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Time versus Frequency Representations

z € [*(R,dt) : {x ; /R|zc(t)|2dt < +oo}

Time Representation (Shannon)

() = /_ " () 6(u— 1) du

o0

z(t) = (x,6)

e “natural description” of the signal in the observation space (waveforms)

e perfectly localized on the time axis

Frequency Representation (Fourier)

X(f) = /_Jroom(u)e_ﬁ”f“du

o

X(f) - <x’ef>

e harmonic description (waves, periodicity)
e perfectly localized on the frequency axis

e invertible

oty = [ X(f)egs

—



Time versus Frequency Representations

Signal model: X,x(f) = Cf DNy (f)

k
Ui(f) = —2« (cf —I—tof—l—fy)
signal in time (real part) signal in frequency (spectrum)
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Instantaneous Frequency and Group Delay

Instantaneous frequency (analytic signals)

Group delay (analytic signals)

X(f)=BHeU(f) = u(f)r%‘dq:z}f)

Reciprocity

For large time bandwidth product signals:

te (fa(t)) ~ t

Signal model:
Xpi(f) = CF D y(f) with  y(f) = — 27 (cff+tof +7)

to(f) = ckf* 141

frequency

time



Atomic Joint Time — Frequency Representations

Signal model: X,x(f) = Cf DNy (f)

k
Ui(f) = —2« (cf —I—tof—l—fy)
signal in time (real part) signal in frequency (spectrum)
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Atomic Joint Time — Frequency Representations

Shannon
1/2
OO T
time
z(t) = (z,6)
To(t, f; 9)
Gabor
1/2
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time
gip(u) = glu—t)e?/

Fourier
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Atomic — Based Energetic Representations

Some Properties

Energy distributions

Jewpa = m= [IxoPg

/ ITa(t, f 5 ) df de

pe(t, f) = |Talt, f; 9)

Covariance properties

Spectrogram (Weyl-Heisenberg group) Scalogram (Affine group)
2 2
et ) = | [ot g =il e = | [aw g (£-0)a
o(t) —  z(t —to) e2ht z(t)  — a7z ()
| | | l
p:r(t,f) - pI(t_thf_fO) pm(t,f) — Pz (%luaf)

L ocalization

Atoms’ shape plus Heisenberg uncertainty principle precludes a perfect localization

on group delays trajectories



Energetic Bilinear Representations

A Generalization of atomic — based energetic representations:

ITz(t, f5 9) // (v) g7 (1) 1,5 (v) du dv

pz(t, f; K) // K(u,v; t, f)dudv

such that // p(t, f; K)dtdf =

most general formulation for bilinear time-frequency representations
[
theoretical properties of p <= structural properties of K
[

imposing displacement covariance properties on p

yields different classes of solutions



Cohen’s class

Weyl — Heisenberg : time shifts 4 frequency shifts

gj(t) — I’(t — t(]) €i27rf0t
|
pu(t, f; K) — pu(t —to, f — fo; K)

yields the Cohen's class of time-frequency representations :

Cz<t7f) = //Wm(Tag)H(T_tag_f)def

with the Wigner-Ville distribution defined as :
Wea(t, f) 2 /x (t 4 %) 7 (t _ g) o2 T g

e Wigner-Ville localizes on linear chirps :

{x(t) = exp(ip(t)) = W,(t,f) = 6(f — fu(t))

fm(t) = fO + ﬂt
e Wigner-Ville is unitary :
()" = (Wa, W)
2

an illustration: |y, f; 9)]> = ‘/x(u) g*(u—t) emi2nfu gy

— //I/VJC(T,E)WQ(T_],/Ljf_f)al,ral‘g



Localization of the Wigner-Ville Distribution

Wy(t, f) = /x (t + g) z* (t — g) e I dr

linear chirp

1/2

f @=f (h+ar







Affine class

Affine group : time shifts 4+ scale changes

z(t)  — a7z ()
!
pa(t, f; K) — po (52, af ; K)

yields the Affine class of time-frequency representations (J. & P. Bertrand) :

Pt f) = fg(m)_q/#k(u)X(f)\k(u))X*(f)\k(—U))emtfg’“(“) du

(Wm@f, D= [XU7-¢2) X (7 +¢/2) e df)

with the parametrizing functions :

M) = (k52)T, ke R\{0,1)

ho(w) = —% 3 A(u) = exp (1+;§‘_"1)

Ax(u) Golu)
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Affine Wigner Distributions

e Unitarity (k € R)

+o0 2

(a9 = X(N)Y*(f) £ df

0

— (k) (k) 2

= mw) = (B2) uw) a-uy ™

(Moyal formula)

e Localization (k¥ < 0)

for {Xos(f) = O/ WMD) = talf) = 1o + ek f)

PE(t, f) = C* f D §(t — ta(f))

x

= ) = By

Possible matching between these P*)'s distributions and a class of infinitely extended
signals exhibiting a power law modulation law in order to obtain a perfect localization

in the time-frequency plane



Affine Wigner Distributions: Exemples

e k = 0 : unitary Bertrand distribution

Ao(u) = 1_ue_u ;o po(u) = (W) o

v/ localization on hyperbolic group delay paths

\/ unitarity
e k = —1: active Unterberger distribution
Ai(u) = e? 5 u_y(u) = cosh(u/2)

v/ localization on time-frequency paths of the form : t, + 3 f~2

v/ admits an isometry-like relation :

= [ [ B R g prdr

with the passive form P{"U(¢, f),

“+00

X(HY () f

0

resulting from an affine filtering of the active form P~V (, f)



Localization: a by-product of interferences

2 signal components centered around (t1, f1) and (t2, fo2)

will interfere at location (¢;, f;) determined by

fi = OW (fi, f)

1 11
thT = o (tf—l,tg—l)

Ju

1 yk _ I’k E-1
with the generalized Stolarsky mean: ©®)(z, ) = (E )
y—x

f1r

f2r

t1 t2

Localization of P*) along t,(f) = to+ ck f*~!, the “globally invariant" structure

with respect to ©*)



Limitations

PPt f) = prn / po () X (FA0()) X (f (=) €270 dy

v/ P®)'s distributions are difficult to compute:

e the entire signal enters their definition

e in general (for arbitrary k's) the function (j is not analytically invertible

\/ in the class of chirp signals, how to approximate affine Wigner distributions?

e pseudo affine Wigner distributions (P. Gongalves & R. Baraniuk)

p(k) 4 p () u) f e x ) F u
P02 [ s T M 0TS (- )

e reassignment methods (K. Kodera, R. Gendrin & C. de Villedary
F. Auger, P. Flandrin. & E. Chassande-Mottin)



Reassighment methods

The spectrogram: a local time-frequency smoothing of the Wigner distribution

2
|m@J;mF:=\/xmm%u—w5wmwu

_ // Wi, &) Wolu — £, € — f) du dg

The reassigned spectrogram: principle

To move the spectrogram coefficients from the geometrical center of the kernel W,

to the local centroid of the Wigner distribution W,

The reassigned spectrogram: implementation

The reassigned spectrogram supports an efficient online implementation

) = ¢+ re{E R
4

f&f) = f - "“{ WORET) }



Beyond Analysis

Time-frequency representations :

v/ are usefull at identifying time-varying frequency contents

v/ are matched to chirp signals

\/ allow a time-frequency formulation of standard signal processing issues such as:

e detection
e estimation

e identification

Made possible by combining the theoretical properties of both

distributions theory and optimal detection theory

Exemple of estimation / detection :

Ay; 0) = |V, X)) matched filter
= ((P®), pLkly) unitarity
= / / PE(t, £)8(t — to,(f)) f2 df dt localization

R /R,
= / ]B?Sk)(t,f) path integration
£(6)
— Estimation B = ArgmaaxA(y; 6)

—  Detection maxA(y; 6y) > 7



Conclusions

v/ Time frequency analysis offers a natural language for describing
non stationary signals and chirp signals in particular

v/ There exist a host of time frequency representations with well defined
theoretical properties

v/ Itis possible to adapt time frequency methods to signals for the purpose
of their analysis (e.g. localization)

\/ Standard signal processing operations can be revisited through the time
frequency formalism

v/ Efficient algorithms exist (Time Frequency Toolbox for Matlab)



