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Multifractals in Nature
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Wavelet characterization of Holder Exponent
Wavelet Decomposition

Definition
ek = 277 [wr @t - Ky a@®) dt, (j,k) € 22
Vanishing moments

/tw(t)dt:o, r=0,... R—1.

Oscillatory behavior measure

x has local Holder regularity a(t) at time ¢

U

a(t) @ lcjgl =0 (QjO‘(t)) k27 >t



Holder Spectra
(Regularity Spectra)

Typically, a process will possess many different
singularity strengths. The frequency (in t) of
occurrence of a given singularity strength « is
measured by the multifractal spectrum

Hausdorff spectrum (geometric spectrum)

frla) = dimy{t: a(t) = a}

fn(a)




Holder Spectra
Grain Spectrum (Large Deviation principle)

An adaptation of the Box-counting dimension to the
multifractal case

e Define a iso-a 27-covering

MIi(a,e) = #{lc ; |ai—a| <5}

e with “free” choice of Grain exponent
ai = %Iog sup, {|z(t) —z(s)| : (k—1)27 < s <t < (k+2)27}

1
J

(M7 (e, e) = # {k : 2000H) < ey < 2079}

= 777

e The Grain Spectrum reads

1 .
fo(a) = lim lim ——logy M7(a,¢)
e+0g——c0 9

fula) < fg(a)




Holder Spectra
Legendre spectrum (statistical spectrum)
e Log moment generating function

S lejrl? = O(QJT(Q)>
k

e wavelet-based Legendre Spectrum
fula) == inflag—-T(g9)) = T7(a)

fu(a)

frla) < fola) < fi(a)




Multiplicative Random Cascades

The most well known processes with truly multifractal
properties

Scaling —— Strong dependence
Multiplicative —— Log-Normal
Tree —— Fast algorithms (wavelets)

Binomial cascade : a paradigm

I.1.d. random variables

{ ; i=O,—1,—2,...}
120

k=0,...,27'—1

Define the random -
measure p on dyadic
Intervals
u([k;27, (k; 4+ 1)279]) I e T ||

— .0 1 J

with mass conservation

i+1 i+1
Kok +'“’2k+1 =1



Multifractal Cascade Process

t
M(t) = / dys
0]
measure process
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e Rescaling property (self similarity)

M(2T (k) =M (27 (k45)) L W;-(M(£)—M(s))

- d 0 . .1 J

e Stationarity of increments / Scaling of moments

E|M(t) — M(8)|? = |t — s|T(D

(binomial process: holds for t = k27, s = (k + 1)2/
and for stationary multifractals in general
e.g. Lévy motions, T'(q) = qH)



e True multifractal spectrum - Closed form
Depends on the distribution law of the multipliers
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e Monotonous increasing process



Fractional Brownian Motion

Unique process that:

1. is Gaussian
2. Is statistically self- similar
d +H
Bpg(At) = M Bh(t), 0<H<1
3. has stationary increments

Gy(t) = Bg(t+ A) — By(t)

e Self-similarity implies non stationarity

2
EBy (t)By(s) = %(|t|2H+|8|2H_|t_S|2H)

e Long-range dependence when H > 1/2

EGyg(t)Gy(t+ 7)] ~ 7_2H—2’ > A

e Mono-fractal process: a(t) = H, Vt
— degenerated (trivial) singularity spectrum



Multifractional Processes

Previous attempts exist towards

“Multifractal Processes”

1992 Generalized Weierstrass functions
(P. Flandrin, P. Goncalves)

1998 Construction of continuous functions with prescribed
local regularity
(Y. Meyer, K. Daoudi, J. Lévy Vehel)

1998 Generalized Multifractional Brownian Motion
(A. Ayache, J. Lévy Véhel)

1999 Locally self-similar processes
(S. Cohen, J. Istas, A. Benassi)

others...



Multifractional Motion

Let:

1. By(t) be a fractional Brownian Motion
2. M(t) be a multiplicative process
and consider the compound process:

B(t) := Bg(M(%))

Fractional Brownian Motion in Multifractal Time

e Covariance structure
07215 [|M(t)|2H + IM()|PH — |M(t) — M(8)|2H]

e Special cases

- H=1/2
G(k) == B((k+1)A) — B(kA)
IS decorrelated, but dependent

— H>1/2

B exhibits long range dependence



Multifractional Motion

B(t) inherits from the rich multifractal structure of the
underlying multiplicative cascade process M (t)

@) = i (%)
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15 w ‘ ‘ ‘
1,
0.5¢ 1
0 4
T Singularity Spectra
1 e
M%)
1 | | _ .\._‘{{,._.
08 s
0.6f
041
0.2f
0 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1 ; 5 | _‘
0.5 w w w 00 ' ' 05 1I 15 2




Wavelet Analysis of Multifractional Motions

A wavelet-based multifractal spectrum estimator
relies on the empirical high order moments of the
wavelet coefficients

1
T(q) == 1im =109y |ej4lf
J—>—00 ) 2 ’

Potential obstacles:

e non-stationarity of multifractional process B can carry
over to the wavelet coefficient series of its decompo-
sition

e Long Range Dependence intrinsic to B, (H > 1/2)
may affect the convergence of the empirical estimator



Statistics of Wavelet Decomposition

e ldentical distributions

d H , d ‘
cir = (W;)7 co0, (withW; = Mgowilmﬂ‘ij)

1 . admissible wavelet with compact support
M . verifies rescaling property
By . self-similar process

e Wide sense stationarity

]Ecj,k;c',k’ —
2 .
—%Q—J/zp(t) / 1s|TCH (4 275 — (k — K'))ds dt
M : satisfies to scaling of moments for ¢ = 2H

E|M(t) — M(s)|?H = |t — s|T(H)
Covariance structure of B

The wavelet decomposition of a fBm in
multifractal time is stationary at each scale



Statistics of Wavelet Decomposition

e Fast decay of the correlation

R

Ecjicipy = O (|k - k'|T(2H)_2R> , |k — K| = o0

1. R vanishing moments

iMoo WP = bR

inc. of B: T(2H) —2>-1 — LRD
cjr: T(2H) —2R < -1 — nolLRD

= 1(Haar)- H = 0.5
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Legendre Spectrum Estimation

Multifractional Motion B(t)
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Wavelet based Legendre Spectrum estimate
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Conclusion

e multifractals: varying degree of local variability
(volatility in economics, variability in biomedical,. . .)

e wavelets: powerful estimation tool with favorable
statistical properties

e fBm in multifractal time: versatile process with
multifractal structure and LRD



Wavelet characterization of Holder Exponent

x(t) : arealtime process

0 < a(t) <1 :local regularity exponent (Holder)

Vs |z(s) —z(t)| < c|s —¢|*®)

Wavelet Decomposition
Definition
ek = 27 [wr @t - Ky a@®) dt, (k) € 22
Vanishing moments

/tw(t)dt:o, r=0,... R—1.

Oscillatory behavior measure

x has local Holder regularity a(t) at time ¢

U

a(t) = sup {oz > ekl = O (2j0‘) k20 — t}



