such other points of view can be found in the introduction to several wavelet books
or in book reviews, see e.g., J. Benedetto and M. Frazier's 1994 volume on Wawvelets:
Mathematics and Applications, the book review by Y. Meyer in the Bulletin of the



American Mathematical Society in 1993, or the recent book by M. Vetterli and J.
Kovacevi¢.

In the late 1970’s, J. Morlet, a geophysical engineer at the French oil company Elf
Acquitaine, came up with an alternative for the short time Fourier transform. The
standard procedure, which consists of first windowing a signal, and then comput-
ing its Fourier coefficients, amounts to taking the inner product of the signal with
windowed Fourier functions depending on two parameters — the location of the win-
dow and the frequency label of the different coefficients. The signals which Morlet
wanted to analyze did consist of different features in time and frequency which he
wanted to disentangle, but typically their high frequency components would have a
shorter timespan than their low frequency components. In order to gain time res-
olution for the high frequency transients, he could choose to do a wide-band short
time Fourier transform; on the other hand, he also wanted good frequency resolu-
tion for the low frequency components and that called for a narrow-band short time
Fourier transform. In order to achieve both aims in one single transform, Morlet
came up with the idea to generate the transform functions in a different way: he
took a windowed cosine wave (using a smooth window — his favorite is a Gaussian
window with its width adjusted so that the peaks closest to the central peaks had
about half its amplitude), and compressed this in time to obtain a higher frequency
function, or spread it out to obtain a lower frequency function. In order to inves-
tigate what happened at different times, these functions were shifted in time as
well. The transform functions depended thus again on two parameters: their time
location and their degree of compression or scale. He then would take the inner
product of the signal he wanted to analyze (usually seismic data) with all these
transform functions. There was one crucial difference with the transform functions
in the standard Fourier transform: in Morlet’s approach, the high frequency func-
tions were very narrow, while the low frequency functions were not! Many different
choices of reference function existed in other contexts in geophysics, and were called
“X’s wavelet” (if invented or proposed by X); Morlet chose to call his transform
functions “wavelets of constant shape.” When, a few years later, the transform
of Morlet left the geophysics arena, other researchers soon dropped the qualifier
“of constant shape” — the wavelet transform was born! But at the time, Morlet
had a hard time convincing his geophysics colleagues that this was a worthwhile
mathematical tool — he once paraphrased his audiences’ attitude as: “If it were
true, then it would be in the math books. Since it isn’t in there, it is probably
worthless.” Undeterred, Morlet looked for help in giving a sounder mathematical
footing to his wavelet transform. A friend from his student days referred him to
A. Grossmann, a theoretical physicist who had worked extensively in quantum me-
chanics, where similar problems occur when one tries to pin down local features in
a function as well as in its Fourier transform. Grossmann recognized in Morlet’s
transform something similar to the coherent states formalism — a technique he had
used profitably in quantum mechanics (and which he had taught me as well when
I worked on my Ph.D. thesis under his direction). He constructed an exact inver-



sion formula for Morlet’s integral transform, and they explored several applications
together. (Later, it turned out that this particular form of coherent states and the
inversion formula had been constructed earlier by E. Aslaksen and J. Klauder in
the completely different framework of building a toy model for quantum gravity.)
Having worked on different topics as a postdoc, I learned about wavelets on a visit
to Marseille in Spring 1985, and started working on wavelet series (as opposed to
integrals). Grossmann suggested that we explore the concept of frames (defined in
the article by A. Cohen and J. Kovacevi¢ in this issue) in this context, which turned
out to be a crucial ingredient.

In the meantime, a very important merging of wavelet roots was about to happen.
That same Spring (1985), Y. Meyer, a pure mathematician then based at the Ecole
Polytechnique near Paris, heard serendipitously (while waiting in line for a photo-
copying machine!) about the work of Grossmann and Morlet. When he read their
papers, he realized that their analysis and reconstruction formula was a rediscovery
of a formula that A. Calderén had introduced in harmonic analysis in the 1960’s.
“Harmonic analysis” is a discipline in pure mathematics that grew out of Fourier
analysis; among the many directions within harmonic analysis, a very important field
concerns the study of singularities, integral operators with singular kernels (such as
the Hilbert transform), oscillating singular integrals, .... One of the roots of this
field is Littlewood-Paley theory, developed in the 1930’s, which uses dyadic (i.e., in
blocks that scale by factors 2) regroupings of the Fourier transform of a function in
order to deal with and characterize more effectively the singularities of this function.
This regrouping by scale is a fore-shadowing of the role scaling plays in the wavelet
transform. Similarly, Calderén’s formula, designed to be a tool in the analysis of
certain integral operators with singular integral kernels, used different scales, in a
manner similar to the wavelet transform of Grossmann and Morlet. After all, a
singularity is really an extremely localized manifestation of very high frequencies, so
it is not surprising that a wavelet approach, with its increasingly precise localization
as the frequency increases, would be appropriate.

Meyer, a pre-eminent expert in this field, recognized these links with harmonic
analysis; aside from the all-too-human reaction of “But we knew all this a long time
ago!” (a reaction wavelet researchers would meet again and again as other mergings
happened), he was also enthusiastic about this whole new area of applications for
harmonic analysis insights, as well as intrigued by the different interpretation that
Grossmann and Morlet gave to Calderén’s formula. He got in touch with them, and
this marked the start of an interaction between pure harmonic analysts and applied
researchers that would benefit both communities. Meyer was intrigued especially by
the wavelet series; they systematically used redundant families of wavelets because
of a subliminal belief that redundancy was unavoidable in order to obtain good time-
frequency localization (as is the case for the Gabor transform). (Similar series were
in fact developed around that time by harmonic analysts M. Frazier and B. Jawerth
as well, independently of the wavelet series development.) After he had identified
this subliminal message, Meyer had the typical and healthy mathematician’s reflex of



wanting a proof for this belief. A few weeks later, he had not a proof but a beautiful
construction of an orthonormal wavelet basis with excellent time-frequency localiza-
tion properties. With P.G. Lemarié, he soon afterwards generalized this construction
to N dimensions. (Later it turned out that J.O. Stromberg, another harmonic ana-
lyst, had constructed a different orthonormal wavelet basis a few years earlier, but
its importance had not been realized at the time.) Meyer’s wavelet basis resulted
from a very intriguing and seemingly miraculous cancellation if he set things up
just right. A few months later Lemarié and G. Battle came up, independently, and
by completely different techniques, with constructions of wavelet bases consisting of
spline functions, with better decay (exponential) than Meyer’s wavelets, et the price
of some loss of regularity (C* instead of C*). (Lemarié, a student of Meyer, is a
harmonic analyst; Battle, however, is a mathematical physicist, long interested in
quantum field theory. Together with P. Federbush he had built an elaborate machin-
ery, which became technically much simpler after the discovery of smooth and well
localized wavelet bases. Battle’s constructionwas inspired by renormalization group
techniques, a tool used in quantum field theory, that involves studying phenomena
at different scales.) These constructions were very ingenious, but they both had an
“ad-hoc” feel. A different understanding of these bases was just around the corner.
It would lead to another important merging of roots for our tree.

In the summer of 86, S. Mallat, then a graduate student at Penn, had taken a
break to go on vacation. There he met an old friend from his undergraduate days,
who was now a graduate student of Meyer’s, and who mentioned the new wavelet
bases to him. (Yes, another serendipitous encounter. This one even took place on a
beach.) Mallat was immediately very interested, mainly because he recognized con-
cepts familiar from a very different framework. In Mallat’s field of specialization,
computer vision and image analysis, it was common wisdom that coarse features in
an image are (almost by definition) large-scale objects, whereas fine-scale features
should be studied much more locally. (This fails when you talk about textures,
where fine scale features can have a very large correlation length.) This principle
was at the basis of the scale-space representation of A. Witkin, and it inspired the
Laplacian pyramid constructions of P. Burt and E. Adelson. So the “philosophy”
of wavelet decompositions, where you use very narrow functions for the fine scale
features, and much wider ones for coarse features, fitted beautifully into this view.
In vision theory, one way to build multi-scale representations is to strip away the
different scales layer by layer. In the Laplacian pyramid scheme, for instance, you
compute a blurred version of the picture, and you subtract it from the original;
the difference gives you the desired fine scale features which you break up in tiny
“elementary” pieces. Successive layers of decreasing spatial resolution are obtained
by repeating the procedure on the blurred picture. Thinking about all this after his
return to Penn, Mallat conceived of a similar layered structure for wavelet expan-
sions, in which all the terms corresponding to one scale in the wavelet decomposition
of a function did indeed give the difference between two successive approximations.
Upon hearing that Meyer would be visiting Chicago that Fall, he arranged to meet



him there, and in the next few days, the two of them hammered out all the math-
ematical details of “multiresolution analysis”, a framework that explained all the
“miracles” in the wavelet bases constructed up till then, and that made it very easy
to construct other orthonormal wavelet bases. (There exist pathological wavelet
bases that do not fit into this framework. But in 92, Lemarié and P. Auscher would
prove that if the wavelet basis has any decency, i.e. as soon as the wavelets have
any reasonable time-frequency localization properties, it necessarily stems from a
multiresolution analysis.) More important even, multiresolution analysis led to a
simple and recursive filtering algorithm to compute the wavelet decomposition of
a function from its finest scale approximation. The filters that corresponded to
the bases of Meyer or Battle-Lemarié are infinite and must be truncated for direct
implementation. (Although other implementations, via FFT and multiplication in
the Fourier domain, also work, without truncation. On the other hand, it was later
realized that Stromberg’s earlier basis corresponds to IIR filters with rational 2z-
transforms, so that its implementation can be done directly, without truncation.)
This begged the question of how to get wavelet bases for which such truncation was
not necessary. The answer was to work backwards: instead of deriving the filters
from a wavelet basis, construct first a pair of appropriate FIR filter, and then in-
vestigate whether they correspond to an orthonormal wavelet basis. This was the
point of departure for the construction in early 1987 of orthonormal wavelet bases of
compactly supported wavelets. (A complete characterization of filter pairs that give
rise to orthonormal wavelet bases would be given by A. Cohen and W. Lawton a few
years later.) The use of filters in wavelet decompositions led to the next merging of
roots, with subband filtering in electrical engineering.

Electrical engineers, like harmonic analysts, had been long accustomed to the idea
of grouping frequencies together in bands with a width proportional to the average
frequency in that band. This is constant relative-bandwidth or constant-() filtering.
One way to obtain such a splitting is to work iteratively: first the full range of
frequencies (of a bandlimited function) is halved by applying two filters, one high-
pass, one low-pass. The lower frequency half can then be halved again, and so
on. Since the different components that result from this procedure have different
bandwidths, they correspond to different Nyquist sampling rates; an easy way to
obtain the “correctly” sampled versions of all the components is to retain only
half the output samples at every filtering step. Because the filters used are not
perfect, such critical sampling gives rise to aliasing that can lead to unacceptable
artefacts at reconstruction if the filters are not designed carefully. In the 70’s, A.
Croisier, D. Esteban and C. Galland discovered a design procedure that led to exact
cancellation of the aliasing: quadrature mirror filters (QMF) were born. Then,
about ten years later, in 1983, M. Smith and T. Barnwell, and independently F.
Mintzner, discovered QMF-like pairs that gave exact reconstruction. (M. Vetterli
made this same discovery independently as well, a little later.) These conjugated
quadrature filter (CQF) pairs were exactly the type of filter pairs that researchers in
search of orthonormal wavelet bases would rediscover a few years afterwards, from a



completely different angle. (The mathematical properties that were usually asked of
the wavelet bases, such as smoothness, also made for different design constraints.) In
fact, by the time the wavelet builders became aware of the CQF development, Smith
and Barnwell and their students had moved on to more complicated constructions
that would design many more filters simultaneously, rather than a structure with
two channels at every split, as described above; for many practical EE applications
they had in mind, this leads to better performance. (Even within the tree structure,
Smith and Barnwell would typically split all the branches, every time, instead of
splitting only the lowest frequency band. I have emphasized the latter procedure
above to make it as clear as possible how wavelet filtering fitted into established
subband filtering practice.)

The nice and easy filter implementation of decompositions into wavelet bases was
therefore nothing new to electrical engineers, and the hype that would arise around
wavelets caused surprise and some understandable resentment in the subband filter-
ing community. In the end, the mutual awareness of the wavelet and the subband
filtering communities nevertheless benefited both. Wavelet reserachers benefited
from the work and insights of Vetterli and his students, or of P.P. Vaydyanathan
and his collaborators. On the other hand, the different point of view of wavelet the-
ory, which emphasized time or spatial localization as much as frequency localization,
on which traditional filtering was more exclusively focused, led to the development
of approaches and applications rooted in the mathematical understanding of wavelet
bases and their approximation properties, that would not have followed naturally
from only the subband filtering algorithms.

The approximation properties of wavelets bring me to yet another merging of roots
that took place at about the same time. Approximation theorists became inter-
ested in wavelets, which fitted quite naturally into their field after the advent of
multiresolution analysis. Many of the insights from harmonic analysis were writ-
ten by Meyer in the form of inequalities that established correspondences between
smoothness and/or decay properies of a function and how well it could be approx-
imated by its wavelet expansion in various norms. This is of course right up the
alley of approximation theory. The mathematically important feature of all these
inequalities is that they use only the absolute values of the wavelet coefficients, not
their signs (for real coefficients) or phases (complex case). In mathematical par-
lance, wavelets provide “unconditional bases” for large classes of functional spaces;
this concept is of interest to both harmonic analysts and approximation theorists.
These mathematical properties turn out to be important from the point of view of
applications as well, as shown by the work of, e.g., W. Dahmen (numerical analysis),
R. DeVore (most recently in nonlinear approximation) and D. Donoho (statistics)
and their respective collaborators. For many mathematical applications, it is useful
to have wavelets that are spline functions; in that case the corresponding multireso-
lution analysis of nested spline spaces has of course been known and loved by many
generations of approximation theorists.

It would be easy to go on for many more pages about interesting links between



wavelets and numerical analysis, or computer science (especially graphics), or quan-
tum physics, but I don’t want to try the reader’s patience unduly. (Some of these
links will come up in the review articles, or in the summing-up article by W. Sweldens
at the end of this issue.)

Moreover, in this tale I have really concentrated on one strand only in the wavelet
skein, namely wavelet bases. Rich developments took place also in very redundant
wavelet representations, and there too, links with other fields were made. Orthonor-
mal wavelet bases also give rise to wavelet packet bases; it is noteworthy that their
construction was inspired by viewing wavelet decompositions as a sequence of filter-
ings. Wavelet bases need not be orthogonal; a straightforward generalization works
with two dual wavelet bases (“biorthogonal wavelets”), which are often preferred
in applications. Another idea “whose time had come” are the lapped transforms,
discovered independently by P. Cassereau, by H. Malvar, and by J. Princen and A.
Bradley, and rediscovered a few years later by R. Coifman and Meyer, who found
that, like wavelet packet bases, they fit in a scheme where different branches can
be regrouped at will, in a search for an ever-better (because more efficient) rep-
resentation. This leads to the best-basis algorithms of Coifman, Meyer and M.
Wickerhauser. All these developments led to more interconnections, more mergings,
more rediscoveries with a different twist, but that, as Kipling would say, is another
story.

In summary, the development of wavelets is an example where ideas from many
different fields combined to merge into a whole that is more than the sum of its
parts — many of the applications that will described in the review articles in the
remainder of this issue would not have been possible if this merging had not taken
place. I have very much enjoyed being a part of this process. I wish there were
many more examples of such interconnections — we would all benefit from them.



